1
|
Trojan A, Lone YC, Briceno I, Trojan J. Anti-Gene IGF-I Vaccines in Cancer Gene Therapy: A Review of a Case of Glioblastoma. Curr Med Chem 2024; 31:1983-2002. [PMID: 38031775 DOI: 10.2174/0109298673237968231106095141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 06/27/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023]
Abstract
OBJECTIVE Vaccines for the deadliest brain tumor - glioblastoma (GBM) - are generally based on targeting growth factors or their receptors, often using antibodies. The vaccines described in the review were prepared to suppress the principal cancer growth factor - IGF-I, using anti-gene approaches either of antisense (AS) or of triple helix (TH) type. Our objective was to increase the median survival of patients treated with AS and TH cell vaccines. METHODOLOGY The cells were transfected in vitro by both constructed IGF-I AS and IGF-I TH expression episomal vectors; part of these cells was co-cultured with plant phytochemicals, modulating IGF-I expression. Both AS and TH approaches completely suppressed IGF-I expression and induced MHC-1 / B7 immunogenicity related to the IGF-I receptor signal. RESULTS This immunogenicity proved to be stronger in IGF-I TH than in IGF-I AS-prepared cell vaccines, especially in TH / phytochemical cells. The AS and TH vaccines generated an important TCD8+ and TCD8+CD11b- immune response in treated GBM patients and increased the median survival of patients up to 17-18 months, particularly using TH vaccines; in some cases, 2- and 3-year survival was reported. These clinical results were compared with those obtained in therapies targeting other growth factors. CONCLUSION The anti-gene IGF-I vaccines continue to be applied in current GBM personalized medicine. Technical improvements in the preparation of AS and TH vaccines to increase MHC-1 and B7 immunogenicity have, in parallel, allowed to increase in the median survival of patients.
Collapse
Affiliation(s)
- Annabelle Trojan
- INSERM UMR 1197, Cancer Center & University of Paris / Saclay, PO Box: 94802 Villejuif, France
- Faculty of Medicine, University of Cartagena, PO Box: 130014 Cartagena de Indias, Colombia
| | - Yu-Chun Lone
- INSERM UMR 1197, Cancer Center & University of Paris / Saclay, PO Box: 94802 Villejuif, France
- CEDEA / ICGT - Center of Oncological Diseases Diagnosis, PO Box: 110231 Bogota, Colombia
| | - Ignacio Briceno
- Faculty of Medicine, University of La Sabana, PO Box: 250008 Chia, Colombia
| | - Jerzy Trojan
- INSERM UMR 1197, Cancer Center & University of Paris / Saclay, PO Box: 94802 Villejuif, France
- CEDEA / ICGT - Center of Oncological Diseases Diagnosis, PO Box: 110231 Bogota, Colombia
- National Academy of Medicine - ANM, PO Box: 75272 Paris, France
| |
Collapse
|
2
|
Noé V, Aubets E, Félix AJ, Ciudad CJ. Nucleic acids therapeutics using PolyPurine Reverse Hoogsteen hairpins. Biochem Pharmacol 2020; 189:114371. [PMID: 33338475 DOI: 10.1016/j.bcp.2020.114371] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 02/08/2023]
Abstract
PolyPurine Reverse Hoogsteen hairpins (PPRHs) are DNA hairpins formed by intramolecular reverse Hoogsteen bonds which can bind to polypyrimidine stretches in dsDNA by Watson:Crick bonds, thus forming a triplex and displacing the fourth strand of the DNA complex. PPRHs were first described as a gene silencing tool in vitro for DHFR, telomerase and survivin genes. Then, the effect of PPRHs directed against the survivin gene was also determined in vivo using a xenograft model of prostate cancer cells (PC3). Since then, the ability of PPRHs to inhibit gene expression has been explored in other genes involved in cancer (BCL-2, mTOR, topoisomerase, C-MYC and MDM2), in immunotherapy (SIRPα/CD47 and PD-1/PD-L1 tandem) or in replication stress (WEE1 and CHK1). Furthermore, PPRHs have the ability to target the complementary strand of a G-quadruplex motif as a regulatory element of the TYMS gene. PPRHs have also the potential to correct point mutations in the DNA as shown in two collections of CHO cell lines bearing mutations in either the dhfr or aprt loci. Finally, based on the capability of PPRHs to form triplexes, they have been incorporated as probes in biosensors for the determination of the DNA methylation status of PAX-5 in cancer and the detection of mtLSU rRNA for the diagnosis of Pneumocystis jirovecii. Of note, PPRHs have high stability and do not present immunogenicity, hepatotoxicity or nephrotoxicity in vitro. Overall, PPRHs constitute a new economical biotechnological tool with multiple biomedical applications.
Collapse
Affiliation(s)
- Véronique Noé
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, & IN2UB, University of Barcelona, 08028 Barcelona, Spain
| | - Eva Aubets
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, & IN2UB, University of Barcelona, 08028 Barcelona, Spain
| | - Alex J Félix
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, & IN2UB, University of Barcelona, 08028 Barcelona, Spain
| | - Carlos J Ciudad
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, & IN2UB, University of Barcelona, 08028 Barcelona, Spain.
| |
Collapse
|
3
|
Distinct DNA repair pathways cause genomic instability at alternative DNA structures. Nat Commun 2020; 11:236. [PMID: 31932649 PMCID: PMC6957503 DOI: 10.1038/s41467-019-13878-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 11/05/2019] [Indexed: 01/01/2023] Open
Abstract
Alternative DNA structure-forming sequences can stimulate mutagenesis and are enriched at mutation hotspots in human cancer genomes, implicating them in disease etiology. However, the mechanisms involved are not well characterized. Here, we discover that Z-DNA is mutagenic in yeast as well as human cells, and that the nucleotide excision repair complex, Rad10-Rad1(ERCC1-XPF), and the mismatch repair complex, Msh2-Msh3, are required for Z-DNA-induced genetic instability in yeast and human cells. Both ERCC1-XPF and MSH2-MSH3 bind to Z-DNA-forming sequences, though ERCC1-XPF recruitment to Z-DNA is dependent on MSH2-MSH3. Moreover, ERCC1-XPF-dependent DNA strand-breaks occur near the Z-DNA-forming region in human cell extracts, and we model these interactions at the sub-molecular level. We propose a relationship in which these complexes recognize and process Z-DNA in eukaryotes, representing a mechanism of Z-DNA-induced genomic instability.
Collapse
|
4
|
Hatano A, Shimazaki K, Otsu M, Kawai G. Parallel motif triplex formation via a new, bi-directional hydrogen bonding pattern incorporating a synthetic cyanuryl nucleoside into the sense chain. RSC Adv 2020; 10:22766-22774. [PMID: 35514565 PMCID: PMC9054615 DOI: 10.1039/d0ra03889j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/09/2020] [Indexed: 11/21/2022] Open
Abstract
The triplex formation ability of a sense chain containing a cyanuryl nucleoside was evaluated and the tertiary structure of the triplex was calculated using the NOE in 1H NMR by incorporating a 15N into the base moiety.
Collapse
Affiliation(s)
- Akihiko Hatano
- Department of Chemistry
- Shibaura Institute of Technology
- Saitama-City
- Japan
| | - Kei Shimazaki
- Department of Chemistry
- Shibaura Institute of Technology
- Saitama-City
- Japan
| | - Maina Otsu
- Department of Life and Environmental Sciences
- Faculty of Engineering
- Chiba Institute of Technology
- Narashino
- Japan
| | - Gota Kawai
- Department of Life and Environmental Sciences
- Faculty of Engineering
- Chiba Institute of Technology
- Narashino
- Japan
| |
Collapse
|
5
|
Zhao J, Wang G, Del Mundo IM, McKinney JA, Lu X, Bacolla A, Boulware SB, Zhang C, Zhang H, Ren P, Freudenreich CH, Vasquez KM. Distinct Mechanisms of Nuclease-Directed DNA-Structure-Induced Genetic Instability in Cancer Genomes. Cell Rep 2019; 22:1200-1210. [PMID: 29386108 PMCID: PMC6011834 DOI: 10.1016/j.celrep.2018.01.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 11/27/2017] [Accepted: 01/04/2018] [Indexed: 11/18/2022] Open
Abstract
Sequences with the capacity to adopt alternative DNA structures have been implicated in cancer etiology; however, the mechanisms are unclear. For example, H-DNA-forming sequences within oncogenes have been shown to stimulate genetic instability in mammals. Here, we report that H-DNA-forming sequences are enriched at translocation breakpoints in human cancer genomes, further implicating them in cancer etiology. H-DNA-induced mutations were suppressed in human cells deficient in the nucleotide excision repair nucleases, ERCC1-XPF and XPG, but were stimulated in cells deficient in FEN1, a replication-related endonuclease. Further, we found that these nucleases cleaved H-DNA conformations, and the interactions of modeled H-DNA with ERCC1-XPF, XPG, and FEN1 proteins were explored at the sub-molecular level. The results suggest mechanisms of genetic instability triggered by H-DNA through distinct structure-specific, cleavage-based replication-independent and replication-dependent pathways, providing critical evidence for a role of the DNA structure itself in the etiology of cancer and other human diseases.
