1
|
Zhou Y, Chen Y, Xu M, Zhang Y, Wan X, Xia Y, Wang H, Zeng H. The effect of proteasome in heart transplantation: From mechanisms to therapeutic potential. Life Sci 2025; 364:123446. [PMID: 39920983 DOI: 10.1016/j.lfs.2025.123446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 01/25/2025] [Accepted: 02/03/2025] [Indexed: 02/10/2025]
Abstract
Heart transplantation is a critical treatment for end-stage heart failure. However, its clinical efficacy is hindered by some challenges, such as ischemia-reperfusion injury (IRI) and post-transplant rejection. These complications significantly contribute to graft dysfunction and compromise patient survival. Emerging evidence underscores the involvement of proteasome in the pathophysiology of both IRI and post-transplant rejection. Proteasome inhibition has demonstrated potential in attenuating IRI by limiting oxidative damage and apoptosis while also mitigating rejection through the regulation of adaptive and innate immune responses. Recent advances in the development of proteasome inhibitors, particularly in optimizing specificity and minimizing adverse effects, have further strengthened their prospects for clinical application. This review focuses on the roles of the proteasome and its inhibitors in heart transplantation, with an emphasis on their mechanisms and therapeutic applications in managing IRI and rejection.
Collapse
Affiliation(s)
- Ye Zhou
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan 430030, Hubei, China
| | - Yu Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Mengyao Xu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ying Zhang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan 430030, Hubei, China
| | - Xiaoning Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yudong Xia
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hongjie Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan 430030, Hubei, China.
| | - Hesong Zeng
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan 430030, Hubei, China.
| |
Collapse
|
2
|
Gustchina A, Li M, Andrianova AG, Kudzhaev AM, Lountos GT, Sekula B, Cherry S, Tropea JE, Smirnov IV, Wlodawer A, Rotanova TV. Unique Structural Fold of LonBA Protease from Bacillus subtilis, a Member of a Newly Identified Subfamily of Lon Proteases. Int J Mol Sci 2022; 23:11425. [PMID: 36232729 PMCID: PMC9569914 DOI: 10.3390/ijms231911425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
ATP-dependent Lon proteases are key participants in the quality control system that supports the homeostasis of the cellular proteome. Based on their unique structural and biochemical properties, Lon proteases have been assigned in the MEROPS database to three subfamilies (A, B, and C). All Lons are single-chain, multidomain proteins containing an ATPase and protease domains, with different additional elements present in each subfamily. LonA and LonC proteases are soluble cytoplasmic enzymes, whereas LonBs are membrane-bound. Based on an analysis of the available sequences of Lon proteases, we identified a number of enzymes currently assigned to the LonB subfamily that, although presumably membrane-bound, include structural features more similar to their counterparts in the LonA subfamily. This observation was confirmed by the crystal structure of the proteolytic domain of the enzyme previously assigned as Bacillus subtilis LonB, combined with the modeled structure of its ATPase domain. Several structural features present in both domains differ from their counterparts in either LonA or LonB subfamilies. We thus postulate that this enzyme is the founding member of a newly identified LonBA subfamily, so far found only in the gene sequences of firmicutes.
Collapse
Affiliation(s)
- Alla Gustchina
- Center for Structural Biology, National Cancer Institute, Frederick, MD 21702, USA
| | - Mi Li
- Center for Structural Biology, National Cancer Institute, Frederick, MD 21702, USA
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Anna G Andrianova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Arsen M Kudzhaev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - George T Lountos
- Center for Structural Biology, National Cancer Institute, Frederick, MD 21702, USA
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Bartosz Sekula
- Center for Structural Biology, National Cancer Institute, Frederick, MD 21702, USA
- Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, 90-573 Lodz, Poland
| | - Scott Cherry
- Center for Structural Biology, National Cancer Institute, Frederick, MD 21702, USA
| | - Joseph E Tropea
- Center for Structural Biology, National Cancer Institute, Frederick, MD 21702, USA
| | - Ivan V Smirnov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Alexander Wlodawer
- Center for Structural Biology, National Cancer Institute, Frederick, MD 21702, USA
| | - Tatyana V Rotanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| |
Collapse
|
3
|
Powell M, Blaskovich MAT, Hansford KA. Targeted Protein Degradation: The New Frontier of Antimicrobial Discovery? ACS Infect Dis 2021; 7:2050-2067. [PMID: 34259518 DOI: 10.1021/acsinfecdis.1c00203] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Targeted protein degradation aims to hijack endogenous protein quality control systems to achieve direct knockdown of protein targets. This exciting technology utilizes event-based pharmacology to produce therapeutic outcomes, a feature that distinguishes it from classical occupancy-based inhibitor agents. Early degrader candidates display resilience to mutations while possessing potent nanomolar activity and high target specificity. Paired with the rapid advancement of our knowledge in the factors driving targeted degradation, the expansion of this style of therapeutic agent to a range of disease indications is eagerly awaited. In particular, the area of antibiotic discovery is sorely lacking in novel approaches, with the Antimicrobial Resistance (AMR) crisis looming as the next potential global health calamity. Here, the current advances in targeted protein degradation are highlighted, and potential approaches for designing novel antimicrobial protein degraders are proposed, ranging from adaptations of current strategies to completely novel approaches to targeted protein degradation.
Collapse
Affiliation(s)
- Matthew Powell
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Mark A. T. Blaskovich
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Karl A. Hansford
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
4
|
An Updated review on production of food derived bioactive peptides; focus on the psychrotrophic bacterial proteases. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102051] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
5
|
Fuchs ACD, Ammelburg M, Martin J, Schmitz RA, Hartmann MD, Lupas AN. Archaeal Connectase is a specific and efficient protein ligase related to proteasome β subunits. Proc Natl Acad Sci U S A 2021; 118:e2017871118. [PMID: 33688044 PMCID: PMC7980362 DOI: 10.1073/pnas.2017871118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Sequence-specific protein ligations are widely used to produce customized proteins "on demand." Such chimeric, immobilized, fluorophore-conjugated or segmentally labeled proteins are generated using a range of chemical, (split) intein, split domain, or enzymatic methods. Where short ligation motifs and good chemoselectivity are required, ligase enzymes are often chosen, although they have a number of disadvantages, for example poor catalytic efficiency, low substrate specificity, and side reactions. Here, we describe a sequence-specific protein ligase with more favorable characteristics. This ligase, Connectase, is a monomeric homolog of 20S proteasome subunits in methanogenic archaea. In pulldown experiments with Methanosarcina mazei cell extract, we identify a physiological substrate in methyltransferase A (MtrA), a key enzyme of archaeal methanogenesis. Using microscale thermophoresis and X-ray crystallography, we show that only a short sequence of about 20 residues derived from MtrA and containing a highly conserved KDPGA motif is required for this high-affinity interaction. Finally, in quantitative activity assays, we demonstrate that this recognition tag can be repurposed to allow the ligation of two unrelated proteins. Connectase catalyzes such ligations at substantially higher rates, with higher yields, but without detectable side reactions when compared with a reference enzyme. It thus presents an attractive tool for the development of new methods, for example in the preparation of selectively labeled proteins for NMR, the covalent and geometrically defined attachment of proteins on surfaces for cryo-electron microscopy, or the generation of multispecific antibodies.
Collapse
Affiliation(s)
- Adrian C D Fuchs
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Moritz Ammelburg
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Jörg Martin
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Ruth A Schmitz
- Institute for General Microbiology, Christian Albrecht University of Kiel, 24118 Kiel, Germany
| | - Marcus D Hartmann
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Andrei N Lupas
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany;
| |
Collapse
|
6
|
Structural Insights into Substrate Recognition and Processing by the 20S Proteasome. Biomolecules 2021; 11:biom11020148. [PMID: 33498876 PMCID: PMC7910952 DOI: 10.3390/biom11020148] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 01/18/2021] [Accepted: 01/21/2021] [Indexed: 12/12/2022] Open
Abstract
Four decades of proteasome research have yielded extensive information on ubiquitin-dependent proteolysis. The archetype of proteasomes is a 20S barrel-shaped complex that does not rely on ubiquitin as a degradation signal but can degrade substrates with a considerable unstructured stretch. Since roughly half of all proteasomes in most eukaryotic cells are free 20S complexes, ubiquitin-independent protein degradation may coexist with ubiquitin-dependent degradation by the highly regulated 26S proteasome. This article reviews recent advances in our understanding of the biochemical and structural features that underlie the proteolytic mechanism of 20S proteasomes. The two outer α-rings of 20S proteasomes provide a number of potential docking sites for loosely folded polypeptides. The binding of a substrate can induce asymmetric conformational changes, trigger gate opening, and initiate its own degradation through a protease-driven translocation mechanism. Consequently, the substrate translocates through two additional narrow apertures augmented by the β-catalytic active sites. The overall pulling force through the two annuli results in a protease-like unfolding of the substrate and subsequent proteolysis in the catalytic chamber. Although both proteasomes contain identical β-catalytic active sites, the differential translocation mechanisms yield distinct peptide products. Nonoverlapping substrate repertoires and product outcomes rationalize cohabitation of both proteasome complexes in cells.
