1
|
Nudelman A. Dimeric Drugs. Curr Med Chem 2021; 29:2751-2845. [PMID: 34375175 DOI: 10.2174/0929867328666210810124159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/18/2021] [Accepted: 06/29/2021] [Indexed: 11/22/2022]
Abstract
This review intends to summarize the structures of an extensive number of symmetrical-dimeric drugs, having two monomers linked via a bridging entity while emphasizing the large versatility of biologically active substances reported to possess dimeric structures. The largest number of classes of these compounds consist of anticancer agents, antibiotics/antimicrobials, and anti-AIDS drugs. Other symmetrical-dimeric drugs include antidiabetics, antidepressants, analgesics, anti-inflammatories, drugs for the treatment of Alzheimer's disease, anticholesterolemics, estrogenics, antioxidants, enzyme inhibitors, anti-Parkisonians, laxatives, antiallergy compounds, cannabinoids, etc. Most of the articles reviewed do not compare the activity/potency of the dimers to that of their corresponding monomers. Only in limited cases, various suggestions have been made to justify unexpected higher activity of the dimers vs. the corresponding monomers. These suggestions include statistical effects, the presence of dimeric receptors, binding of a dimer to two receptors simultaneously, and others. It is virtually impossible to predict which dimers will be preferable to their respective monomers, or which linking bridges will lead to the most active compounds. It is expected that the extensive number of articles summarized, and the large variety of substances mentioned, which display various biological activities, should be of interest to many academic and industrial medicinal chemists.
Collapse
Affiliation(s)
- Abraham Nudelman
- Chemistry Department, Bar Ilan University, Ramat Gan 52900, Israel
| |
Collapse
|
2
|
Ghiselli G. Heparin Binding Proteins as Therapeutic Target: An Historical Account and Current Trends. MEDICINES (BASEL, SWITZERLAND) 2019; 6:E80. [PMID: 31362364 PMCID: PMC6789896 DOI: 10.3390/medicines6030080] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/16/2019] [Accepted: 07/18/2019] [Indexed: 12/16/2022]
Abstract
The polyanionic nature and the ability to interact with proteins with different affinities are properties of sulfated glycosaminoglycans (GAGs) that determine their biological function. In designing drugs affecting the interaction of proteins with GAGs the challenge has been to generate agents with high binding specificity. The example to emulated has been a heparin-derived pentasaccharide that binds to antithrombin-III with high affinity. However, the portability of this model to other biological situations is questioned on several accounts. Because of their structural flexibility, oligosaccharides with different sulfation and uronic acid conformation can display the same binding proficiency to different proteins and produce comparable biological effects. This circumstance represents a formidable obstacle to the design of drugs based on the heparin scaffold. The conceptual framework discussed in this article is that through a direct intervention on the heparin-binding functionality of proteins is possible to achieve a high degree of action specificity. This objective is currently pursued through two strategies. The first makes use of small molecules for which in the text we provide examples from past and present literature concerning angiogenic factors and enzymes. The second approach entails the mutagenesis of the GAG-binding site of proteins as a means to generate a new class of biologics of therapeutic interest.
Collapse
Affiliation(s)
- Giancarlo Ghiselli
- Independent Researcher, 1326 Spruce Street Suite 706, Philadephia, PA 19107, USA.
| |
Collapse
|
3
|
Guintu C, Kwok M, Hanlon JJ, Spalding TA, Wolff K, Yin H, Kuhen K, Sasher K, Calvin P, Jiang S, Zhou Y, Isbell JJ. Just-in-Time Purification: An Effective Solution for Cherry-Picking and Purifying Active Compounds from Large Legacy Libraries. ACTA ACUST UNITED AC 2016; 11:933-9. [PMID: 17092919 DOI: 10.1177/1087057106294289] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Many companies possess a compound collection consisting of purified compounds and of unpurified products from combinatorial libraries. Using commercial and proprietary compounds as examples, this report provides clear examples of the significant impact purification can have on the activity observed for a compound and highlights the need to retest the purified compounds prior to creating structure-activity relationships. Crude mixtures made with commercial compounds led to an increase in the number of false positives in the SXR-GAL4 assay as compared with their pure and purified counterparts. An examination of proprietary compounds in an HIV assay resulted in the purification of 61 active crude synthetic mixtures. Of these 61 compounds, 32 were 5-fold less active and 2 were 5-fold more active after purification. This report details a semiautomated process developed and implemented for cherry-picking, tracking, and selectively purifying compounds found active in high-throughput screening campaigns.