Collapse
Affiliation(s)
- Junhua Zhao
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Boulevard, Austin, TX 78723, USA
| | - Guliang Wang
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Boulevard, Austin, TX 78723, USA
| | - Imee M Del Mundo
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Boulevard, Austin, TX 78723, USA
| | - Jennifer A McKinney
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Boulevard, Austin, TX 78723, USA
| | - Xiuli Lu
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Boulevard, Austin, TX 78723, USA
| | - Albino Bacolla
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Boulevard, Austin, TX 78723, USA
| | - Stephen B Boulware
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Boulevard, Austin, TX 78723, USA
| | - Changsheng Zhang
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton Street, Austin, TX 78712, USA
| | - Haihua Zhang
- Department of Biology, Tufts University, 200 Boston Avenue, Suite 4700, Medford, MA 02155, USA
| | - Pengyu Ren
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton Street, Austin, TX 78712, USA
| | | | - Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Boulevard, Austin, TX 78723, USA.
| |
Collapse
|
6
|
Mojžíšek M. Triplex Forming Oligonucleotides – Tool for Gene Targeting. ACTA MEDICA (HRADEC KRÁLOVÉ) 2019. [DOI: 10.14712/18059694.2018.82] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
This review deals with the antigene strategy whereby an oligonucleotide binds to the major or minor groove of double helical DNA where it forms a local triple helix. Preoccupation of this article is triplex-forming oligonucleotides (TFO). These are short, synthetic single-stranded DNAs that recognize polypurine:polypyrimidine regions in double stranded DNA in a sequence-specific manner and form triplex. Therefore, the mechanisms for DNA recognition by triple helix formation are discussed, together with main characteristics of TFO and also major obstacles that remain to be overcome are highlighted. TFOs can selectively inhibit gene expression at the transcriptional level or repair genetic defect by direct genome modification in human cells. These qualities makes TFO potentially powerful therapeutic tool for gene repair and/or expression regulation.
Collapse
|
7
|
Gadre S, Peters MS, Serrano A, Schrader T. A Synthetic Methodology Toward Pyrrolo[2,3-b]pyridones for GC Base Pair Recognition. Org Lett 2018; 20:6961-6964. [DOI: 10.1021/acs.orglett.8b03111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Shubhankar Gadre
- Faculty of Chemistry, University of Duisburg-Essen, Universitätsstraße 7, 45117 Essen, Germany
| | - Max Sena Peters
- Faculty of Chemistry, University of Duisburg-Essen, Universitätsstraße 7, 45117 Essen, Germany
| | - Alvaro Serrano
- Faculty of Chemistry, University of Duisburg-Essen, Universitätsstraße 7, 45117 Essen, Germany
| | - Thomas Schrader
- Faculty of Chemistry, University of Duisburg-Essen, Universitätsstraße 7, 45117 Essen, Germany
| |
Collapse
|
8
|
Aviñó A, Mazzini S, Gargallo R, Eritja R. The Effect of Small Cosolutes that Mimic Molecular Crowding Conditions on the Stability of Triplexes Involving Duplex DNA. Int J Mol Sci 2016; 17:211. [PMID: 26861295 PMCID: PMC4783943 DOI: 10.3390/ijms17020211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 01/20/2016] [Accepted: 01/27/2016] [Indexed: 11/16/2022] Open
Abstract
Triplex stability is studied in crowding conditions using small cosolutes (ethanol, acetonitrile and dimethylsulfoxide) by ultraviolet (UV), circular dichroism (CD) and nuclear magnetic resonance (NMR) spectroscopies. The results indicate that the triplex is formed preferentially when the triplex forming oligonucleotide (TFO) is RNA. In addition, DNA triplexes (D:D·D) are clearly less stable in cosolute solutions while the stability of the RNA triplexes (R:D·D) is only slightly decreased. The kinetic of triplex formation with RNA-TFO is slower than with DNA-TFO and the thermal stability of the triplex is increased with the salt concentration in EtOH-water solutions. Accordingly, RNA could be considered a potential molecule to form a stable triplex for regulatory purposes in molecular crowding conditions.
Collapse
Affiliation(s)
- Anna Aviñó
- Institute for Advanced Chemistry of Catalonia (IQAC), CSIC, Jordi Girona 18-26, Barcelona 08034, Spain.
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, Barcelona 08034, Spain.
| | - Stefania Mazzini
- Department of Food, Environmental and Nutritional Sciences (DEFENS), Section of Chemical and Biomolecular Sciences, University of Milan, Via Celoria 2, Milan 20133, Italy.
| | - Raimundo Gargallo
- Department of Analytical Chemistry, University of Barcelona, Martí i Franquès, 1-11, Barcelona 08028, Spain.
| | - Ramon Eritja
- Institute for Advanced Chemistry of Catalonia (IQAC), CSIC, Jordi Girona 18-26, Barcelona 08034, Spain.
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, Barcelona 08034, Spain.
| |
Collapse
|
9
|
Holder IT, Wagner S, Xiong P, Sinn M, Frickey T, Meyer A, Hartig JS. Intrastrand triplex DNA repeats in bacteria: a source of genomic instability. Nucleic Acids Res 2015; 43:10126-42. [PMID: 26450966 PMCID: PMC4666352 DOI: 10.1093/nar/gkv1017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 09/21/2015] [Indexed: 01/10/2023] Open
Abstract
Repetitive nucleic acid sequences are often prone to form secondary structures distinct from B-DNA. Prominent examples of such structures are DNA triplexes. We observed that certain intrastrand triplex motifs are highly conserved and abundant in prokaryotic genomes. A systematic search of 5246 different prokaryotic plasmids and genomes for intrastrand triplex motifs was conducted and the results summarized in the ITxF database available online at http://bioinformatics.uni-konstanz.de/utils/ITxF/. Next we investigated biophysical and biochemical properties of a particular G/C-rich triplex motif (TM) that occurs in many copies in more than 260 bacterial genomes by CD and nuclear magnetic resonance spectroscopy as well as in vivo footprinting techniques. A characterization of putative properties and functions of these unusually frequent nucleic acid motifs demonstrated that the occurrence of the TM is associated with a high degree of genomic instability. TM-containing genomic loci are significantly more rearranged among closely related Escherichia coli strains compared to control sites. In addition, we found very high frequencies of TM motifs in certain Enterobacteria and Cyanobacteria that were previously described as genetically highly diverse. In conclusion we link intrastrand triplex motifs with the induction of genomic instability. We speculate that the observed instability might be an adaptive feature of these genomes that creates variation for natural selection to act upon.
Collapse
Affiliation(s)
- Isabelle T Holder
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| | - Stefanie Wagner
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| | - Peiwen Xiong
- Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| | - Malte Sinn
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| | - Tancred Frickey
- Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| | - Axel Meyer
- Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| | - Jörg S Hartig
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| |
Collapse
|
10
|
Abstract
Structure-prone DNA repeats are common components of genomic DNA in all kingdoms of life. In humans, these repeats are linked to genomic instabilities that result in various hereditary disorders, including many cancers. It has long been known that DNA repeats are not only highly polymorphic in length but can also cause chromosomal fragility and stimulate gross chromosomal rearrangements, i.e., deletions, duplications, inversions, translocations and more complex shuffles. More recently, it has become clear that inherently unstable DNA repeats dramatically elevate mutation rates in surrounding DNA segments and that these mutations can occur up to ten kilobases away from the repetitive tract, a phenomenon we call repeat-induced mutagenesis (RIM). This review describes experimental data that led to the discovery and characterization of RIM and discusses the molecular mechanisms that could account for this phenomenon.
Collapse
Affiliation(s)
- Kartik A Shah
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Sergei M Mirkin
- Department of Biology, Tufts University, Medford, MA 02155, USA.
| |
Collapse
|
11
|
Higgins NP, Vologodskii AV. Topological Behavior of Plasmid DNA. Microbiol Spectr 2015; 3:10.1128/microbiolspec.PLAS-0036-2014. [PMID: 26104708 PMCID: PMC4480603 DOI: 10.1128/microbiolspec.plas-0036-2014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Indexed: 11/20/2022] Open
Abstract
The discovery of the B-form structure of DNA by Watson and Crick led to an explosion of research on nucleic acids in the fields of biochemistry, biophysics, and genetics. Powerful techniques were developed to reveal a myriad of different structural conformations that change B-DNA as it is transcribed, replicated, and recombined and as sister chromosomes are moved into new daughter cell compartments during cell division. This article links the original discoveries of superhelical structure and molecular topology to non-B form DNA structure and contemporary biochemical and biophysical techniques. The emphasis is on the power of plasmids for studying DNA structure and function. The conditions that trigger the formation of alternative DNA structures such as left-handed Z-DNA, inter- and intra-molecular triplexes, triple-stranded DNA, and linked catenanes and hemicatenanes are explained. The DNA dynamics and topological issues are detailed for stalled replication forks and for torsional and structural changes on DNA in front of and behind a transcription complex and a replisome. The complex and interconnected roles of topoisomerases and abundant small nucleoid association proteins are explained. And methods are described for comparing in vivo and in vitro reactions to probe and understand the temporal pathways of DNA and chromosome chemistry that occur inside living cells.