Collapse
|
7
|
Fuchs ACD, Hartmann MD. On the Origins of Symmetry and Modularity in the Proteasome Family. Bioessays 2019; 41:e1800237. [DOI: 10.1002/bies.201800237] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/04/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Adrian C. D. Fuchs
- Department of Protein EvolutionMax Planck Institute for Developmental BiologyTübingen Germany
| | - Marcus D. Hartmann
- Department of Protein EvolutionMax Planck Institute for Developmental BiologyTübingen Germany
| |
Collapse
|
8
|
Adam Z, Aviv-Sharon E, Keren-Paz A, Naveh L, Rozenberg M, Savidor A, Chen J. The Chloroplast Envelope Protease FTSH11 - Interaction With CPN60 and Identification of Potential Substrates. FRONTIERS IN PLANT SCIENCE 2019; 10:428. [PMID: 31024594 PMCID: PMC6459962 DOI: 10.3389/fpls.2019.00428] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 03/21/2019] [Indexed: 05/03/2023]
Abstract
FTSH proteases are membrane-bound, ATP-dependent metalloproteases found in bacteria, mitochondria and chloroplasts. The product of one of the 12 genes encoding FTSH proteases in Arabidopsis, FTSH11, has been previously shown to be essential for acquired thermotolerance. However, the substrates of this protease, as well as the mechanism linking it to thermotolerance are largely unknown. To get insight into these, the FTSH11 knockout mutant was complemented with proteolytically active or inactive variants of this protease, tagged with HA-tag, under the control of the native promoter. Using these plants in thermotolerance assay demonstrated that the proteolytic activity, and not only the ATPase one, is essential for conferring thermotolerance. Immunoblot analyses of leaf extracts, isolated organelles and sub-fractionated chloroplast membranes localized FTSH11 mostly to chloroplast envelopes. Affinity purification followed by mass spectrometry analysis revealed interaction between FTSH11 and different components of the CPN60 chaperonin. In affinity enrichment assays, CPN60s as well as a number of envelope, stroma and thylakoid proteins were found associated with proteolytically inactive FTSH11. Comparative proteomic analysis of WT and knockout plants, grown at 20°C or exposed to 30°C for 6 h, revealed a plethora of upregulated chloroplast proteins in the knockout, some of them might be candidate substrates. Among these stood out TIC40, which was stabilized in the knockout line after recovery from heat stress, and three proteins that were found trapped in the affinity enrichment assay: the nucleotide antiporter PAPST2, the fatty acid binding protein FAP1 and the chaperone HSP70. The consistent behavior of these four proteins in different assays suggest that they are potential FTSH11 substrates.
Collapse
Affiliation(s)
- Zach Adam
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
- *Correspondence: Zach Adam,
| | - Elinor Aviv-Sharon
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Alona Keren-Paz
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Leah Naveh
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Mor Rozenberg
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Alon Savidor
- de Botton Institute for Protein Profiling, The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Junping Chen
- Plant Stress and Germplasm Development Unit, USDA-ARS, Lubbock, TX, United States
| |
Collapse
|
9
|
Xu JH, Jiang Z, Solania A, Chatterjee S, Suzuki B, Lietz CB, Hook VYH, O’Donoghue AJ, Wolan DW. A Commensal Dipeptidyl Aminopeptidase with Specificity for N-Terminal Glycine Degrades Human-Produced Antimicrobial Peptides in Vitro. ACS Chem Biol 2018; 13:2513-2521. [PMID: 30085657 DOI: 10.1021/acschembio.8b00420] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Proteases within the C1B hydrolase family are encoded by many organisms. We subjected a putative C1B-like cysteine protease secreted by the human gut commensal Parabacteroides distasonis to mass spectrometry-based substrate profiling to find preferred peptide substrates. The P. distasonis protease, which we termed Pd_dinase, has a sequential diaminopeptidase activity with strong specificity for N-terminal glycine residues. Using the substrate sequence information, we verified the importance of the P2 glycine residue with a panel of fluorogenic substrates and calculated kcat and KM for the dipeptide glycine-arginine-AMC. A potent and irreversible dipeptide inhibitor with a C-terminal acyloxymethyl ketone warhead, glycine-arginine- AOMK, was then synthesized and demonstrated that the Pd_dinase active site requires a free N-terminal amine for potent and rapid inhibition. We next determined the homohexameric Pd_dinase structure in complex with glycine-arginine- AOMK and uncovered unexpected active site features that govern the strict substrate preferences and differentiate this protease from members of the C1B and broader papain-like C1 protease families. We finally showed that Pd_dinase hydrolyzes several human antimicrobial peptides and therefore posit that this P. distasonis enzyme may be secreted into the extracellular milieu to assist in gut colonization by inactivation of host antimicrobial peptides.
Collapse
Affiliation(s)
- Janice H. Xu
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Zhenze Jiang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Angelo Solania
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Sandip Chatterjee
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Brian Suzuki
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Christopher B. Lietz
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Vivian Y. H. Hook
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Anthony J. O’Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Dennis W. Wolan
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
10
|
Reversible inhibition of the ClpP protease via an N-terminal conformational switch. Proc Natl Acad Sci U S A 2018; 115:E6447-E6456. [PMID: 29941580 DOI: 10.1073/pnas.1805125115] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein homeostasis is critically important for cell viability. Key to this process is the refolding of misfolded or aggregated proteins by molecular chaperones or, alternatively, their degradation by proteases. In most prokaryotes and in chloroplasts and mitochondria, protein degradation is performed by the caseinolytic protease ClpP, a tetradecamer barrel-like proteolytic complex. Dysregulating ClpP function has shown promise in fighting antibiotic resistance and as a potential therapy for acute myeloid leukemia. Here we use methyl-transverse relaxation-optimized spectroscopy (TROSY)-based NMR, cryo-EM, biochemical assays, and molecular dynamics simulations to characterize the structural dynamics of ClpP from Staphylococcus aureus (SaClpP) in wild-type and mutant forms in an effort to discover conformational hotspots that regulate its function. Wild-type SaClpP was found exclusively in the active extended form, with the N-terminal domains of its component protomers in predominantly β-hairpin conformations that are less well-defined than other regions of the protein. A hydrophobic site was identified that, upon mutation, leads to unfolding of the N-terminal domains, loss of SaClpP activity, and formation of a previously unobserved split-ring conformation with a pair of 20-Å-wide pores in the side of the complex. The extended form of the structure and partial activity can be restored via binding of ADEP small-molecule activators. The observed structural plasticity of the N-terminal gates is shown to be a conserved feature through studies of Escherichia coli and Neisseria meningitidis ClpP, suggesting a potential avenue for the development of molecules to allosterically modulate the function of ClpP.
Collapse
|
11
|
Schultz D, Schlüter R, Gerth U, Lalk M. Metabolic Perturbations in a Bacillus subtilis clpP Mutant during Glucose Starvation. Metabolites 2017; 7:metabo7040063. [PMID: 29186773 PMCID: PMC5746743 DOI: 10.3390/metabo7040063] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 11/19/2017] [Accepted: 11/21/2017] [Indexed: 11/17/2022] Open
Abstract
Proteolysis is essential for all living organisms to maintain the protein homeostasis and to adapt to changing environmental conditions. ClpP is the main protease in Bacillus subtilis, and forms complexes with different Clp ATPases. These complexes play crucial roles during heat stress, but also in sporulation or cell morphology. Especially enzymes of cell wall-, amino acid-, and nucleic acid biosynthesis are known substrates of the protease ClpP during glucose starvation. The aim of this study was to analyze the influence of a clpP mutation on the metabolism in different growth phases and to search for putative new ClpP substrates. Therefore, B. subtilis 168 cells and an isogenic ∆clpP mutant were cultivated in a chemical defined medium, and the metabolome was analyzed by a combination of 1H-NMR, HPLC-MS, and GC-MS. Additionally, the cell morphology was investigated by electron microscopy. The clpP mutant showed higher levels of most glycolytic metabolites, the intermediates of the citric acid cycle, amino acids, and peptidoglycan precursors when compared to the wild-type. A strong secretion of overflow metabolites could be detected in the exo-metabolome of the clpP mutant. Furthermore, a massive increase was observed for the teichoic acid metabolite CDP-glycerol in combination with a swelling of the cell wall. Our results show a recognizable correlation between the metabolome and the corresponding proteome data of B. subtilisclpP mutant. Moreover, our results suggest an influence of ClpP on Tag proteins that are responsible for teichoic acids biosynthesis.
Collapse
Affiliation(s)
- Daniel Schultz
- Institute of Biochemistry, University of Greifswald, 17487 Greifswald, Germany;
| | - Rabea Schlüter
- Imaging Center of the Department of Biology, University of Greifswald, 17487 Greifswald, Germany;
| | - Ulf Gerth
- Institute of Microbiology, University of Greifswald, 17487 Greifswald, Germany;
| | - Michael Lalk
- Institute of Biochemistry, University of Greifswald, 17487 Greifswald, Germany;
| |
Collapse
|
12
|
Affiliation(s)
- Esther Pilla
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Kim Schneider
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Anne Bertolotti
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
13
|
Bittner LM, Arends J, Narberhaus F. Mini review: ATP-dependent proteases in bacteria. Biopolymers 2017; 105:505-17. [PMID: 26971705 DOI: 10.1002/bip.22831] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 02/11/2016] [Accepted: 03/07/2016] [Indexed: 01/22/2023]
Abstract
AAA(+) proteases are universal barrel-like and ATP-fueled machines preventing the accumulation of aberrant proteins and regulating the proteome according to the cellular demand. They are characterized by two separate operating units, the ATPase and peptidase domains. ATP-dependent unfolding and translocation of a substrate into the proteolytic chamber is followed by ATP-independent degradation. This review addresses the structure and function of bacterial AAA(+) proteases with a focus on the ATP-driven mechanisms and the coordinated movements in the complex mainly based on the knowledge of ClpXP. We conclude by discussing strategies how novel protease substrates can be trapped by mutated AAA(+) protease variants. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 505-517, 2016.