Collapse
Affiliation(s)
- Christina Guintu
- Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Heparin/Heparan sulfate proteoglycans glycomic interactome in angiogenesis: biological implications and therapeutical use. Molecules 2015; 20:6342-88. [PMID: 25867824 PMCID: PMC6272510 DOI: 10.3390/molecules20046342] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 03/31/2015] [Accepted: 04/01/2015] [Indexed: 12/20/2022] Open
Abstract
Angiogenesis, the process of formation of new blood vessel from pre-existing ones, is involved in various intertwined pathological processes including virus infection, inflammation and oncogenesis, making it a promising target for the development of novel strategies for various interventions. To induce angiogenesis, angiogenic growth factors (AGFs) must interact with pro-angiogenic receptors to induce proliferation, protease production and migration of endothelial cells (ECs). The action of AGFs is counteracted by antiangiogenic modulators whose main mechanism of action is to bind (thus sequestering or masking) AGFs or their receptors. Many sugars, either free or associated to proteins, are involved in these interactions, thus exerting a tight regulation of the neovascularization process. Heparin and heparan sulfate proteoglycans undoubtedly play a pivotal role in this context since they bind to almost all the known AGFs, to several pro-angiogenic receptors and even to angiogenic inhibitors, originating an intricate network of interaction, the so called "angiogenesis glycomic interactome". The decoding of the angiogenesis glycomic interactome, achievable by a systematic study of the interactions occurring among angiogenic modulators and sugars, may help to design novel antiangiogenic therapies with implications in the cure of angiogenesis-dependent diseases.
Collapse
|
5
|
Bromfield SM, Posocco P, Fermeglia M, Pricl S, Rodríguez-López J, Smith DK. A simple new competition assay for heparin binding in serum applied to multivalent PAMAM dendrimers. Chem Commun (Camb) 2013; 49:4830-2. [PMID: 23595366 DOI: 10.1039/c3cc41251b] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a competition assay using our recently reported dye Mallard Blue, which allows us to identify synthetic heparin binders in competitive media, including human serum - using this we gain insight into the ability of PAMAM dendrimers to bind heparin, with the interesting result that low-generation G2-PAMAM is the preferred heparin binder.
Collapse
|
6
|
Drouet F, Masson G, Zhu J. Ugi Four-Component Reaction of Alcohols: Stoichiometric and Catalytic Oxidation/MCR Sequences. Org Lett 2013; 15:2854-7. [DOI: 10.1021/ol401181a] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Fleur Drouet
- Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles, ICSN, CNRS, 91198 Gif-sur-Yvette Cedex, France, and Institut of Chemical Sciences and Engineering, Ecole Polytechnique Federale de Lausanne, EPFL-SB-ISIC-LSPN, CH-1015 Lausanne, Switzerland
| | - Géraldine Masson
- Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles, ICSN, CNRS, 91198 Gif-sur-Yvette Cedex, France, and Institut of Chemical Sciences and Engineering, Ecole Polytechnique Federale de Lausanne, EPFL-SB-ISIC-LSPN, CH-1015 Lausanne, Switzerland
| | - Jieping Zhu
- Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles, ICSN, CNRS, 91198 Gif-sur-Yvette Cedex, France, and Institut of Chemical Sciences and Engineering, Ecole Polytechnique Federale de Lausanne, EPFL-SB-ISIC-LSPN, CH-1015 Lausanne, Switzerland
| |
Collapse
|
7
|
Liu L, Li C, Cochran S, Feder D, Guddat LW, Ferro V. A focused sulfated glycoconjugate Ugi library for probing heparan sulfate-binding angiogenic growth factors. Bioorg Med Chem Lett 2012; 22:6190-4. [DOI: 10.1016/j.bmcl.2012.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 07/23/2012] [Accepted: 08/01/2012] [Indexed: 11/30/2022]
|
8
|
Synthesis of disaccharides containing 6-deoxy-α-L-talose as potential heparan sulfate mimetics. Molecules 2012; 17:9790-802. [PMID: 22895025 PMCID: PMC6268951 DOI: 10.3390/molecules17089790] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 08/05/2012] [Accepted: 08/09/2012] [Indexed: 01/09/2023] Open
Abstract
A 6-deoxy-α-L-talopyranoside acceptor was readily prepared from methyl α-L-rhamnopyranoside and glycosylated with thiogalactoside donors using NIS/TfOH as the promoter to give good yields of the desired a-linked disaccharide (69-90%). Glycosylation with a 2-azido-2-deoxy-D-glucosyl trichloroacetimidate donor was not completely stereoselective (α:β = 6:1), but the desired a-linked disaccharide could be isolated in good overall yield (60%) following conversion into its corresponding tribenzoate derivative. The disaccharides were designed to mimic the heparan sulfate (HS) disaccharide GlcN(2S,6S)-IdoA(2S). However, the intermediates readily derived from these disaccharides were not stable to the sulfonation/deacylation conditions required for their conversion into the target HS mimetics.