Collapse
Affiliation(s)
- N Patrick Higgins
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294
| | | |
Collapse
|
12
|
Kosbar TR, Sofan MA, Waly MA, Pedersen EB. Anti-parallel triplexes: Synthesis of 8-aza-7-deazaadenine nucleosides with a 3-aminopropynyl side-chain and its corresponding LNA analog. Bioorg Med Chem 2015; 23:2458-69. [PMID: 25868748 DOI: 10.1016/j.bmc.2015.03.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/13/2015] [Accepted: 03/19/2015] [Indexed: 10/23/2022]
Abstract
The phosphoramidites of DNA monomers of 7-(3-aminopropyn-1-yl)-8-aza-7-deazaadenine (Y) and 7-(3-aminopropyn-1-yl)-8-aza-7-deazaadenine LNA (Z) are synthesized, and the thermal stability at pH 7.2 and 8.2 of anti-parallel triplexes modified with these two monomers is determined. When, the anti-parallel TFO strand was modified with Y with one or two insertions at the end of the TFO strand, the thermal stability was increased 1.2°C and 3°C at pH 7.2, respectively, whereas one insertion in the middle of the TFO strand decreased the thermal stability 1.4°C compared to the wild type oligonucleotide. In order to be sure that the 3-aminopropyn-1-yl chain was contributing to the stability of the triplex, the nucleobase X without the aminopropynyl group was inserted in the same positions. In all cases the thermal stability was lower than the corresponding oligonucleotides carrying the 3-aminopropyn-1-yl chain, especially at the end of the TFO strand. On the other hand, the thermal stability of the anti-parallel triplex was dramatically decreased when the TFO strand was modified with the LNA monomer analog Z in the middle of the TFO strand (ΔTm=-9.1°C). Also the thermal stability decreased about 6.1°C when the TFO strand was modified with Z and the Watson-Crick strand with adenine-LNA (A(L)). The molecular modeling results showed that, in case of nucleobases Y and Z a hydrogen bond (1.69 and 1.72Ǻ, respectively) was formed between the protonated 3-aminopropyn-1-yl chain and one of the phosphate groups in Watson-Crick strand. Also, it was shown that the nucleobase Y made a good stacking and binding with the other nucleobases in the TFO and Watson-Crick duplex, respectively. In contrast, the nucleobase Z with LNA moiety was forced to twist out of plane of Watson-Crick base pair which is weakening the stacking interactions with the TFO nucleobases and the binding with the duplex part.
Collapse
Affiliation(s)
- Tamer R Kosbar
- Department of Physics, Chemistry and Pharmacy, Nucleic Acid Center, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark; Department of Chemistry, Faculty of Science, Damietta University, 34517 New Damietta, Damietta, Egypt
| | - Mamdouh A Sofan
- Department of Chemistry, Faculty of Science, Damietta University, 34517 New Damietta, Damietta, Egypt
| | - Mohamed A Waly
- Department of Chemistry, Faculty of Science, Damietta University, 34517 New Damietta, Damietta, Egypt
| | - Erik B Pedersen
- Department of Physics, Chemistry and Pharmacy, Nucleic Acid Center, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| |
Collapse
|
13
|
Çeşme M, Gölcü A, Demirtaş I. New metal based drugs: spectral, electrochemical, DNA-binding, surface morphology and anticancer activity properties. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 135:887-906. [PMID: 25155946 DOI: 10.1016/j.saa.2014.06.144] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 06/17/2014] [Accepted: 06/29/2014] [Indexed: 06/03/2023]
Abstract
The NSAID piroxicam (PRX) drug was used for complex formation reactions with Cu(II), Zn(II) and Pt(II) metal salts have been synthesized. Then, these complexes have been characterized by spectroscopic and analytical techniques. Thermal behavior of the complexes were also investigated. The electrochemical properties of all complexes have been investigated by cyclic voltammetry (CV) using glassy carbon electrode. The biological activity of the complexes has been evaluated by examining their ability to bind to fish sperm double strand DNA (FSFSdsDNA) with UV spectroscopy. UV studies of the interaction of the PRX and its complexes with FSdsDNA have shown that these compounds can bind to FSdsDNA. The binding constants of the compounds with FSdsDNA have also been calculated. The morphology of the FSdsDNA, PRX, metal ions and metal complexes has been investigated by scanning electron microscopy (SEM). To get the SEM images, the interaction of compounds with FSdsDNA has been studied by means of differential pulse voltammetry (DPV) at FSdsDNA modified pencil graphite electrode (PGE). The decrease in intensity of the guanine oxidation signals has been used as an indicator for the interaction mechanism. The effect of proliferation PRX and complexes were examined on the HeLA and C6 cells using real-time cell analyzer with four different concentrations.
Collapse
Affiliation(s)
- Mustafa Çeşme
- Department of Chemistry, Kahramanmaras Sutcu Imam University, 46100 Kahramanmaras, Turkey
| | - Aysegul Gölcü
- Department of Chemistry, Kahramanmaras Sutcu Imam University, 46100 Kahramanmaras, Turkey.
| | - Ibrahim Demirtaş
- Department of Chemistry, Cankırı Karatekin University, 18100 Cankırı, Turkey
| |
Collapse
|
14
|
Bhowmik D, Buzzetti F, Fiorillo G, Lombardi P, Suresh Kumar G. Spectroscopic studies on the binding interaction of novel 13-phenylalkyl analogs of the natural alkaloid berberine to nucleic acid triplexes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2013; 120:257-264. [PMID: 24184628 DOI: 10.1016/j.saa.2013.09.081] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 09/13/2013] [Accepted: 09/25/2013] [Indexed: 06/02/2023]
Abstract
In this study we have characterized the capability of six 13-phenylalkyl analogs of berberine to stabilize nucleic acid triplex structures, poly(rA)⋅2poly(rU) and poly(dA)⋅2poly(dT). Berberine analogs bind to the RNA and DNA triplexes non-cooperatively. As the chain length of the substitution increased beyond CH2, the affinity enhanced up to critical length of (CH2)4, there after which the binding affinity decreased for both the triplexes. A remarkably stronger intercalative binding of the analogs compared to berberine to the triplexes was confirmed from ferrocyanide fluorescence quenching, fluorescence polarization and viscosity results. Circular dichroism results had indicated strong conformational changes in the triplexes on binding of the analogs. The analogs enhanced the stability of the Hoogsteen base paired third strand of both the triplexes while no significant change in the high-temperature duplex-to-single strand transitions was observed. Energetics of the interaction revealed that as the alkyl chain length increased, the binding was more entropy driven. This study demonstrates that phenylalkyl substitution at the 13-position of berberine increased the triplex binding affinity of berberine but a threshold length of the side chain is critical for the strong intercalative binding to occur.
Collapse
Affiliation(s)
- Debipreeta Bhowmik
- Biophysical Chemistry Laboratory, Chemistry Division, CSIR - Indian Institute of Chemical Biology, Kolkata 700 032, India
| | - Franco Buzzetti
- Naxopharma srl, Via G. Di Vittorio, 70, 20026 Novate Milanese (MI), Italy
| | - Gaetano Fiorillo
- Naxopharma srl, Via G. Di Vittorio, 70, 20026 Novate Milanese (MI), Italy
| | - Paolo Lombardi
- Naxopharma srl, Via G. Di Vittorio, 70, 20026 Novate Milanese (MI), Italy
| | - Gopinatha Suresh Kumar
- Biophysical Chemistry Laboratory, Chemistry Division, CSIR - Indian Institute of Chemical Biology, Kolkata 700 032, India.
| |
Collapse
|
15
|
Triplex DNA:RNA, 3′-to-5′ Inverted RNA and Protein Coding in Mitochondrial Genomes. J Comput Biol 2013; 20:660-71. [DOI: 10.1089/cmb.2012.0134] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
16
|
Papadakis G, Gizeli E. In silico search of DNA drugs targeting oncogenes. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2012; 9:1826-1830. [PMID: 23221090 DOI: 10.1109/tcbb.2012.127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Triplex forming oligonucleotides (TFOs) represent a class of drug candidates for antigene therapy. Based on strict criteria, we investigated the potential of 25 known oncogenes to be regulated by TFOs in the mRNA synthesis level and we report specific target sequences found in seven of these genes.
Collapse
Affiliation(s)
- George Papadakis
- Department of Biology, University of Crete and Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology Hellas (FORTH), 100 Nikolaou Plastira str, Heraklion 70013, Greece.
| | | |
Collapse
|
17
|
Selim ME, Hendi AA. Gold Nanoparticles Induce Apoptosis in MCF-7 Human Breast Cancer Cells. Asian Pac J Cancer Prev 2012; 13:1617-20. [DOI: 10.7314/apjcp.2012.13.4.1617] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
18
|
Ma DL, Chan DSH, Lee P, Kwan MHT, Leung CH. Molecular modeling of drug–DNA interactions: Virtual screening to structure-based design. Biochimie 2011; 93:1252-66. [PMID: 21514356 DOI: 10.1016/j.biochi.2011.04.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 04/01/2011] [Indexed: 12/11/2022]
Affiliation(s)
- Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Hong Kong, China.