Collapse
Affiliation(s)
| | - Jan Arends
- Microbial Biology, Ruhr University Bochum, Bochum, Germany
| | | |
Collapse
|
14
|
Gil F, Paredes-Sabja D. Acyldepsipeptide antibiotics as a potential therapeutic agent against Clostridium difficile recurrent infections. Future Microbiol 2016; 11:1179-89. [DOI: 10.2217/fmb-2016-0064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Alternative antimicrobial therapies based on acyldepsipeptides may hold promising results, based on the fact that they have shown to efficiently eradicate persister cells, stationary cells and cell in biofilm structures of several pathogenic bacteria from the infected host. Clostridium difficile infection is considered the result of extensive hospital use of expanded-spectrum antibiotics, which cause dysbiosis of the intestinal microbiota, enhancing susceptibility to infection and persistence. Considering the urgent need for the development of novel and efficient antimicrobial strategies against C. difficile, we review the potential application to treat C. difficile infections of acyldepsipeptides family of antibiotics, its mechanism of action and current developmental stages.
Collapse
Affiliation(s)
- Fernando Gil
- Microbiota–Host Interactions & Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
| | - Daniel Paredes-Sabja
- Microbiota–Host Interactions & Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
- Center for Bioinformatic & Integrative Biology, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
15
|
Seredyński R, Wolna D, Kędzior M, Gutowicz J. Different patterns of extracellular proteolytic activity in W303a and BY4742 Saccharomyces cerevisiae strains. J Basic Microbiol 2016; 57:34-40. [PMID: 27406379 DOI: 10.1002/jobm.201600228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 07/02/2016] [Indexed: 11/11/2022]
Abstract
Protease secretion in Saccharomyces cerevisiae cultures is a complex process, important for the application of this organism in the food industry and biotechnology. Previous studies provide rather quantitative data, yielding no information about the number of enzymes involved in proteolysis and their individual biochemical properties. Here we demonstrate that W303a and BY4742 S. cerevisiae strains reveal different patterns of spontaneous and gelatin-induced extracellular proteolytic activity. We applied the gelatin zymography assay to track changes of the proteolytic profile in time, finding the protease secretion dependent on the growth phase and the presence of the protein inducer. Detected enzymes were characterized regarding their substrate specificity, pH tolerance, and susceptibility to inhibitors. In case of the W303a strain, only one type of gelatin-degrading secretory protease (presumably metalloproteinase) was observed. However, the BY4742 strain secreted different proteases of the various catalytic types, depending on the substrate availability. Our study brings the evidence that S. cerevisiae strains secrete several kinds of proteases depending on the presence and type of the substrate. Protein induction may cause not only quantitative but also qualitative changes in the extracellular proteolytic patterns.
Collapse
Affiliation(s)
- Rafał Seredyński
- Institute of Genetics and Microbiology, University of Wrocław, Wrocław, Poland
| | - Dorota Wolna
- Institute of Genetics and Microbiology, University of Wrocław, Wrocław, Poland
| | - Mateusz Kędzior
- Institute of Genetics and Microbiology, University of Wrocław, Wrocław, Poland
| | - Jan Gutowicz
- Institute of Genetics and Microbiology, University of Wrocław, Wrocław, Poland
| |
Collapse
|
16
|
Gersch M, Stahl M, Poreba M, Dahmen M, Dziedzic A, Drag M, Sieber SA. Barrel-shaped ClpP Proteases Display Attenuated Cleavage Specificities. ACS Chem Biol 2016; 11:389-99. [PMID: 26606371 DOI: 10.1021/acschembio.5b00757] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
ClpP is a self-compartmentalizing protease with crucial roles in bacterial and mitochondrial protein quality control. Although the ClpP homocomplex is composed of 14 equivalent active sites, it degrades a multitude of substrates to small peptides, demonstrating its capability to carry out diverse cleavage reactions. Here, we show that ClpP proteases from E. coli, S. aureus, and human mitochondria exhibit preferences for certain amino acids in the P1, P2, and P3 positions using a tailored fluorogenic substrate library. However, this high specificity is not retained during proteolysis of endogenous substrates as shown by mass spectrometric analysis of peptides produced in ClpXP-mediated degradation reactions. Our data suggest a mechanism that implicates the barrel-shaped architecture of ClpP not only in shielding the active sites to prevent uncontrolled proteolysis but also in providing high local substrate concentrations to enable efficient proteolytic processing. Furthermore, we introduce customized fluorogenic substrates with unnatural amino acids that greatly surpass the sensitivity of previously used tools. We used these to profile the activity of cancer-patient- and Perrault-syndrome-derived ClpP mutant proteins.
Collapse
Affiliation(s)
- Malte Gersch
- Center for Integrated
Protein Science (CIPSM), Technische Universität München, Department of Chemistry, Lichtenbergstraße 4, 85747 Garching, Germany
| | - Matthias Stahl
- Center for Integrated
Protein Science (CIPSM), Technische Universität München, Department of Chemistry, Lichtenbergstraße 4, 85747 Garching, Germany
| | - Marcin Poreba
- Department
of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Maria Dahmen
- Center for Integrated
Protein Science (CIPSM), Technische Universität München, Department of Chemistry, Lichtenbergstraße 4, 85747 Garching, Germany
| | - Anna Dziedzic
- Department
of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Marcin Drag
- Department
of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Stephan A. Sieber
- Center for Integrated
Protein Science (CIPSM), Technische Universität München, Department of Chemistry, Lichtenbergstraße 4, 85747 Garching, Germany
| |
Collapse
|
17
|
Appolaire A, Colombo M, Basbous H, Gabel F, Girard E, Franzetti B. TET peptidases: A family of tetrahedral complexes conserved in prokaryotes. Biochimie 2015; 122:188-96. [PMID: 26546839 DOI: 10.1016/j.biochi.2015.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 11/02/2015] [Indexed: 11/26/2022]
Abstract
The TET peptidases are large polypeptide destruction machines present among prokaryotes. They form 12-subunits hollow tetrahedral particles, and belong to the family of M42 metallo-peptidases. Structural characterization of various archaeal and bacterial complexes has revealed a unique mechanism of internal compartmentalization and peptide trafficking that distinguishes them from the other oligomeric peptidases. Different versions of the TET complex often co-exist in the cytosol of microorganisms. In depth enzymatic studies have revealed that they are non-processive cobalt-activated aminopeptidases and display contrasting substrate specificities based on the properties of the catalytic chambers. Recent studies have shed light on the assembly mechanism of homo and hetero-dodecameric TET complexes and shown that the activity of TET aminopeptidase towards polypeptides is coupled with its assembly process. These findings suggested a functional regulation based on oligomerization control in vivo. This review describes a current knowledge on M42 TET peptidases biochemistry and discuss their possible physiological roles. This article is a part of the Special Issue entitled: «A potpourri of proteases and inhibitors: from molecular toolboxes to signalling scissors».
Collapse
Affiliation(s)
- Alexandre Appolaire
- CNRS, IBS, F-38027 Grenoble, France; CEA, DSV, IBS, F-38027 Grenoble, France; Univ. Grenoble Alpes, Institut de Biologie Structurale (IBS), F-38027 Grenoble, France
| | - Matteo Colombo
- CNRS, IBS, F-38027 Grenoble, France; CEA, DSV, IBS, F-38027 Grenoble, France; Univ. Grenoble Alpes, Institut de Biologie Structurale (IBS), F-38027 Grenoble, France
| | - Hind Basbous
- CNRS, IBS, F-38027 Grenoble, France; CEA, DSV, IBS, F-38027 Grenoble, France; Univ. Grenoble Alpes, Institut de Biologie Structurale (IBS), F-38027 Grenoble, France
| | - Frank Gabel
- CNRS, IBS, F-38027 Grenoble, France; CEA, DSV, IBS, F-38027 Grenoble, France; Univ. Grenoble Alpes, Institut de Biologie Structurale (IBS), F-38027 Grenoble, France
| | - E Girard
- CNRS, IBS, F-38027 Grenoble, France; CEA, DSV, IBS, F-38027 Grenoble, France; Univ. Grenoble Alpes, Institut de Biologie Structurale (IBS), F-38027 Grenoble, France
| | - Bruno Franzetti
- CNRS, IBS, F-38027 Grenoble, France; CEA, DSV, IBS, F-38027 Grenoble, France; Univ. Grenoble Alpes, Institut de Biologie Structurale (IBS), F-38027 Grenoble, France.
| |
Collapse
|
18
|
Michalska K, Steen AD, Chhor G, Endres M, Webber AT, Bird J, Lloyd KG, Joachimiak A. New aminopeptidase from "microbial dark matter" archaeon. FASEB J 2015; 29:4071-9. [PMID: 26062601 DOI: 10.1096/fj.15-272906] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 06/02/2015] [Indexed: 02/04/2023]
Abstract
Marine sediments host a large population of diverse, heterotrophic, uncultured microorganisms with unknown physiologies that control carbon flow through organic matter decomposition. Recently, single-cell genomics uncovered new key players in these processes, such as the miscellaneous crenarchaeotal group. These widespread archaea encode putative intra- and extracellular proteases for the degradation of detrital proteins present in sediments. Here, we show that one of these enzymes is a self-compartmentalizing tetrameric aminopeptidase with a preference for cysteine and hydrophobic residues at the N terminus of the hydrolyzed peptide. The ability to perform detailed characterizations of enzymes from native subsurface microorganisms, without requiring that those organisms first be grown in pure culture, holds great promise for understanding key carbon transformations in the environment as well as identifying new enzymes for biomedical and biotechnological applications.