| | | | | | | | | |
Collapse
|
19
|
Tsai TL, Shieh DB, Yeh CS, Tzeng Y, Htet K, Chuang KS, Hwu JR, Su WC. The down regulation of target genes by photo activated DNA nanoscissors. Biomaterials 2010; 31:6545-54. [DOI: 10.1016/j.biomaterials.2010.04.058] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 04/29/2010] [Indexed: 01/24/2023]
|
20
|
Jain AK, Bhattacharya S. Groove Binding Ligands for the Interaction with Parallel-Stranded ps-Duplex DNA and Triplex DNA. Bioconjug Chem 2010; 21:1389-403. [PMID: 20509695 DOI: 10.1021/bc900247s] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Akash K. Jain
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India, Chemical Biology Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560012, India
| | - Santanu Bhattacharya
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India, Chemical Biology Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560012, India
| |
Collapse
|
21
|
Rakotondradany F, Sleiman H, Whitehead MA. Hydrogen-bond self-assembly of DNA-base analogues — Experimental results. CAN J CHEM 2009. [DOI: 10.1139/v09-028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A novel biomimetic DNA analogue with fluorescence has been synthesized to generate functional supramolecular architectures. Experimental studies show that triaminopyrimidine nucleoside (2) undergoes a sterically controlled self-assembly into hydrogen-bonded linear tapes and hexameric rosettes. Self-association of the hydrogen-bonded triaminopyrimidine–cyanuric acid complex into elongated, rodlike nanostructures was shown by dynamic light scattering and transmission electron microscopy, suggesting hierarchical formation of higher-order, π-stacked assemblies. The hydrogen-bond self-assembly of the DNA analogue decreased the fluorescence of the nucleosides. This guest-induced fluorescence quenching can be used to develop DNA-hybridization probes. MM+ molecular modelling and semi-empirical molecular orbital PM3 calculations (1) predicted the incorporation of triaminopyrimidine nucleoside into new types of artificial DNA strands and triplex formation with natural, complementary DNA strands containing thymine (1).
Collapse
Affiliation(s)
- Felaniaina Rakotondradany
- Department of Chemistry, McGill University, Otto Maass Chemistry Building, 801 Sherbrooke St. West, Montreal, QC H3A 2K6, Canada
- Imperial Oil Resources, Oil Sands Development and Research, 3535 Research Road NW, Calgary, AB T2L 2K8, Canada
| | - Hanadi Sleiman
- Department of Chemistry, McGill University, Otto Maass Chemistry Building, 801 Sherbrooke St. West, Montreal, QC H3A 2K6, Canada
- Imperial Oil Resources, Oil Sands Development and Research, 3535 Research Road NW, Calgary, AB T2L 2K8, Canada
| | - M. A. Whitehead
- Department of Chemistry, McGill University, Otto Maass Chemistry Building, 801 Sherbrooke St. West, Montreal, QC H3A 2K6, Canada
- Imperial Oil Resources, Oil Sands Development and Research, 3535 Research Road NW, Calgary, AB T2L 2K8, Canada
| |
Collapse
|
22
|
Ramreddy T, Kombrabail M, Krishnamoorthy G, Rao BJ. Site-Specific Dynamics in TAT Triplex DNA As Revealed by Time-Domain Fluorescence of 2-Aminopurine. J Phys Chem B 2009; 113:6840-6. [DOI: 10.1021/jp901216h] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- T. Ramreddy
- Department of Chemical Science and Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India
| | - Mamata Kombrabail
- Department of Chemical Science and Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India
| | - G. Krishnamoorthy
- Department of Chemical Science and Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India
| | - B. J. Rao
- Department of Chemical Science and Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India
| |
Collapse
|
23
|
Christensen LA, Wang H, Van Houten B, Vasquez KM. Efficient processing of TFO-directed psoralen DNA interstrand crosslinks by the UvrABC nuclease. Nucleic Acids Res 2008; 36:7136-45. [PMID: 18996898 PMCID: PMC2602775 DOI: 10.1093/nar/gkn880] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Photoreactive psoralens can form interstrand crosslinks (ICLs) in double-stranded DNA. In eubacteria, the endonuclease UvrABC plays a key role in processing psoralen ICLs. Psoralen-modified triplex-forming oligonucleotides (TFOs) can be used to direct ICLs to specific genomic sites. Previous studies of pyrimidine-rich methoxypsoralen–modified TFOs indicated that the TFO inhibits cleavage by UvrABC. Because different chemistries may alter the processing of TFO-directed ICLs, we investigated the effect of another type of triplex formed by purine-rich TFOs on the processing of 4′-(hydroxymethyl)-4,5′,8-trimethylpsoralen (HMT) ICLs by the UvrABC nuclease. Using an HMT-modified TFO to direct ICLs to a specific site, we found that UvrABC made incisions on the purine-rich strand of the duplex ∼3 bases from the 3′-side and ∼9 bases from the 5′-side of the ICL, within the TFO-binding region. In contrast to previous reports, the UvrABC nuclease cleaved the TFO-directed psoralen ICL with a greater efficiency than that of the psoralen ICL alone. Furthermore, the TFO was dissociated from its duplex binding site by UvrA and UvrB. As mutagenesis by TFO-directed ICLs requires nucleotide excision repair, the efficient processing of these lesions supports the use of triplex technology to direct DNA damage for genome modification.
Collapse
Affiliation(s)
- Laura A Christensen
- Department of Carcinogenesis, Science Park-Research Division, University of Texas MD Anderson Cancer Center, Smithville, TX, USA
| | | | | | | |
Collapse
|
24
|
Using an aryl phenanthroimidazole moiety as a conjugated flexible intercalator to improve the hybridization efficiency of a triplex-forming oligonucleotide. Bioorg Med Chem 2008; 16:9937-47. [PMID: 18977149 DOI: 10.1016/j.bmc.2008.10.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 10/03/2008] [Accepted: 10/12/2008] [Indexed: 11/23/2022]
Abstract
When inserting 2-phenyl or 2-naphth-1-yl-phenanthroimidazole intercalators (X and Y, respectively) as bulges into triplex-forming oligonucleotides, both intercalators show extraordinary high thermal stability of the corresponding Hoogsteen-type triplexes and Hoogsteen-type parallel duplexes with high discrimination to Hoogsteen mismatches. Molecular modeling shows that the phenyl or the naphthyl ring stacks with the nucleobases in the TFO, while the phenanthroimidazol moiety stacks with the base pairs of the dsDNA. DNA-strands containing the intercalator X show higher thermal triplex stability than DNA-strands containing the intercalator Y. The difference can be explained by a lower degree of planarity of the intercalator in the case of naphthyl. It was also observed that triplex stability was considerably reduced when the intercalators X or Y was replaced by 2-(naphthlen-1-yl)imidazole. This confirms intercalation as the important factor for triplex stabilization and it rules out an alternative complexation of protonated imidazole with two phosphate groups. The intercalating nucleic acid monomers X and Y were obtained via a condensation reaction of 9,10-phenanthrenequinone (4) with (S)-4-(2-(2,2-dimethyl-1,3-dioxolan-4-yl)ethoxy)benzaldehyde (3a) or (S)-4-(2-(2,2-dimethyl-1,3-dioxolan-4-yl)ethoxy)-1-naphthaldehyde (3b), respectively, in the presence of acetic acid and ammonium acetate. The required monomers for DNA synthesis using amidite chemistry were obtained by standard deprotection of the hydroxy groups followed by 4,4'-dimethoxytritylation and phosphitylation.
Collapse
|
25
|
Duca M, Vekhoff P, Oussedik K, Halby L, Arimondo PB. The triple helix: 50 years later, the outcome. Nucleic Acids Res 2008; 36:5123-38. [PMID: 18676453 PMCID: PMC2532714 DOI: 10.1093/nar/gkn493] [Citation(s) in RCA: 272] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Triplex-forming oligonucleotides constitute an interesting DNA sequence-specific tool that can be used to target cleaving or cross-linking agents, transcription factors or nucleases to a chosen site on the DNA. They are not only used as biotechnological tools but also to induce modifications on DNA with the aim to control gene expression, such as by site-directed mutagenesis or DNA recombination. Here, we report the state of art of the triplex-based anti-gene strategy 50 years after the discovery of such a structure, and we show the importance of the actual applications and the main challenges that we still have ahead of us.
Collapse
Affiliation(s)
- Maria Duca
- LCMBA CNRS UMR6001, University of Nice-Sophia Antipolis, Parc Valrose, 06108 NICE Cedex 2, France
| | | | | | | | | |
Collapse
|
26
|
Jain A, Wang G, Vasquez KM. DNA triple helices: biological consequences and therapeutic potential. Biochimie 2008; 90:1117-30. [PMID: 18331847 PMCID: PMC2586808 DOI: 10.1016/j.biochi.2008.02.011] [Citation(s) in RCA: 211] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Accepted: 02/08/2008] [Indexed: 01/25/2023]
Abstract
DNA structure is a critical element in determining its function. The DNA molecule is capable of adopting a variety of non-canonical structures, including three-stranded (i.e. triplex) structures, which will be the focus of this review. The ability to selectively modulate the activity of genes is a long-standing goal in molecular medicine. DNA triplex structures, either intermolecular triplexes formed by binding of an exogenously applied oligonucleotide to a target duplex sequence, or naturally occurring intramolecular triplexes (H-DNA) formed at endogenous mirror repeat sequences, present exploitable features that permit site-specific alteration of the genome. These structures can induce transcriptional repression and site-specific mutagenesis or recombination. Triplex-forming oligonucleotides (TFOs) can bind to duplex DNA in a sequence-specific fashion with high affinity, and can be used to direct DNA-modifying agents to selected sequences. H-DNA plays important roles in vivo and is inherently mutagenic and recombinogenic, such that elements of the H-DNA structure may be pharmacologically exploitable. In this review we discuss the biological consequences and therapeutic potential of triple helical DNA structures. We anticipate that the information provided will stimulate further investigations aimed toward improving DNA triplex-related gene targeting strategies for biotechnological and potential clinical applications.