Collapse
Affiliation(s)
- Karolina Michalska
- *Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, Illinois, USA; Department of Microbiology and Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, Tennessee, USA; and Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA
| | - Andrew D Steen
- *Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, Illinois, USA; Department of Microbiology and Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, Tennessee, USA; and Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA
| | - Gekleng Chhor
- *Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, Illinois, USA; Department of Microbiology and Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, Tennessee, USA; and Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA
| | - Michael Endres
- *Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, Illinois, USA; Department of Microbiology and Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, Tennessee, USA; and Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA
| | - Austen T Webber
- *Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, Illinois, USA; Department of Microbiology and Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, Tennessee, USA; and Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA
| | - Jordan Bird
- *Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, Illinois, USA; Department of Microbiology and Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, Tennessee, USA; and Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA
| | - Karen G Lloyd
- *Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, Illinois, USA; Department of Microbiology and Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, Tennessee, USA; and Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA
| | - Andrzej Joachimiak
- *Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, Illinois, USA; Department of Microbiology and Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, Tennessee, USA; and Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
19
|
Lyupina YV, Bogatyrev ME, Orlova AS, Marjukhnich EV, Kazansky DB, Sharova NP. Proteasomes in the brain of β2-microglobulin knockout mice. BIOCHEMISTRY (MOSCOW) 2015; 78:1124-33. [PMID: 24237146 DOI: 10.1134/s0006297913100064] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
MHC class I molecules play an important role in synaptic plasticity of the mammalian nervous system. Proteolytic complexes (proteasomes) produce oligopeptides that are presented on cell surfaces in complexes with MHC class I molecules and regulate many cellular processes beside this. The goal of the present work was to study peculiarities in functioning of proteasomes and associated signaling pathways along with evaluation of NeuN and gFAP expression in different sections of the brain in mice with knockout of β2-microglobulin, a constituent of MHC class I molecules. It was found that the frontal cortex and the brainstem, structures with different ratio of NeuN and gFAP expression, are characterized by opposite changes in the proteasome pool under constant total proteasome levels in B2m-knockout mice in comparison with those in control animals. ChTL-activity as well as expression of LMP7 immune subunit and PA28 regulator of proteasomes was elevated in the cortex of B2m-knockout mice, while these indicators were decreased in the brainstem. The concentrations of the signaling molecules nNOS and HSP70 in B2m-knockout mice were increased in the cortex, while being decreased in the brainstem, and this indicates the possibility of control of expression of the LMP7 subunit and the regulator PA28 by these molecules. Changes in the proteasome pool observed in striatum of B2m-knockout mice are similar to those observed in the brainstem. At the same time, the cerebellum is characterized by a specific pattern of proteasome functioning in comparison with that in all other brain structures. In cerebellum the expression of immune subunits LMP7 and LMP2 and the regulator PA28 was increased, while expression of regulator PA700 was decreased. Deficiency of NeuN and gFAP was revealed in most brain compartments of B2m-knockout mice. Thus, increased expression of the above-mentioned immune subunits and the proteasome regulator PA28 in the cortex and cerebellum may compensate disturbances revealed in the brain structures and the absence of MHC class I molecules. Apparently, this promotes production of peptides necessary for cell-to-cell interactions and maintains nervous system plasticity in B2m-knockout mice.
Collapse
Affiliation(s)
- Yu V Lyupina
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334, Russia.
| | | | | | | | | | | |
Collapse
|
20
|
The cyclic peptide ecumicin targeting ClpC1 is active against Mycobacterium tuberculosis in vivo. Antimicrob Agents Chemother 2014; 59:880-9. [PMID: 25421483 DOI: 10.1128/aac.04054-14] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Drug-resistant tuberculosis (TB) has lent urgency to finding new drug leads with novel modes of action. A high-throughput screening campaign of >65,000 actinomycete extracts for inhibition of Mycobacterium tuberculosis viability identified ecumicin, a macrocyclic tridecapeptide that exerts potent, selective bactericidal activity against M. tuberculosis in vitro, including nonreplicating cells. Ecumicin retains activity against isolated multiple-drug-resistant (MDR) and extensively drug-resistant (XDR) strains of M. tuberculosis. The subcutaneous administration to mice of ecumicin in a micellar formulation at 20 mg/kg body weight resulted in plasma and lung exposures exceeding the MIC. Complete inhibition of M. tuberculosis growth in the lungs of mice was achieved following 12 doses at 20 or 32 mg/kg. Genome mining of lab-generated, spontaneous ecumicin-resistant M. tuberculosis strains identified the ClpC1 ATPase complex as the putative target, and this was confirmed by a drug affinity response test. ClpC1 functions in protein breakdown with the ClpP1P2 protease complex. Ecumicin markedly enhanced the ATPase activity of wild-type (WT) ClpC1 but prevented activation of proteolysis by ClpC1. Less stimulation was observed with ClpC1 from ecumicin-resistant mutants. Thus, ClpC1 is a valid drug target against M. tuberculosis, and ecumicin may serve as a lead compound for anti-TB drug development.
Collapse
|
21
|
Gavrish E, Sit CS, Cao S, Kandror O, Spoering A, Peoples A, Ling L, Fetterman A, Hughes D, Bissell A, Torrey H, Akopian T, Mueller A, Epstein S, Goldberg A, Clardy J, Lewis K. Lassomycin, a ribosomally synthesized cyclic peptide, kills mycobacterium tuberculosis by targeting the ATP-dependent protease ClpC1P1P2. ACTA ACUST UNITED AC 2014; 21:509-518. [PMID: 24684906 DOI: 10.1016/j.chembiol.2014.01.014] [Citation(s) in RCA: 303] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 01/27/2014] [Accepted: 01/31/2014] [Indexed: 10/25/2022]
Abstract
Languishing antibiotic discovery and flourishing antibiotic resistance have prompted the development of alternative untapped sources for antibiotic discovery, including previously uncultured bacteria. Here, we screen extracts from uncultured species against Mycobacterium tuberculosis and identify lassomycin, an antibiotic that exhibits potent bactericidal activity against both growing and dormant mycobacteria, including drug-resistant forms of M. tuberculosis, but little activity against other bacteria or mammalian cells. Lassomycin is a highly basic, ribosomally encoded cyclic peptide with an unusual structural fold that only partially resembles that of other lasso peptides. We show that lassomycin binds to a highly acidic region of the ClpC1 ATPase complex and markedly stimulates its ATPase activity without stimulating ClpP1P2-catalyzed protein breakdown, which is essential for viability of mycobacteria. This mechanism, uncoupling ATPase from proteolytic activity, accounts for the bactericidal activity of lassomycin.
Collapse
Affiliation(s)
- Ekaterina Gavrish
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, MA 02115, USA
| | - Clarissa S Sit
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Shugeng Cao
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Olga Kandror
- Goldberg Laboratory, Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Amy Spoering
- NovoBiotic Pharmaceuticals, LLC, Cambridge, MA 02138, USA
| | - Aaron Peoples
- NovoBiotic Pharmaceuticals, LLC, Cambridge, MA 02138, USA
| | - Losee Ling
- NovoBiotic Pharmaceuticals, LLC, Cambridge, MA 02138, USA
| | | | - Dallas Hughes
- NovoBiotic Pharmaceuticals, LLC, Cambridge, MA 02138, USA
| | - Anthony Bissell
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, MA 02115, USA
| | - Heather Torrey
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, MA 02115, USA
| | - Tatos Akopian
- Goldberg Laboratory, Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Andreas Mueller
- Goldberg Laboratory, Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Slava Epstein
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, MA 02115, USA
| | - Alfred Goldberg
- Goldberg Laboratory, Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Jon Clardy
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| | - Kim Lewis
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
22
|
Abstract
The ubiquitin proteasome system (UPS) is the main ATP-dependent protein degradation pathway in the cytosol and nucleus of eukaryotic cells. At its centre is the 26S proteasome, which degrades regulatory proteins and misfolded or damaged proteins. In a major breakthrough, several groups have determined high-resolution structures of the entire 26S proteasome particle in different nucleotide conditions and with and without substrate using cryo-electron microscopy combined with other techniques. These structures provide some surprising insights into the functional mechanism of the proteasome and will give invaluable guidance for genetic and biochemical studies of this key regulatory system.
Collapse
|
23
|
Nelson CJ, Li L, Millar AH. Quantitative analysis of protein turnover in plants. Proteomics 2014; 14:579-92. [DOI: 10.1002/pmic.201300240] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 10/02/2013] [Accepted: 10/14/2013] [Indexed: 12/22/2022]
Affiliation(s)
- Clark J. Nelson
- ARC Centre of Excellence in Plant Energy Biology; University of Western Australia; WA Australia
- Centre for Comparative Analysis of Biomolecular Networks; University of Western Australia; WA Australia
| | - Lei Li
- ARC Centre of Excellence in Plant Energy Biology; University of Western Australia; WA Australia
- Centre for Comparative Analysis of Biomolecular Networks; University of Western Australia; WA Australia
| | - A. Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology; University of Western Australia; WA Australia
- Centre for Comparative Analysis of Biomolecular Networks; University of Western Australia; WA Australia
| |
Collapse
|
24
|
Förster F, Unverdorben P, Śledź P, Baumeister W. Unveiling the Long-Held Secrets of the 26S Proteasome. Structure 2013; 21:1551-62. [DOI: 10.1016/j.str.2013.08.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 08/15/2013] [Accepted: 08/16/2013] [Indexed: 01/23/2023]
|
25
|
Sowole MA, Alexopoulos JA, Cheng YQ, Ortega J, Konermann L. Activation of ClpP protease by ADEP antibiotics: insights from hydrogen exchange mass spectrometry. J Mol Biol 2013; 425:4508-19. [PMID: 23948506 DOI: 10.1016/j.jmb.2013.08.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 07/27/2013] [Accepted: 08/06/2013] [Indexed: 10/26/2022]
Abstract
The bacterial protease ClpP consists of 14 subunits that assemble into two stacked heptameric rings. The central degradation chamber can be accessed via axial pores. In free ClpP, these pores are obstructed by the N-terminal regions of the seven subunits at either end of the barrel. Acyldepsipeptides (ADEPs) are antibacterial compounds that bind in hydrophobic clefts surrounding the pore region, causing the pores to open up. The ensuing uncontrolled degradation of intracellular proteins is responsible for the antibiotic activity of ADEPs. Recently published X-ray structures yielded conflicting models regarding the conformation adopted by the N-terminal regions in the open state. Here, we use hydrogen/deuterium exchange (HDX) mass spectrometry to obtain complementary insights into the ClpP behavior with and without ADEP1. Ligand binding causes rigidification of the equatorial belt, accompanied by destabilization in the vicinity of the binding clefts. The N-terminal regions undergo rapid deuteration with only minor changes after ADEP1 binding, revealing a lack of stable H-bonding. Our data point to a mechanism where the pore opening mechanism is mediated primarily by changes in the packing of N-terminal nonpolar side chains. We propose that a "hydrophobic plug" causes pore blockage in ligand-free ClpP. ADEP1 binding provides new hydrophobic anchor points that nonpolar N-terminal residues can interact with. In this way, ADEP1 triggers the transition to an open conformation, where nonpolar moieties are clustered around the rim of the pore. This proposed mechanism helps reconcile the conflicting models that had been put forward earlier.
Collapse
Affiliation(s)
- Modupeola A Sowole
- Department of Chemistry, The University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | | | | | | | | |
Collapse
|
26
|
Appolaire A, Rosenbaum E, Durá MA, Colombo M, Marty V, Savoye MN, Godfroy A, Schoehn G, Girard E, Gabel F, Franzetti B. Pyrococcus horikoshii TET2 peptidase assembling process and associated functional regulation. J Biol Chem 2013; 288:22542-54. [PMID: 23696647 PMCID: PMC3829341 DOI: 10.1074/jbc.m113.450189] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 05/13/2013] [Indexed: 11/06/2022] Open
Abstract
Tetrahedral (TET) aminopeptidases are large polypeptide destruction machines present in prokaryotes and eukaryotes. Here, the rules governing their assembly into hollow 12-subunit tetrahedrons are addressed by using TET2 from Pyrococcus horikoshii (PhTET2) as a model. Point mutations allowed the capture of a stable, catalytically active precursor. Small angle x-ray scattering revealed that it is a dimer whose architecture in solution is identical to that determined by x-ray crystallography within the fully assembled TET particle. Small angle x-ray scattering also showed that the reconstituted PhTET2 dodecameric particle displayed the same quaternary structure and thermal stability as the wild-type complex. The PhTET2 assembly intermediates were characterized by analytical ultracentrifugation, native gel electrophoresis, and electron microscopy. They revealed that PhTET2 assembling is a highly ordered process in which hexamers represent the main intermediate. Peptide degradation assays demonstrated that oligomerization triggers the activity of the TET enzyme toward large polypeptidic substrates. Fractionation experiments in Pyrococcus and Halobacterium cells revealed that, in vivo, the dimeric precursor co-exists together with assembled TET complexes. Taken together, our observations explain the biological significance of TET oligomerization and suggest the existence of a functional regulation of the dimer-dodecamer equilibrium in vivo.
Collapse
Affiliation(s)
- Alexandre Appolaire
- From the Institut de Biologie Structurale, CNRS, UMR5075, F-38027/Commissariat à l'Energie Atomique, F-38054/Université Joseph Fourier, F-38027 Grenoble and
| | - Eva Rosenbaum
- From the Institut de Biologie Structurale, CNRS, UMR5075, F-38027/Commissariat à l'Energie Atomique, F-38054/Université Joseph Fourier, F-38027 Grenoble and
| | - M. Asunción Durá
- From the Institut de Biologie Structurale, CNRS, UMR5075, F-38027/Commissariat à l'Energie Atomique, F-38054/Université Joseph Fourier, F-38027 Grenoble and
| | - Matteo Colombo
- From the Institut de Biologie Structurale, CNRS, UMR5075, F-38027/Commissariat à l'Energie Atomique, F-38054/Université Joseph Fourier, F-38027 Grenoble and
| | - Vincent Marty
- From the Institut de Biologie Structurale, CNRS, UMR5075, F-38027/Commissariat à l'Energie Atomique, F-38054/Université Joseph Fourier, F-38027 Grenoble and
| | - Marjolaine Noirclerc Savoye
- From the Institut de Biologie Structurale, CNRS, UMR5075, F-38027/Commissariat à l'Energie Atomique, F-38054/Université Joseph Fourier, F-38027 Grenoble and
| | - Anne Godfroy
- the Ifremer, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, 29280 Plouzané, France
| | - Guy Schoehn
- From the Institut de Biologie Structurale, CNRS, UMR5075, F-38027/Commissariat à l'Energie Atomique, F-38054/Université Joseph Fourier, F-38027 Grenoble and
| | - Eric Girard
- From the Institut de Biologie Structurale, CNRS, UMR5075, F-38027/Commissariat à l'Energie Atomique, F-38054/Université Joseph Fourier, F-38027 Grenoble and
| | - Frank Gabel
- From the Institut de Biologie Structurale, CNRS, UMR5075, F-38027/Commissariat à l'Energie Atomique, F-38054/Université Joseph Fourier, F-38027 Grenoble and
| | - Bruno Franzetti
- From the Institut de Biologie Structurale, CNRS, UMR5075, F-38027/Commissariat à l'Energie Atomique, F-38054/Université Joseph Fourier, F-38027 Grenoble and
| |
Collapse
|
27
|
Crystal structure of an RNA-bound 11-subunit eukaryotic exosome complex. Nature 2013; 495:70-5. [DOI: 10.1038/nature11870] [Citation(s) in RCA: 187] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 12/21/2012] [Indexed: 01/18/2023]
|
28
|
Abstract
Archaea contain, both a functional proteasome and an ubiquitin-like protein conjugation system (termed sampylation) that is related to the ubiquitin proteasome system (UPS) of eukaryotes. Archaeal proteasomes have served as excellent models for understanding how proteins are degraded by the central energy-dependent proteolytic machine of eukaryotes, the 26S proteasome. While sampylation has only recently been discovered, it is thought to be linked to proteasome-mediated degradation in archaea. Unlike eukaryotes, sampylation only requires an E1 enzyme homolog of the E1-E2-E3 ubiquitylation cascade to mediate protein conjugation. Furthermore, recent evidence suggests that archaeal and eurkaryotic E1 enzyme homologs can serve dual roles in mediating protein conjugation and activating sulfur for incorporation into biomolecules. The focus of this book chapter is the energy-dependent proteasome and sampylation systems of Archaea.
Collapse
Affiliation(s)
- Julie A Maupin-Furlow
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, 32611-0700, USA,
| |
Collapse
|
29
|
Eichler J, Maupin-Furlow J. Post-translation modification in Archaea: lessons from Haloferax volcanii and other haloarchaea. FEMS Microbiol Rev 2012; 37:583-606. [PMID: 23167813 DOI: 10.1111/1574-6976.12012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 11/13/2012] [Accepted: 11/13/2012] [Indexed: 01/11/2023] Open
Abstract
As an ever-growing number of genome sequences appear, it is becoming increasingly clear that factors other than genome sequence impart complexity to the proteome. Of the various sources of proteomic variability, post-translational modifications (PTMs) most greatly serve to expand the variety of proteins found in the cell. Likewise, modulating the rates at which different proteins are degraded also results in a constantly changing cellular protein profile. While both strategies for generating proteomic diversity are adopted by organisms across evolution, the responsible pathways and enzymes in Archaea are often less well described than are their eukaryotic and bacterial counterparts. Studies on halophilic archaea, in particular Haloferax volcanii, originally isolated from the Dead Sea, are helping to fill the void. In this review, recent developments concerning PTMs and protein degradation in the haloarchaea are discussed.