Collapse
Affiliation(s)
- Aklank Jain
- Department of Carcinogenesis, University of Texas, M.D. Anderson Cancer Center, Science Park--Research Division, 1808 Park Road 1-C, P.O. Box 389, Smithville, TX 78957, USA
| | | | | |
Collapse
|
27
|
Liu Y, Nairn RS, Vasquez KM. Processing of triplex-directed psoralen DNA interstrand crosslinks by recombination mechanisms. Nucleic Acids Res 2008; 36:4680-8. [PMID: 18628293 PMCID: PMC2504320 DOI: 10.1093/nar/gkn438] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Gene targeting via homologous recombination (HR) is an important application in biotechnology and medicine. However, in mammalian cells HR is much less efficient than random integration. Triplex-forming oligonucleotides (TFOs) linked to DNA damaging agents (e.g. psoralen) can stimulate HR, providing the potential to improve gene therapy applications. To elucidate factors affecting TFO-directed psoralen interstrand crosslink (ICL)-induced recombination, we constructed a series of plasmids with duplicated supF reporter genes, each containing an inactivating deletion, to measure HR frequencies in mammalian cells. Our results indicated that TFO-directed ICL-induced recombination frequencies were higher in the plasmids with larger distances between duplicated supF genes than with a smaller separation distance. However, the position of the ICL relative to the reporter genes did not affect HR frequencies. Recombination spectra were altered by the distance between supF copies. Although single-strand annealing (SSA) recombinants were predominant in all plasmid substrates, the plasmid with the shortest interval (60 bp) revealed a significant proportion of gene conversions (GCs). GCs occurred exclusively in the gene containing the shortest deletion, regardless of the distance between supF genes, ICL position or deletion orientation. Our analyses indicated that SSA is the predominant mechanism of ICL processing of these substrates in mammalian cells.
Collapse
Affiliation(s)
- Yaobin Liu
- Department of Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, Smithville, TX, USA
| | | | | |
Collapse
|
28
|
Benfield AP, Macleod MC, Liu Y, Wu Q, Wensel TG, Vasquez KM. Targeted generation of DNA strand breaks using pyrene-conjugated triplex-forming oligonucleotides. Biochemistry 2008; 47:6279-88. [PMID: 18473480 PMCID: PMC2662494 DOI: 10.1021/bi7024029] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Gene targeting by triplex-forming oligonucleotides (TFOs) has proven useful for gene modulation in vivo. Photoreactive molecules have been conjugated to TFOs to direct sequence-specific damage in double-stranded DNA. However, the photoproducts are often repaired efficiently in cells. This limitation has led to the search for sequence-specific photoreactive reagents that can produce more genotoxic lesions. Here we demonstrate that photoactivated pyrene-conjugated TFOs (pyr-TFOs) induce DNA strand breaks near the pyrene moiety with remarkably high efficiency and also produce covalent pyrene-DNA adducts. Free radical scavenging experiments demonstrated a role for singlet oxygen activated by the singlet excited state of pyrene in the mechanism of pyr-TFO-induced DNA damage. In cultured mammalian cells, the effect of photoactivated pyr-TFO-directed DNA damage was to induce mutations, in the form of deletions, approximately 7-fold over background levels, at the targeted site. Thus, pyr-TFOs represent a potentially powerful new tool for directing DNA strand breaks to specific chromosomal locations for biotechnological and potential clinical applications.
Collapse
Affiliation(s)
- Aaron P. Benfield
- Department of Carcinogenesis, The University of Texas M. D. Anderson Cancer Center, Science Park-Research Division, Smithville, Texas 78957, USA
| | - Michael C. Macleod
- Department of Carcinogenesis, The University of Texas M. D. Anderson Cancer Center, Science Park-Research Division, Smithville, Texas 78957, USA
| | - Yaobin Liu
- Department of Carcinogenesis, The University of Texas M. D. Anderson Cancer Center, Science Park-Research Division, Smithville, Texas 78957, USA
| | - Qi Wu
- Department of Carcinogenesis, The University of Texas M. D. Anderson Cancer Center, Science Park-Research Division, Smithville, Texas 78957, USA
| | - Theodore G. Wensel
- Department of Biochemistry, Baylor College of Medicine, Houston, Texas 77380, USA
| | - Karen M. Vasquez
- Department of Carcinogenesis, The University of Texas M. D. Anderson Cancer Center, Science Park-Research Division, Smithville, Texas 78957, USA
| |
Collapse
|
29
|
Abstract
Friedreich ataxia, the most common inherited ataxia, is caused by the transcriptional silencing of the FXN gene, which codes for the 210 amino acid frataxin, a mitochondrial protein involved in iron-sulfur cluster biosynthesis. The expansion of the GAA x TTC tract in intron 1 to as many as 1700 repeats elicits the transcriptional silencing by the formation of non-B DNA structures (triplexes or sticky DNA), the formation of a persistent DNA x RNA hybrid, or heterochromatin formation. The triplex (sticky DNA) adopted by the long repeat sequence also elicits profound mutagenic, genetic instability, and recombination behaviors. Early stage therapeutic investigations involving polyamides or histone deacetylase inhibitors are being pursued. Friedreich ataxia may be one of the most thoroughly studied hereditary neurological disease from a pathophysiological standpoint.
Collapse
Affiliation(s)
- Robert D Wells
- Center for Genome Research, Institute of Biosciences and Technology, Texas A&M University System Health Science Center, The Texas Medical Center, 2121 W. Holcombe Blvd., Houston, TX 77030-3303, USA.
| |
Collapse
|
30
|
Sangiuolo F, Scaldaferri ML, Filareto A, Spitalieri P, Guerra L, Favia M, Caroppo R, Mango R, Bruscia E, Gruenert DC, Casavola V, De Felici M, Novelli G. Cftr gene targeting in mouse embryonic stem cells mediated by Small Fragment Homologous Replacement (SFHR). FRONTIERS IN BIOSCIENCE : A JOURNAL AND VIRTUAL LIBRARY 2008; 13:2989-99. [PMID: 17981772 PMCID: PMC3725395 DOI: 10.2741/2904] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Different gene targeting approaches have been developed to modify endogenous genomic DNA in both human and mouse cells. Briefly, the process involves the targeting of a specific mutation in situ leading to the gene correction and the restoration of a normal gene function. Most of these protocols with therapeutic potential are oligonucleotide based, and rely on endogenous enzymatic pathways. One gene targeting approach, "Small Fragment Homologous Replacement (SFHR)", has been found to be effective in modifying genomic DNA. This approach uses small DNA fragments (SDF) to target specific genomic loci and induce sequence and subsequent phenotypic alterations. This study shows that SFHR can stably introduce a 3-bp deletion (deltaF508, the most frequent cystic fibrosis (CF) mutation) into the Cftr (CF Transmembrane Conductance Regulator) locus in the mouse embryonic stem (ES) cell genome. After transfection of deltaF508-SDF into murine ES cells, SFHR-mediated modification was evaluated at the molecular levels on DNA and mRNA obtained from transfected ES cells. About 12% of transcript corresponding to deleted allele was detected, while 60% of the electroporated cells completely lost any measurable CFTR-dependent chloride efflux. The data indicate that the SFHR technique can be used to effectively target and modify genomic sequences in ES cells. Once the SFHR-modified ES cells differentiate into different cell lineages they can be useful for elucidating tissue-specific gene function and for the development of transplantation-based cellular and therapeutic protocols.
Collapse
Affiliation(s)
- Federica Sangiuolo
- Department of Biopathology and Diagnostic Imaging, Tor Vergata University, Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Shi C, Parker AR, Hua L, Morrell CN, Lee SC, Bandaru V, Dumler JS, Wu TC, Eshleman JR. Anti-gene padlocks eliminate Escherichia coli based on their genotype. J Antimicrob Chemother 2007; 61:262-72. [PMID: 18156610 DOI: 10.1093/jac/dkm482] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Several therapeutic strategies that target nucleic acids exist; however, most approaches target messenger RNA, rather than genomic DNA. We describe a novel oligonucleotide-based strategy, called anti-gene padlocks (AGPs), which eliminate Escherichia coli based on their genotype. METHODS The strategy employs an oligonucleotide with a double hairpin structure where both strands of the AGP are complementary to both strands of a target gene. We tested AGPs for in vitro binding and inhibition of DNA polymerization. AGPs were electroporated into bacterial cells with and without gene targets along with an ampicillin resistance plasmid, and cell survival was measured. RESULTS In vitro, AGPs bound the DNA target in a sequence-dependent fashion and inhibited DNA synthesis. When transformed into bacterial cells containing 10, 20 or 30 bp lacZ or 20 bp proA DNA targets in their genomes, AGPs selectively killed or otherwise inhibited growth of these cells, while those lacking the target demonstrated little, if any, toxicity. A single transformation resulted in approximately 30% to 40% loss of target-bearing cells. Structure-function experiments were performed to define essential AGP requirements. CONCLUSIONS These results suggest that AGPs may be a useful tool to eliminate specific cell populations.