Collapse
Affiliation(s)
- Jerry Eichler
- Department of Life Sciences, Ben Gurion University, Beersheva, Israel.
| | | |
Collapse
|
30
|
Abstract
Proteases have been successfully targeted for the treatment of several diseases, including hypertension, type 2 diabetes, multiple myeloma, HIV and hepatitis C virus infections. Given the demonstrated pharmacological tractability of this enzyme family and the pressing need for novel drugs to combat antibiotic resistance, proteases have also attracted interest as antibacterial targets--particularly the widely conserved intracellular bacterial degradative proteases, which are often indispensable for normal bacterial growth or virulence. This Review summarizes the roles of the key prokaryotic degradative proteases, with a focus on the initial efforts and associated challenges in developing specific therapeutic modulators of these enzymes as novel classes of antibacterial drugs.
Collapse
|
31
|
Solheim C, Li L, Hatzopoulos P, Millar AH. Loss of Lon1 in Arabidopsis changes the mitochondrial proteome leading to altered metabolite profiles and growth retardation without an accumulation of oxidative damage. PLANT PHYSIOLOGY 2012; 160:1187-203. [PMID: 22968828 PMCID: PMC3490588 DOI: 10.1104/pp.112.203711] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Accepted: 09/07/2012] [Indexed: 05/20/2023]
Abstract
Lon1 is an ATP-dependent protease and chaperone located in the mitochondrial matrix in plants. Knockout in Arabidopsis (Arabidopsis thaliana) leads to a significant growth rate deficit in both roots and shoots and lowered activity of specific mitochondrial enzymes associated with respiratory metabolism. Analysis of the mitochondrial proteomes of two lon1 mutant alleles (lon1-1 and lon1-2) with different severities of phenotypes shows a common accumulation of several stress marker chaperones and lowered abundance of Complexes I, IV, and V of OXPHOS. Certain enzymes of the tricarboxylic acid (TCA) cycle are modified or accumulated, and TCA cycle bypasses were repressed rather than induced. While whole tissue respiratory rates were unaltered in roots and shoots, TCA cycle intermediate organic acids were depleted in leaf extracts in the day in lon1-1 and in both lon mutants at night. No significant evidence of broad steady-state oxidative damage to isolated mitochondrial samples could be found, but peptides from several specific proteins were more oxidized and selected functions were more debilitated in lon1-1. Collectively, the evidence suggests that loss of Lon1 significantly modifies respiratory function and plant performance by small but broad alterations in the mitochondrial proteome gained by subtly changing steady-state protein assembly, stability, and damage of a range of components that debilitate an anaplerotic role for mitochondria in cellular carbon metabolism.
Collapse
|
32
|
Interaction specificity between the chaperone and proteolytic components of the cyanobacterial Clp protease. Biochem J 2012; 446:311-20. [DOI: 10.1042/bj20120649] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The Clp protease is conserved among eubacteria and most eukaryotes, and uses ATP to drive protein substrate unfolding and translocation into a chamber of sequestered proteolytic active sites. In plant chloroplasts and cyanobacteria, the essential constitutive Clp protease consists of the Hsp100/ClpC chaperone partnering a proteolytic core of catalytic ClpP and noncatalytic ClpR subunits. In the present study, we have examined putative determinants conferring the highly specific association between ClpC and the ClpP3/R core from the model cyanobacterium Synechococcus elongatus. Two conserved sequences in the N-terminus of ClpR (tyrosine and proline motifs) and one in the N-terminus of ClpP3 (MPIG motif) were identified as being crucial for the ClpC–ClpP3/R association. These N-terminal domains also influence the stability of the ClpP3/R core complex itself. A unique C-terminal sequence was also found in plant and cyanobacterial ClpC orthologues just downstream of the P-loop region previously shown in Escherichia coli to be important for Hsp100 association to ClpP. This R motif in Synechococcus ClpC confers specificity for the ClpP3/R core and prevents association with E. coli ClpP; its removal from ClpC reverses this core specificity.
Collapse
|
33
|
Abstract
Molecular structures can serve to either validate or rule out existing hypotheses, and they can also spawn new, deeper proposals about biochemical mechanism. In this issue of Structure, Schönegge et al. use single-particle cryo-electron microscopy and flexible docking to examine the function of human tripeptidyl peptidase II, including the role of conformational changes in enzyme activation.
Collapse
Affiliation(s)
- Robert M Glaeser
- Donner Laboratory, Life Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
34
|
Abstract
AAA+ family proteolytic machines (ClpXP, ClpAP, ClpCP, HslUV, Lon, FtsH, PAN/20S, and the 26S proteasome) perform protein quality control and are used in regulatory circuits in all cells. These machines contain a compartmental protease, with active sites sequestered in an interior chamber, and a hexameric ring of AAA+ ATPases. Substrate proteins are tethered to the ring, either directly or via adaptor proteins. An unstructured region of the substrate is engaged in the axial pore of the AAA+ ring, and cycles of ATP binding/hydrolysis drive conformational changes that create pulses of pulling that denature the substrate and translocate the unfolded polypeptide through the pore and into the degradation chamber. Here, we review our current understanding of the molecular mechanisms of substrate recognition, adaptor function, and ATP-fueled unfolding and translocation. The unfolding activities of these and related AAA+ machines can also be used to disassemble or remodel macromolecular complexes and to resolubilize aggregates.
Collapse
Affiliation(s)
- Robert T Sauer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | | |
Collapse
|
35
|
El Bakkouri M, Pow A, Mulichak A, Cheung KLY, Artz JD, Amani M, Fell S, de Koning-Ward TF, Goodman CD, McFadden GI, Ortega J, Hui R, Houry WA. The Clp chaperones and proteases of the human malaria parasite Plasmodium falciparum. J Mol Biol 2010; 404:456-77. [PMID: 20887733 DOI: 10.1016/j.jmb.2010.09.051] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 09/08/2010] [Accepted: 09/22/2010] [Indexed: 10/19/2022]
Abstract
The Clp chaperones and proteases play an important role in protein homeostasis in the cell. They are highly conserved across prokaryotes and found also in the mitochondria of eukaryotes and the chloroplasts of plants. They function mainly in the disaggregation, unfolding and degradation of native as well as misfolded proteins. Here, we provide a comprehensive analysis of the Clp chaperones and proteases in the human malaria parasite Plasmodium falciparum. The parasite contains four Clp ATPases, which we term PfClpB1, PfClpB2, PfClpC and PfClpM. One PfClpP, the proteolytic subunit, and one PfClpR, which is an inactive version of the protease, were also identified. Expression of all Clp chaperones and proteases was confirmed in blood-stage parasites. The proteins were localized to the apicoplast, a non-photosynthetic organelle that accommodates several important metabolic pathways in P. falciparum, with the exception of PfClpB2 (also known as Hsp101), which was found in the parasitophorous vacuole. Both PfClpP and PfClpR form mostly homoheptameric rings as observed by size-exclusion chromatography, analytical ultracentrifugation and electron microscopy. The X-ray structure of PfClpP showed the protein as a compacted tetradecamer similar to that observed for Streptococcus pneumoniae and Mycobacterium tuberculosis ClpPs. Our data suggest the presence of a ClpCRP complex in the apicoplast of P. falciparum.
Collapse
Affiliation(s)
- Majida El Bakkouri
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Studies on the parameters controlling the stability of the TET peptidase superstructure from Pyrococcus horikoshii revealed a crucial role of pH and catalytic metals in the oligomerization process. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1814:1289-94. [PMID: 21130903 DOI: 10.1016/j.bbapap.2010.11.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 11/03/2010] [Accepted: 11/24/2010] [Indexed: 11/21/2022]
Abstract
The TET proteases from Pyrococcus horikoshii are metallopeptidases that form large dodecameric particles with high thermal stability. The influence of various physico-chemical parameters on PhTET3 quaternary structure was investigated. Analytical ultracentrifugation and biochemical analyses showed that the PhTET3 quaternary structure and enzymatic activity are maintained in high salt and that the complex is stable under extreme acidic conditions. Under basic pH conditions the complex disassembled into a low molecular weight species that was identified as folded dimer. Metal analyses showed that the purified enzyme only contains two equivalent of zinc per monomer, corresponding to the metal ions responsible for catalytic activity. When these metals were removed by EDTA treatment, the complex dissociated into the same dimeric species as those observed at high pH. Dodecameric TET particles were obtained from the metal free dimers when 2mM of divalent ions were added to the protein samples. Most of the dimers remained assembled at high temperature. Thus, we have shown that dimers are the building units in the TET oligomerization pathway and that the active site metals are essential in this process.