Collapse
Affiliation(s)
- Chanjuan Shi
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Plashkevych O, Chatterjee S, Honcharenko D, Pathmasiri W, Chattopadhyaya J. Chemical and Structural Implications of 1‘,2‘- versus 2‘,4‘- Conformational Constraints in the Sugar Moiety of Modified Thymine Nucleosides. J Org Chem 2007; 72:4716-26. [PMID: 17523663 DOI: 10.1021/jo070356u] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In order to understand how the chemical nature of the conformational constraint of the sugar moiety in ON/RNA(DNA) dictates the duplex structure and reactivity, we have determined molecular structures and dynamics of the conformationally constrained 1',2'-azetidine- and 1',2'-oxetane-fused thymidines, as well as their 2',4'-fused thymine (T) counterparts such as LNA-T, 2'-amino LNA-T, ENA-T, and aza-ENA-T by NMR, ab initio (HF/6-31G** and B3LYP/6-31++G**), and molecular dynamics simulations (2 ns in the explicit aqueous medium). It has been found that, depending upon whether the modification leads to a bicyclic 1',2'-fused or a tricyclic 2',4'-fused system, they fall into two distinct categories characterized by their respective internal dynamics of the glycosidic and the backbone torsions as well as by characteristic North-East type sugar conformation (P = 37 degrees +/- 27 degrees , phi(m) = 25 degrees +/- 18 degrees ) of the 1',2'-fused systems, and (ii) pure North type (P = 19 degrees +/- 8 degrees , phi(m) = 48 degrees +/- 4 degrees ) for the 2',4'-fused nucleosides. Each group has different conformational hyperspace accessible, despite the overall similarity of the North-type conformational constraints imposed by the 1',2'- or 2',4'-linked modification. The comparison of pK(a)s of the 1-thyminyl aglycon as well as that of endocyclic sugar-nitrogen obtained by theoretical and experimental measurements showed that the nature of the sugar conformational constraints steer the physicochemical property (pK(a)) of the constituent 1-thyminyl moiety, which in turn can play a part in tuning the strength of hydrogen bonding in the basepairing.
Collapse
Affiliation(s)
- Oleksandr Plashkevych
- Department of Bioorganic Chemistry, Box 581, Biomedical Center, Uppsala University, SE-75123 Uppsala, Sweden
| | | | | | | | | |
Collapse
|
33
|
Daksis JI, Erikson GH. Heteropolymeric triplex-based genomic assay to detect pathogens or single-nucleotide polymorphisms in human genomic samples. PLoS One 2007; 2:e305. [PMID: 17375191 PMCID: PMC1810429 DOI: 10.1371/journal.pone.0000305] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Accepted: 02/25/2007] [Indexed: 12/03/2022] Open
Abstract
Human genomic samples are complex and are considered difficult to assay directly without denaturation or PCR amplification. We report the use of a base-specific heteropolymeric triplex, formed by native duplex genomic target and an oligonucleotide third strand probe, to assay for low copy pathogen genomes present in a sample also containing human genomic duplex DNA, or to assay human genomic duplex DNA for Single Nucleotide Polymorphisms (SNP), without PCR amplification. Wild-type and mutant probes are used to identify triplexes containing FVL G1691A, MTHFR C677T and CFTR mutations. The specific triplex structure forms rapidly at room temperature in solution and may be detected without a separation step. YOYO-1, a fluorescent bis-intercalator, promotes and signals the formation of the specific triplex. Genomic duplexes may be assayed homogeneously with single base pair resolution. The specific triple-stranded structures of the assay may approximate homologous recombination intermediates, which various models suggest may form in either the major or minor groove of the duplex. The bases of the stable duplex target are rendered specifically reactive to the bases of the probe because of the activity of intercalated YOYO-1, which is known to decondense duplex locally 1.3 fold. This may approximate the local decondensation effected by recombination proteins such as RecA in vivo. Our assay, while involving triplex formation, is sui generis, as it is not homopurine sequence-dependent, as are “canonical triplexes”. Rather, the base pair-specific heteropolymeric triplex of the assay is conformation-dependent. The highly sensitive diagnostic assay we present allows for the direct detection of base sequence in genomic duplex samples, including those containing human genomic duplex DNA, thereby bypassing the inherent problems and cost associated with conventional PCR based diagnostic assays.
Collapse
|
34
|
Wu Q, Gaddis SS, MacLeod MC, Walborg EF, Thames HD, DiGiovanni J, Vasquez KM. High-affinity triplex-forming oligonucleotide target sequences in mammalian genomes. Mol Carcinog 2007; 46:15-23. [PMID: 17013831 DOI: 10.1002/mc.20261] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Site-specific recognition of duplex DNA by triplex-forming oligonucleotides (TFOs) provides a promising approach to manipulate mammalian genomes. A prerequisite for successful gene targeting using this approach is that the targeted gene must contain specific, high-affinity TFO target sequences (TTS). To date, TTS have been identified and characterized in only approximately 37 human or rodent genes, limiting the application of triplex-directed gene targeting. We searched the complete human and mouse genomes using an algorithm designed to identify high-affinity TTS. The resulting data set contains 1.9 million potential TTS for each species. We found that 97.8% of known human and 95.2% of known mouse genes have at least one potential high-affinity TTS in the promoter and/or transcribed gene regions. Importantly, 86.5% of known human and 83% of the known mouse genes have at least one TTS that is unique to that gene. Thus, it is possible to target the majority of human and mouse genes with specific TFOs. We found substantially more potential TTS in the promoter sequences than in the transcribed gene sequences or intergenic sequences in both genomes. We selected 12 mouse genes and 2 human genes critical for cell signaling, proliferation, and/or carcinogenesis, identified potential TTS in each, and determined TFO binding affinities to these sites in vitro. We identified at least one high-affinity, specific TFO binding site within each of these genes. Using this information, many genes involved in mammalian cell proliferation and carcinogenesis can now be targeted.
Collapse
Affiliation(s)
- Qi Wu
- Department of Carcinogenesis, Science Park-Research Division, The University of Texas M.D. Anderson Cancer Center, Smithville, Texas, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Varghese OP, Barman J, Pathmasiri W, Plashkevych O, Honcharenko D, Chattopadhyaya J. Conformationally constrained 2'-N,4'-C-ethylene-bridged thymidine (aza-ENA-T): synthesis, structure, physical, and biochemical studies of aza-ENA-T-modified oligonucleotides. J Am Chem Soc 2007; 128:15173-87. [PMID: 17117869 DOI: 10.1021/ja0634977] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The 2'-deoxy-2'-N,4'-C-ethylene-bridged thymidine (aza-ENA-T) has been synthesized using a key cyclization step involving 2'-ara-trifluoromethylsufonyl-4'-cyanomethylene 11 to give a pair of 3',5'-bis-OBn-protected diastereomerically pure aza-ENA-Ts (12a and 12b) with the fused piperidino skeleton in the chair conformation, whereas the pentofuranosyl moiety is locked in the North-type conformation (7 degrees < P < 27 degrees, 44 degrees < phi m < 52 degrees). The origin of the chirality of two diastereomerically pure aza-ENA-Ts was found to be due to the endocyclic chiral 2'-nitrogen, which has axial N-H in 12b and equatorial N-H in 12a. The latter is thermodynamically preferred, while the former is kinetically preferred with Ea = 25.4 kcal mol-1, which is thus far the highest observed inversion barrier at pyramidal N-H in the bicyclic amines. The 5'-O-DMTr-aza-ENA-T-3'-phosphoramidite was employed for solid-phase synthesis to give four different singly modified 15-mer antisense oligonucleotides (AONs). Their AON/RNA duplexes showed a Tm increase of 2.5-4 degrees C per modification, depending upon the modification site in the AON. The relative rates of the RNase H1 cleavage of the aza-ENA-T-modified AON/RNA heteroduplexes were very comparable to that of the native counterpart, but the RNA cleavage sites of the modified AON/RNA were found to be very different. The aza-ENA-T modifications also made the AONs very resistant to 3' degradation (stable over 48 h) in the blood serum compared to the unmodified AON (fully degraded in 4 h). Thus, the aza-ENA-T modification in the AON fulfilled three important antisense criteria, compared to the native: (i) improved RNA target affinity, (ii) comparable RNase H cleavage rate, and (iii) higher blood serum stability.
Collapse
Affiliation(s)
- Oommen P Varghese
- Department of Bioorganic Chemistry, Box 581, Biomedical Center, Uppsala University, SE-75123 Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
36
|
Potier P, Adib A, Kochkine A, Huc I, Behr JP. Synthesis of Oligonucleotides Bearing Polyamine Groups for Recognition of DNA Sequences. ACTA ACUST UNITED AC 2006. [DOI: 10.1080/07328319908044754] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
37
|
Gaddis SS, Wu Q, Thames HD, DiGiovanni J, Walborg EF, MacLeod MC, Vasquez KM. A web-based search engine for triplex-forming oligonucleotide target sequences. Oligonucleotides 2006; 16:196-201. [PMID: 16764543 DOI: 10.1089/oli.2006.16.196] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Triplex technology offers a useful approach for site-specific modification of gene structure and function both in vitro and in vivo. Triplex-forming oligonucleotides (TFOs) bind to their target sites in duplex DNA, thereby forming triple-helical DNA structures via Hoogsteen hydrogen bonding. TFO binding has been demonstrated to site-specifically inhibit gene expression, enhance homologous recombination, induce mutation, inhibit protein binding, and direct DNA damage, thus providing a tool for gene-specific manipulation of DNA. We have developed a flexible web-based search engine to find and annotate TFO target sequences within the human and mouse genomes. Descriptive information about each site, including sequence context and gene region (intron, exon, or promoter), is provided. The engine assists the user in finding highly specific TFO target sequences by eliminating or flagging known repeat sequences and flagging overlapping genes. A convenient way to check for the uniqueness of a potential TFO binding site is provided via NCBI BLAST. The search engine may be accessed at spi.mdanderson.org/tfo.