Collapse
|
37
|
Vo A, Nguyen N, Huang H. Solenoid and non-solenoid protein recognition using stationary wavelet packet transform. Bioinformatics 2010; 26:i467-73. [PMID: 20823309 PMCID: PMC2935422 DOI: 10.1093/bioinformatics/btq371] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Motivation: Solenoid proteins are emerging as a protein class with properties intermediate between structured and intrinsically unstructured proteins. Containing repeating structural units, solenoid proteins are expected to share sequence similarities. However, in many cases, the sequence similarities are weak and non-detectable. Moreover, solenoids can be degenerated and widely vary in the number of units. So that it is difficult to detect them. Recently, several solenoid repeats detection methods have been proposed, such as self-alignment of the sequence, spectral analysis and discrete Fourier transform of sequence. Although these methods have shown good performance on certain data sets, they often fail to detect repeats with weak similarities. In this article, we propose a new approach to recognize solenoid repeats and non-solenoid proteins using stationary wavelet packet transform (SWPT). Our method associates with three advantages: (i) naturally representing five main factors of protein structure and properties by wavelet analysis technique; (ii) extracting novel wavelet features that can capture hidden components from solenoid sequence similarities and distinguish them from global proteins; (iii) obtaining statistics features that capture repeating motifs of solenoid proteins. Results: Our method analyzes the characteristics of amino acid sequence in both spectral and temporal domains using SWPT. Both global and local information of proteins are captured by SWPT coefficients. We obtain and integrate wavelet-based features and statistics-based features of amino acid sequence to improve the classification task. Our proposed method is evaluated by comparing to state-of-the-art methods such as HHrepID and REPETITA. The experimental results show that our algorithm consistently outperforms them in areas under ROC curve. At the same false positive rate, the sensitivity of our WAVELET method is higher than other methods. Availability:http://www.naaan.org/anvo/Software/Software.htm Contact:anphuocnhu.vo@mavs.uta.edu
Collapse
Affiliation(s)
- An Vo
- The Feinstein Institute for Medical Research, North Shore LIJ Health System, NY, USA.
| | | | | |
Collapse
|
38
|
Sastre DE, Paggi RA, De Castro RE. The Lon protease from the haloalkaliphilic archaeon Natrialba magadii is transcriptionally linked to a cluster of putative membrane proteases and displays DNA-binding activity. Microbiol Res 2010; 166:304-13. [PMID: 20869220 DOI: 10.1016/j.micres.2010.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 07/08/2010] [Accepted: 07/10/2010] [Indexed: 01/22/2023]
Abstract
The ATP-dependent Lon protease is universally distributed in bacteria, eukaryotic organelles and archaea. In comparison with bacterial and eukaryal Lon proteases, the biology of the archaeal Lon has been studied to a limited extent. In this study, the gene encoding the Lon protease of the alkaliphilic haloarchaeon Natrialba magadii (Nmlon) was cloned and sequenced, and the genetic organization of Nmlon was examined at the transcriptional level. Nmlon encodes a 84 kDa polypeptide with a pI of 4.42 which contains the ATPase, protease and membrane targeting domains of the archaeal-type LonB proteases. Nmlon is part of an operon that encodes membrane proteases and it is transcribed as a polycistronic mRNA in N. magadii cells at different growth stages. Accordingly, NmLon was detected in cell membranes of N. magadii throughout growth by Western blot analysis using specific anti-NmLon antibodies. Interestingly, in electrophoretic mobility shift assays, purified NmLon bound double stranded as well as single stranded DNA in the presence of elevated salt concentrations. This finding shows that DNA-binding is conserved in the LonA and LonB subfamilies and suggests that Lon-DNA interaction may be relevant for its function in haloarchaea.
Collapse
Affiliation(s)
- Diego E Sastre
- Instituto de Investigaciones Biológicas, UNMDP-CONICET, Funes 3250 4 to Nivel, Mar del Plata 7600, Argentina
| | | | | |
Collapse
|
39
|
Duman RE, Löwe J. Crystal structures of Bacillus subtilis Lon protease. J Mol Biol 2010; 401:653-70. [PMID: 20600124 DOI: 10.1016/j.jmb.2010.06.030] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 06/14/2010] [Accepted: 06/15/2010] [Indexed: 11/29/2022]
Abstract
Lon ATP-dependent proteases are key components of the protein quality control systems of bacterial cells and eukaryotic organelles. Eubacterial Lon proteases contain an N-terminal domain, an ATPase domain, and a protease domain, all in one polypeptide chain. The N-terminal domain is thought to be involved in substrate recognition, the ATPase domain in substrate unfolding and translocation into the protease chamber, and the protease domain in the hydrolysis of polypeptides into small peptide fragments. Like other AAA+ ATPases and self-compartmentalising proteases, Lon functions as an oligomeric complex, although the subunit stoichiometry is currently unclear. Here, we present crystal structures of truncated versions of Lon protease from Bacillus subtilis (BsLon), which reveal previously unknown architectural features of Lon complexes. Our analytical ultracentrifugation and electron microscopy show different oligomerisation of Lon proteases from two different bacterial species, Aquifex aeolicus and B. subtilis. The structure of BsLon-AP shows a hexameric complex consisting of a small part of the N-terminal domain, the ATPase, and protease domains. The structure shows the approximate arrangement of the three functional domains of Lon. It also reveals a resemblance between the architecture of Lon proteases and the bacterial proteasome-like protease HslUV. Our second structure, BsLon-N, represents the first 209 amino acids of the N-terminal domain of BsLon and consists of a globular domain, similar in structure to the E. coli Lon N-terminal domain, and an additional four-helix bundle, which is part of a predicted coiled-coil region. An unexpected dimeric interaction between BsLon-N monomers reveals the possibility that Lon complexes may be stabilised by coiled-coil interactions between neighbouring N-terminal domains. Together, BsLon-N and BsLon-AP are 36 amino acids short of offering a complete picture of a full-length Lon protease.
Collapse
Affiliation(s)
- Ramona E Duman
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | | |
Collapse
|
40
|
Kirstein J, Hoffmann A, Lilie H, Schmidt R, Rübsamen-Waigmann H, Brötz-Oesterhelt H, Mogk A, Turgay K. The antibiotic ADEP reprogrammes ClpP, switching it from a regulated to an uncontrolled protease. EMBO Mol Med 2010; 1:37-49. [PMID: 20049702 PMCID: PMC3378108 DOI: 10.1002/emmm.200900002] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A novel class of antibiotic acyldepsipeptides (designated ADEPs) exerts its unique antibacterial activity by targeting the peptidase caseinolytic protease P (ClpP). ClpP forms proteolytic complexes with heat shock proteins (Hsp100) that select and process substrate proteins for ClpP-mediated degradation. Here, we analyse the molecular mechanism of ADEP action and demonstrate that ADEPs abrogate ClpP interaction with cooperating Hsp100 adenosine triphosphatases (ATPases). Consequently, ADEP treated bacteria are affected in ClpP-dependent general and regulatory proteolysis. At the same time, ADEPs also activate ClpP by converting it from a tightly regulated peptidase, which can only degrade short peptides, into a proteolytic machinery that recognizes and degrades unfolded polypeptides. In vivo nascent polypeptide chains represent the putative primary target of ADEP-activated ClpP, providing a rationale for the antibacterial activity of the ADEPs. Thus, ADEPs cause a complete functional reprogramming of the Clp–protease complex.
Collapse
Affiliation(s)
- Janine Kirstein
- Institut für Biologie-Mikrobiologie, FU Berlin, Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Hewett J, Johanson P, Sharma N, Standaert D, Balcioglu A. Function of dopamine transporter is compromised in DYT1 transgenic animal model in vivo. J Neurochem 2010; 113:228-35. [PMID: 20132487 DOI: 10.1111/j.1471-4159.2010.06590.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Early onset torsion dystonia (DYT1), the most common form of hereditary primary dystonia, is caused by a mutation in the TOR1A gene, which codes for the protein, torsinA. We previously examined the effect of the human mutant torsinA on striatal dopaminergic function in a conventional transgenic mouse model of DYT1 dystonia (hMT1), in which human mutant torsinA is expressed under the cytomegalovirus promotor. Systemic administration of amphetamine did not increase dopamine (DA) release as efficiently in these mice as compared with wild-type transgenic and non-transgenic mice. We, now, studied the contribution of the DA transporter (DAT) to amphetamine-induced DA release in hMT1 transgenic mice using in vivo no-net flux microdialysis. This method applies different concentrations of DA through the microdialysis probe and measures DA concentration at the output of the probe following an equilibrium period. The slope (extraction fraction) is the measure of the DAT activity in vivo. The slope for hMT1 transgenic mice was 0.58 +/- 0.07 and for non-transgenic animals, 0.87 +/- 0.06 (p < 0.05). We further investigated the efficacy of nomifensine (a specific DAT inhibitor) in inhibiting amphetamine-induced DA release. Local application of nomifensine 80 min before the systemic application of amphetamine inhibited DA release in both transgenic mice and their non-transgenic littermates. The efficiency of the inhibition appeared to be different, with mean values of 48% for hMT1 transgenic mice versus 84% for non-transgenic littermates. Moreover, we have evaluated basal and amphetamine-induced locomotion in hMT1 transgenic mice compared with their non-transgenic littermates, using an O-maze behavioral chamber. Basal levels of locomotion in the hMT1 transgenic mice showed that they moved much less than their non-transgenic littermates (0.9 +/- 0.3 m for transgenic mice vs. 2.4 +/- 0.7 m for non-transgenic littermates, p < 0.05). This relative reduction in locomotion was also observed following amphetamine administration (48.5 +/- 6.7 m for transgenics vs. 73.7 +/- 9.8 m for non-transgenics, p < 0.05). These results support the finding that there are altered dynamics of DA release and reuptake in hMT1 transgenic mice in vivo, with DAT activity is reduced in the presence of mutant torsinA, which is consistent with behavioral consequences such as reduced locomotion and (previously described) abnormal motor phenotypes such as increased hind-base width and impaired performance on the raised-beam task. These data implies that altered DAT function may contribute to impaired DA neurotransmission and clinical symptoms in human DYT1 dystonia.
Collapse
Affiliation(s)
- Jeff Hewett
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts 02129, USA
| | | | | | | | | |
Collapse
|
42
|
Examination of post-transcriptional regulations in prokaryotes by integrative biology. C R Biol 2009; 332:958-73. [DOI: 10.1016/j.crvi.2009.09.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
43
|
Abstract
Members of the AAA+ protein superfamily contribute to many diverse aspects of protein homeostasis in prokaryotic cells. As a fundamental component of numerous proteolytic machines in bacteria, AAA+ proteins play a crucial part not only in general protein quality control but also in the regulation of developmental programmes, through the controlled turnover of key proteins such as transcription factors. To manage these many, varied tasks, Hsp100/Clp and AAA+ proteases use specific adaptor proteins to enhance or expand the substrate recognition abilities of their cognate protease. Here, we review our current knowledge of the modulation of bacterial AAA+ proteases by these cellular arbitrators.
Collapse
|
44
|
Marsella L, Sirocco F, Trovato A, Seno F, Tosatto SCE. REPETITA: detection and discrimination of the periodicity of protein solenoid repeats by discrete Fourier transform. Bioinformatics 2009; 25:i289-95. [PMID: 19478001 PMCID: PMC2687986 DOI: 10.1093/bioinformatics/btp232] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Motivation: Proteins with solenoid repeats evolve more quickly than non-repetitive ones and their periodicity may be rapidly hidden at sequence level, while still evident in structure. In order to identify these repeats, we propose here a novel method based on a metric characterizing amino-acid properties (polarity, secondary structure, molecular volume, codon diversity, electric charge) using five previously derived numerical functions. Results: The five spectra of the candidate sequences coding for structural repeats, obtained by Discrete Fourier Transform (DFT), show common features allowing determination of repeat periodicity with excellent results. Moreover it is possible to introduce a phase space parameterized by two quantities related to the Fourier spectra which allow for a clear distinction between a non-homologous set of globular proteins and proteins with solenoid repeats. The DFT method is shown to be competitive with other state of the art methods in the detection of solenoid structures, while improving its performance especially in the identification of periodicities, since it is able to recognize the actual repeat length in most cases. Moreover it highlights the relevance of local structural propensities in determining solenoid repeats. Availability: A web tool implementing the algorithm presented in the article (REPETITA) is available with additional details on the data sets at the URL: http://protein.bio.unipd.it/repetita/. Contact:silvio.tosatto@unipd.it
Collapse
|
45
|
Kolygo K, Ranjan N, Kress W, Striebel F, Hollenstein K, Neelsen K, Steiner M, Summer H, Weber-Ban E. Studying chaperone-proteases using a real-time approach based on FRET. J Struct Biol 2009; 168:267-77. [PMID: 19591940 DOI: 10.1016/j.jsb.2009.07.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Revised: 06/24/2009] [Accepted: 07/06/2009] [Indexed: 11/25/2022]
Abstract
Chaperone-proteases are responsible for the processive breakdown of proteins in eukaryotic, archaeal and bacterial cells. They are composed of a cylinder-shaped protease lined on the interior with proteolytic sites and of ATPase rings that bind to the apical sides of the protease to control substrate entry. We present a real-time FRET-based method for probing the reaction cycle of chaperone-proteases, which consists of substrate unfolding, translocation into the protease and degradation. Using this system we show that the two alternative bacterial ClpAP and ClpXP complexes share the same mechanism: after initial tag recognition, fast unfolding of substrate occurs coinciding with threading through the chaperone. Subsequent slow substrate translocation into the protease chamber leads to formation of a transient compact substrate intermediate presumably close to the chaperone-protease interface. Our data for ClpX and ClpA support the mechanical unfolding mode of action proposed for these chaperones. The general applicability of the designed FRET system is demonstrated here using in addition an archaeal PAN-proteasome complex as model for the more complex eukaryotic proteasome.
Collapse
Affiliation(s)
- Kristina Kolygo
- ETH Zürich, Institute of Molecular Biology & Biophysics, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Structure and Activity of the N-Terminal Substrate Recognition Domains in Proteasomal ATPases. Mol Cell 2009; 34:580-90. [DOI: 10.1016/j.molcel.2009.04.030] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2008] [Revised: 04/06/2009] [Accepted: 04/23/2009] [Indexed: 11/17/2022]
|
47
|
Durá MA, Rosenbaum E, Larabi A, Gabel F, Vellieux FMD, Franzetti B. The structural and biochemical characterizations of a novel TET peptidase complex from Pyrococcus horikoshii reveal an integrated peptide degradation system in hyperthermophilic Archaea. Mol Microbiol 2009; 72:26-40. [DOI: 10.1111/j.1365-2958.2009.06600.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
48
|
Delfosse V, Girard E, Birck C, Delmarcelle M, Delarue M, Poch O, Schultz P, Mayer C. Structure of the archaeal pab87 peptidase reveals a novel self-compartmentalizing protease family. PLoS One 2009; 4:e4712. [PMID: 19266066 PMCID: PMC2651629 DOI: 10.1371/journal.pone.0004712] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2009] [Accepted: 01/28/2009] [Indexed: 11/18/2022] Open
Abstract
Self-compartmentalizing proteases orchestrate protein turnover through an original architecture characterized by a central catalytic chamber. Here we report the first structure of an archaeal member of a new self-compartmentalizing protease family forming a cubic-shaped octamer with D4 symmetry and referred to as CubicO. We solved the structure of the Pyrococcus abyssi Pab87 protein at 2.2 Å resolution using the anomalous signal of the high-phasing-power lanthanide derivative Lu-HPDO3A. A 20 Å wide channel runs through this supramolecular assembly of 0.4 MDa, giving access to a 60 Å wide central chamber holding the eight active sites. Surprisingly, activity assays revealed that Pab87 degrades specifically d-amino acid containing peptides, which have never been observed in archaea. Genomic context of the Pab87 gene showed that it is surrounded by genes involved in the amino acid/peptide transport or metabolism. We propose that CubicO proteases are involved in the processing of d-peptides from environmental origins.
Collapse
Affiliation(s)
- Vanessa Delfosse
- Centre de Recherche des Cordeliers, LRMA, INSERM UMR-S 872, Université Pierre et Marie Curie, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Nery FC, Zeng J, Niland BP, Hewett J, Farley J, Irimia D, Li Y, Wiche G, Sonnenberg A, Breakefield XO. TorsinA binds the KASH domain of nesprins and participates in linkage between nuclear envelope and cytoskeleton. J Cell Sci 2008; 121:3476-86. [PMID: 18827015 PMCID: PMC3539201 DOI: 10.1242/jcs.029454] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A specific mutation (DeltaE) in torsinA underlies most cases of the dominantly inherited movement disorder, early-onset torsion dystonia (DYT1). TorsinA, a member of the AAA+ ATPase superfamily, is located within the lumen of the nuclear envelope (NE) and endoplasmic reticulum (ER). We investigated an association between torsinA and nesprin-3, which spans the outer nuclear membrane (ONM) of the NE and links it to vimentin via plectin in fibroblasts. Mouse nesprin-3alpha co-immunoprecipitated with torsinA and this involved the C-terminal region of torsinA and the KASH domain of nesprin-3alpha. This association with human nesprin-3 appeared to be stronger for torsinADeltaE than for torsinA. TorsinA also associated with the KASH domains of nesprin-1 and -2 (SYNE1 and 2), which link to actin. In the absence of torsinA, in knockout mouse embryonic fibroblasts (MEFs), nesprin-3alpha was localized predominantly in the ER. Enrichment of yellow fluorescent protein (YFP)-nesprin-3 in the ER was also seen in the fibroblasts of DYT1 patients, with formation of YFP-positive globular structures enriched in torsinA, vimentin and actin. TorsinA-null MEFs had normal NE structure, but nuclear polarization and cell migration were delayed in a wound-healing assay, as compared with wild-type MEFs. These studies support a role for torsinA in dynamic interactions between the KASH domains of nesprins and their protein partners in the lumen of the NE, with torsinA influencing the localization of nesprins and associated cytoskeletal elements and affecting their role in nuclear and cell movement.
Collapse
Affiliation(s)
- Flávia C Nery
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Kirstein J, Strahl H, Molière N, Hamoen LW, Turgay K. Localization of general and regulatory proteolysis in Bacillus subtilis cells. Mol Microbiol 2008; 70:682-94. [PMID: 18786145 PMCID: PMC2628427 DOI: 10.1111/j.1365-2958.2008.06438.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Protein degradation mediated by ATP-dependent proteases, such as Hsp100/Clp and related AAA+ proteins, plays an important role in cellular protein homeostasis, protein quality control and the regulation of, e.g. heat shock adaptation and other cellular differentiation processes. ClpCP with its adaptor proteins and other related proteases, such as ClpXP or ClpEP of Bacillus subtilis, are involved in general and regulatory proteolysis. To determine if proteolysis occurs at specific locations in B. subtilis cells, we analysed the subcellular distribution of the Clp system together with adaptor and general and regulatory substrate proteins, under different environmental conditions. We can demonstrate that the ATPase and the proteolytic subunit of the Clp proteases, as well as the adaptor or substrate proteins, form visible foci, representing active protease clusters localized to the polar and to the mid-cell region. These clusters could represent a compartmentalized place for protein degradation positioned at the pole close to where most of the cellular protein biosynthesis and also protein quality control are taking place, thereby spatially separating protein synthesis and degradation.
Collapse
Affiliation(s)
- Janine Kirstein
- Institut für Biologie - Mikrobiologie, FU Berlin, Berlin, Germany
| | | | | | | | | |
Collapse
|