Collapse
Affiliation(s)
- Sara S Gaddis
- Department of Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, Smithville, TX 78957, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Buchini S, Leumann CJ. 2′-O-Aminoethyl Oligoribonucleotides Containing Novel Base Analogues: Synthesis and Triple-Helix Formation At Pyrimidine/Purine Inversion Sites. European J Org Chem 2006. [DOI: 10.1002/ejoc.200600182] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
39
|
Christensen LA, Finch RA, Booker AJ, Vasquez KM. Targeting oncogenes to improve breast cancer chemotherapy. Cancer Res 2006; 66:4089-94. [PMID: 16618728 DOI: 10.1158/0008-5472.can-05-4288] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Despite recent advances in treatment, breast cancer remains a serious health threat for women. Traditional chemotherapies are limited by a lack of specificity for tumor cells and the cell cycle dependence of many chemotherapeutic agents. Here we report a novel strategy to help overcome these limitations. Using triplex-forming oligonucleotides (TFOs) to direct DNA damage site-specifically to oncogenes overexpressed in human breast cancer cells, we show that the effectiveness of the anticancer nucleoside analogue gemcitabine can be improved significantly. TFOs targeted to the promoter region of c-myc directly inhibited gene expression by approximately 40%. When used in combination, specific TFOs increased the incorporation of gemcitabine at the targeted site approximately 4-fold, presumably due to induction of replication-independent DNA synthesis. Cells treated with TFOs and gemcitabine in combination showed a reduction in both cell survival and capacity for anchorage-independent growth (approximately 19% of untreated cells). This combination affected the tumorigenic potential of these cancer cells to a significantly greater extent than either treatment alone. This novel strategy may be used to increase the range of effectiveness of antitumor nucleosides in any tumor which overexpresses a targetable oncogene. Multifaceted chemotherapeutic approaches such as this, coupled with triplex-directed gene targeting, may lead to more than incremental improvements in nonsurgical treatment of breast tumors.
Collapse
Affiliation(s)
- Laura A Christensen
- Department of Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, Smithville, Texas 78957, USA
| | | | | | | |
Collapse
|
40
|
Nadal A, Coll A, Aviñó A, Esteve T, Eritja R, Pla M. Efficient Sequence‐Specific Purification of
Listeria innocua
mRNA Species by Triplex Affinity Capture with Parallel Tail‐Clamps. Chembiochem 2006; 7:1039-47. [PMID: 16729343 DOI: 10.1002/cbic.200500519] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Parallel clamps can interact in a sequence-specific manner with homopyrimidine DNA and RNA oligonucleotides to form triplexes. For longer nucleic acids, we have previously demonstrated the inhibitory effect of DNA-target secondary structures on triplex formation. We further designed a modification of these molecules-that is, tail-clamps formed by addition of a tail sequence to the parallel clamp-and proved efficient binding of the molecules with structured single-stranded DNA targets. Here we explore the possible application of the tail-clamp strategy for triplex formation with RNA targets, which are typically found as strongly folded single-stranded molecules. Efficient and specific binding of a tail-clamp designed to form a parallel triplex with Listeria innocua iap mRNA sequences has been verified by UV melting curves and triplex affinity capture techniques. Furthermore, we show for the first time the formation of stable complexes of mRNA with tail-clamps not only under acidic but also under neutral and slightly basic pH conditions. These results signify a further step towards the possible applications of triplexes with mRNA molecules; research, analytical, and therapeutic uses can be envisaged. As an example, our tail-clamp-based triplex affinity capture assay allowed the specific capture and recovery of iap mRNA molecules from an L. innocua total RNA solution with 45 % yield.
Collapse
Affiliation(s)
- Anna Nadal
- Institute of Food and Agricultural Technology (INTEA), University of Girona, Campus Montilivi (Edif. Politècnica 1), Spain
| | | | | | | | | | | |
Collapse
|
41
|
Daksis JI, Erikson GH. Specific triplex binding capacity of mixed base sequence duplex nucleic acids used for single-nucleotide polymorphism detection. ACTA ACUST UNITED AC 2006; 9:111-20. [PMID: 15943550 DOI: 10.1089/gte.2005.9.111] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Specific base recognition and binding between native double-stranded DNA (dsDNA) and complementary single-stranded DNA (ssDNA) of mixed base sequence is presented. Third-strand binding, facilitated and stabilized by a DNA intercalator, YOYO-1, occurs within 5 min at room temperature. This triplex binding capability has been used to develop a homogeneous assay that accurately detects 1-, 2-, or 3-bp mutations or deletions in the dsDNA target. Every type of 1-bp mismatch can be identified. The assay can reliably distinguish homozygous from heterozygous polymerase chain reaction (PCR)-amplified genomic dsDNA, thus providing a highly sensitive clinical diagnostic assay.
Collapse
|
42
|
Abstract
Repetitive DNA sequences are abundant in eukaryotic genomes, and many of these sequences have the potential to adopt non-B DNA conformations. Genes harboring non-B DNA structure-forming sequences increase the risk of genetic instability and thus are associated with human diseases. In this review, we discuss putative mechanisms responsible for genetic instability events occurring at these non-B DNA structures, with a focus on hairpins, left-handed Z-DNA, and intramolecular triplexes or H-DNA. Slippage and misalignment are the most common events leading to DNA structure-induced mutagenesis. However, a number of other mechanisms of genetic instability have been proposed based on the finding that these structures not only induce expansions and deletions, but can also induce DNA strand breaks and rearrangements. The available data implicate a variety of proteins, such as mismatch repair proteins, nucleotide excision repair proteins, topoisomerases, and structure specific-nucleases in the processing of these mutagenic DNA structures. The potential mechanisms of genetic instability induced by these structures and their contribution to human diseases are discussed.
Collapse
Affiliation(s)
- Guliang Wang
- Department of Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, 1808 Park Road 1-C, P.O. Box 389, Smithville, 78957, USA
| | | |
Collapse
|
43
|
Shimotai Y, Minami H, Saitoh Y, Onodera Y, Mishima Y, Kelm RJ, Tsutsumi KI. A binding site for Pur alpha and Pur beta is structurally unstable and is required for replication in vivo from the rat aldolase B origin. Biochem Biophys Res Commun 2005; 340:517-25. [PMID: 16376299 DOI: 10.1016/j.bbrc.2005.12.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Accepted: 12/06/2005] [Indexed: 11/27/2022]
Abstract
The rat aldolase B promoter acts as a replication origin in vivo, as well as an autonomously replicating sequence (ARS). Here, we examined roles of a polypurine stretch (site PPu) in this origin, which is indispensable to the ARS activity. Purification of site PPu-binding protein revealed that site PPu binds Puralpha and Purbeta, i.e., single-stranded DNA-binding proteins whose roles in replication have been implicated, but less clear. Biochemical analyses showed that site PPu even in a longer DNA fragment is unstable in terms of double-helix, implying that Puralpha/beta may stabilize single-stranded state. Deletion of site PPu from the origin DNA, which was ectopically positioned in the mouse chromosome, significantly reduced replicator activity. Chromatin immunoprecipitation experiments showed that deletion of site PPu abolishes binding of the Puralpha/beta proteins to the origin. These observations suggest functional roles of site PPu and Puralpha/beta proteins in replication initiation.
Collapse
Affiliation(s)
- Yoshitaka Shimotai
- Laboratory of Functional Genomics, United Graduate School of Agricultural Sciences, Iwate University, Morioka, Iwate 020-8550, Japan
| | | | | | | | | | | | | |
Collapse
|
44
|
Eisenschmidt K, Lanio T, Simoncsits A, Jeltsch A, Pingoud V, Wende W, Pingoud A. Developing a programmed restriction endonuclease for highly specific DNA cleavage. Nucleic Acids Res 2005; 33:7039-47. [PMID: 16356926 PMCID: PMC1316111 DOI: 10.1093/nar/gki1009] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Specific cleavage of large DNA molecules at few sites, necessary for the analysis of genomic DNA or for targeting individual genes in complex genomes, requires endonucleases of extremely high specificity. Restriction endonucleases (REase) that recognize DNA sequences of 4-8 bp are not sufficiently specific for this purpose. In principle, the specificity of REases can be extended by fusion to sequence recognition modules, e.g. specific DNA-binding domains or triple-helix forming oligonucleotides (TFO). We have chosen to extend the specificity of REases using TFOs, given the combinatorial flexibility this fusion offers in addressing a short, yet precisely recognized restriction site next to a defined triple-helix forming site (TFS). We demonstrate here that the single chain variant of PvuII (scPvuII) covalently coupled via the bifunctional cross-linker N-(gamma-maleimidobutryloxy) succinimide ester to a TFO (5'-NH2-[CH2](6 or 12)-MPMPMPMPMPPPPPPT-3', with M being 5-methyl-2'-deoxycytidine and P being 5-[1-propynyl]-2'-deoxyuridine), cleaves DNA specifically at the recognition site of PvuII (CAGCTG) if located in a distance of approximately one helical turn to a TFS (underlined) complementary to the TFO ('addressed' site: 5'-TTTTTTTCTCTCTCTCN(approximately 10)CAGCTG-3'), leaving 'unaddressed' PvuII sites intact. The preference for cleavage of an 'addressed' compared to an 'unaddressed' site is >1000-fold, if the cleavage reaction is initiated by addition of Mg2+ ions after preincubation of scPvuII-TFO and substrate in the absence of Mg2+ ions to allow triple-helix formation before DNA cleavage. Single base pair substitutions in the TFS prevent addressed DNA cleavage by scPvuII-TFO.
Collapse
Affiliation(s)
| | | | - András Simoncsits
- International Centre for Genetic Engineering and BiotechnologyPadriciano 99, I-34012 Trieste, Italy
| | - Albert Jeltsch
- School of Engineering and Science, International University BremenCampus Ring 1, D-28725 Bremen, Germany
| | | | | | - Alfred Pingoud
- To whom correspondence should be addressed. Tel: +49 641 9935400; Fax: +49 641 9935409;
| |
Collapse
|
45
|
Abstract
Living organisms are constantly exposed to detrimental agents both from the environment (e.g. ionizing radiation, ultraviolet light, natural and synthetic chemicals) and from endogenous metabolic processes (e.g. oxidative and hydrolytic reactions), resulting in modifications of proteins, lipids and DNA. Proteins and lipids are degraded and resynthesized, but the DNA is replicated only during cell division, when DNA damage may result in mutation fixation. Thus the DNA damage generated has the potential to lead to carcinogenesis, cell death, or other genetic disorders in the absence of efficient error-free repair. Because modifications in DNA sequence or structure may be incompatible with its essential role in preservation and transmission of genetic information from generation to generation, exquisitely sensitive DNA repair pathways have evolved to maintain genomic stability and cell viability. This review focuses on the repair and processing of genome destabilizing lesions and helical distortions that differ significantly from the canonical B-form DNA in mammalian cells. In particular, we discuss the introduction and processing of site-specific lesions in mammalian cells with an emphasis on psoralen interstrand crosslinks.
Collapse
Affiliation(s)
- Madhava C Reddy
- Department of Carcinogenesis, The University of Texas M. D. Anderson Cancer Center, Science Park-Research Division, Smithville, Texas 78957, USA
| | | |
Collapse
|
46
|
Michel T, Debart F, Heitz F, Vasseur JJ. Highly stable DNA triplexes formed with cationic phosphoramidate pyrimidine alpha-oligonucleotides. Chembiochem 2005; 6:1254-62. [PMID: 15912553 DOI: 10.1002/cbic.200400436] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The ability of cationic phosphoramidate pyrimidine alpha-oligonucleotides (ONs) to form triplexes with DNA duplexes was investigated by UV melting experiments, circular dichroism spectroscopy and gel mobility shift experiments. Replacement of the phosphodiester linkages in alpha-ONs with positively charged phosphoramidate linkages results in more efficient triplex formation, the triplex stability increasing with the number of positive charges. At a neutral pH and in the absence of magnesium ions, it was found that a fully cationic phosphoramidate alpha-TFO (triplex-forming oligonucleotide) forms a highly stable triplex that melts at a higher temperature than the duplex target. No hysteresis between the annealing and melting curves was noticed; this indicates fast association. Moreover, the recognition of a DNA duplex with a cationic alpha-TFO through Hoogsteen base pairing is highly sequence-specific. To the best of our knowledge, this is the first report of stable triplexes in the pyrimidine motif formed by cationic alpha-oligonucleotides and duplex targets.
Collapse
Affiliation(s)
- Thibaut Michel
- LCOBS, UMR 5625 CNRS-UMII, CC 008, Université Montpellier II, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France
| | | | | | | |
Collapse
|
47
|
Nadal A, Eritja R, Esteve T, Pla M. "Parallel" and "antiparallel tail-clamps" increase the efficiency of triplex formation with structured DNA and RNA targets. Chembiochem 2005; 6:1034-42. [PMID: 15880676 DOI: 10.1002/cbic.200400358] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Sequence-specific triple-helix structures can be formed by parallel and antiparallel DNA clamps interacting with single-stranded DNA or RNA targets. Single-stranded nucleic acid molecules are known to adopt secondary structures that might interfere with intermolecular interactions. We demonstrate the correlation between a secondary structure involving the target--a stable stem predicted by in silico folding and experimentally confirmed by thermal stability and competition analyses--and an inhibitory effect on triplex formation. We overcame structural impediments by designing a new type of clamp: "tail-clamps". A combination of gel-shift, kinetic analysis, UV thermal melting and thermodynamic techniques was used to demonstrate that tail-clamps efficiently form triple helices with a structured target sequence. The performance of parallel and antiparallel tail-clamps was compared: antiparallel tail-clamps had higher binding efficiencies than parallel tail-clamps both with structured DNA and RNA targets. In addition, the reported triplex-stabilizing property of 8-aminopurine residues was confirmed for tail-clamps. Finally, we discuss the possible use of this improved triplex technology as a new tool for applications in molecular biology.
Collapse
Affiliation(s)
- Anna Nadal
- Departament de Genètica Molecular, Institut de Biologia Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Jordi Girona 18-26, 08034 Barcelona, Spain
| | | | | | | |
Collapse
|
48
|
Reddy MC, Christensen J, Vasquez KM. Interplay between human high mobility group protein 1 and replication protein A on psoralen-cross-linked DNA. Biochemistry 2005; 44:4188-95. [PMID: 15766246 DOI: 10.1021/bi047902n] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Human high mobility group box (HMGB) 1 and -2 proteins are highly conserved and abundant chromosomal proteins that regulate chromatin structure and DNA metabolism. HMGB proteins bind preferentially to DNA that is bent or underwound and to DNA damaged by agents such as cisplatin, UVC radiation, and benzo[a]pyrenediol epoxide (BPDE). Binding of HMGB1 to DNA adducts is thought to inhibit nucleotide excision repair (NER), leading to cell death, but the biological roles of these proteins remain obscure. We have used psoralen-modified triplex-forming oligonucleotides (TFOs) to direct a psoralen-DNA interstrand cross-link (ICL) to a specific site to determine the effect of HMGB proteins on recognition of these lesions. Our results reveal that human HMGB1 (but not HMGB2) binds with high affinity and specificity to psoralen ICLs, and interacts with the essential NER protein, replication protein A (RPA), at these lesions. RPA, shown previously to bind tightly to these lesions, also binds in the presence of HMGB1, without displacing HMGB1. A discrete ternary complex is formed, containing HMGB1, RPA, and psoralen-damaged DNA. Thus, HMGB1 has the ability to recognize ICLs, can cooperate with RPA in doing so, and likely modulates their repair by the NER machinery. The abundance of HMGB1 suggests that it may play an important role in determining the sensitivity of cells to DNA damage under physiological, experimental, and therapeutic conditions.
Collapse
Affiliation(s)
- Madhava C Reddy
- Department of Carcinogenesis, The University of Texas M. D. Anderson Cancer Center, Science Park-Research Division, 1808 Park Road 1-C, Smithville, Texas 78957, USA
| | | | | |
Collapse
|
49
|
Thoma BS, Wakasugi M, Christensen J, Reddy MC, Vasquez KM. Human XPC-hHR23B interacts with XPA-RPA in the recognition of triplex-directed psoralen DNA interstrand crosslinks. Nucleic Acids Res 2005; 33:2993-3001. [PMID: 15914671 PMCID: PMC1140082 DOI: 10.1093/nar/gki610] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
DNA interstrand crosslinks (ICLs) represent a severe form of damage that blocks DNA metabolic processes and can lead to cell death or carcinogenesis. The repair of DNA ICLs in mammals is not well characterized. We have reported previously that a key protein complex of nucleotide excision repair (NER), XPA-RPA, recognizes DNA ICLs. We now report the use of triplex technology to direct a site-specific psoralen ICL to a target DNA substrate to determine whether the human global genome NER damage recognition complex, XPC-hHR23B, recognizes this lesion. Our results demonstrate that XPC-hHR23B recognizes psoralen ICLs, which have a structure fundamentally different from other lesions that XPC-hHR23B is known to bind, with high affinity and specificity. XPC-hHR23B and XPA-RPA protein complexes were also observed to bind psoralen ICLs simultaneously, demonstrating not only that psoralen ICLs are recognized by XPC-hHR23B alone, but also that XPA-RPA may interact cooperatively with XPC-hHR23B on damaged DNA, forming a multimeric complex. Since XPC-hHR23B and XPA-RPA participate in the recognition and verification of DNA damage, these results support the hypothesis that interplay between components of the global genome repair sub-pathway of NER is critical for the recognition of psoralen DNA ICLs in the mammalian genome.
Collapse
Affiliation(s)
| | - Mitsuo Wakasugi
- Faculty of Pharmaceutical Sciences, Kanazawa UniversityTakara-machi, Kanazawa 920-0934, Japan
| | - Jesper Christensen
- Biotech Research and Innovation CentreFruebjergvej 3, 2100 Copenhagen, Denmark
| | | | - Karen M. Vasquez
- To whom correspondence should be addressed. Tel: +512 237 9324; Fax: +512 237 2475;
| |
Collapse
|
50
|
|