Collapse
|
9
|
Liu L, Li C, Cochran S, Jimmink S, Ferro V. Synthesis of a Heparan Sulfate Mimetic Library Targeting FGF and VEGF via Click Chemistry on a Monosaccharide Template. ChemMedChem 2012; 7:1267-75. [DOI: 10.1002/cmdc.201200151] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 04/26/2012] [Indexed: 11/07/2022]
|
10
|
Sekiya A, Oishi S, Fujii N, Koide T. High-Throughput Turbidimetric Screening for Heparin-Neutralizing Agents and Low-Molecular-Weight Heparin Mimetics. Chem Pharm Bull (Tokyo) 2012; 60:371-6. [DOI: 10.1248/cpb.60.371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Atsushi Sekiya
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University
| | - Shinya Oishi
- Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Nobutaka Fujii
- Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Takaki Koide
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University
| |
Collapse
|
11
|
O'Connell MP, Weeraratna AT. A spoonful of sugar makes the melanoma go: the role of heparan sulfate proteoglycans in melanoma metastasis. Pigment Cell Melanoma Res 2011; 24:1133-47. [PMID: 21978367 DOI: 10.1111/j.1755-148x.2011.00918.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Heparan sulfate proteoglycans (HSPGs) have been shown to regulate signaling in many systems and are of increasing interest in cancer. While these are not the only sugars to drive melanoma metastasis, HSPGs play important roles in driving metastatic signaling cascades in melanoma. The ability of these proteins to modulate ligand-receptor interactions in melanoma has been quite understudied. Recent data from several groups indicate the importance of these ligands in modulating key signaling pathways including Wnt and fibroblast growth factor (FGF) signaling. In this review, we summarize the current knowledge regarding the structure and function of these proteoglycans and their role in melanoma. Understanding how HSPGs modulate signaling in melanoma could lead to new therapeutic approaches via the dampening or heightening of key signaling pathways.
Collapse
Affiliation(s)
- M P O'Connell
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA.
| | | |
Collapse
|
12
|
Oh SH, Kim IG, Lee JY, Lee JY, Lee JH. Bioactive porous beads as an injectable urethral bulking agent: their in vitro evaluation on smooth muscle cell differentiation. Tissue Eng Part A 2010; 17:655-64. [PMID: 20919951 DOI: 10.1089/ten.tea.2010.0430] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Growth factor (basic fibroblast growth factor or vascular endothelial growth factor)-immobilized polycaprolactone (PCL)/Pluronic F127 porous beads were prepared as an injectable bulking agent for effective treatment of urinary incontinence. The growth factor-immobilized porous beads may stimulate smooth muscle cell (SMC) differentiation of muscle-derived stem cells or defect tissues around urethra to improve the sphincter function (bioactive therapy) as well as to provide a bulking effect (passive therapy). The porous PCL/F127 beads were fabricated by an isolated particle-melting/melt-molding particulate-leaching method. The growth factors were easily immobilized onto the surfaces of the PCL/F127 porous beads via heparin binding and were continuously released for up to 28 days. Both growth factor-immobilized porous beads had a positive effect for the SMC differentiation of muscle-derived stem cells, as were demonstrated by the analyses of quantitative polymerase chain reactions, Western blot using SMC-specific markers, and immunohistochemical staining. In particular, the basic fibroblast growth factor-immobilized porous beads showed desirable SMC differentiation behavior that can be applied as an injectable bulking agent for the treatment of urinary incontinence.
Collapse
Affiliation(s)
- Se Heang Oh
- Department of Advanced Materials, Hannam University, Yuseong Gu, Daejeon, South Korea
| | | | | | | | | |
Collapse
|
13
|
Fairweather JK, Karoli T, Liu L, Bytheway I, Ferro V. Synthesis of a heparan sulfate mimetic disaccharide with a conformationally locked residue from a common intermediate. Carbohydr Res 2009; 344:2394-8. [DOI: 10.1016/j.carres.2009.09.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 09/11/2009] [Accepted: 09/14/2009] [Indexed: 10/20/2022]
|
14
|
Gandhi NS, Mancera RL. The Structure of Glycosaminoglycans and their Interactions with Proteins. Chem Biol Drug Des 2008; 72:455-82. [DOI: 10.1111/j.1747-0285.2008.00741.x] [Citation(s) in RCA: 703] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
15
|
Abstract
In a search for small molecule antagonists of heparan sulfate, we examined the activity of bis-2-methyl-4-amino-quinolyl-6-carbamide, also known as surfen. Fluorescence-based titrations indicated that surfen bound to glycosaminoglycans, and the extent of binding increased according to charge density in the order heparin > dermatan sulfate > heparan sulfate > chondroitin sulfate. All charged groups in heparin (N-sulfates, O-sulfates, and carboxyl groups) contributed to binding, consistent with the idea that surfen interacted electrostatically. Surfen neutralized the anticoagulant activity of both unfractionated and low molecular weight heparins and inhibited enzymatic sulfation and degradation reactions in vitro. Addition of surfen to cultured cells blocked FGF2-binding and signaling that depended on cell surface heparan sulfate and prevented both FGF2- and VEGF(165)-mediated sprouting of endothelial cells in Matrigel. Surfen also blocked heparan sulfate-mediated cell adhesion to the Hep-II domain of fibronectin and prevented infection by HSV-1 that depended on glycoprotein D interaction with heparan sulfate. These findings demonstrate the feasibility of identifying small molecule antagonists of heparan sulfate and raise the possibility of developing pharmacological agents to treat disorders that involve glycosaminoglycan-protein interactions.
Collapse
|
16
|
Isbell J. Changing Requirements of Purification as Drug Discovery Programs Evolve from Hit Discovery. ACTA ACUST UNITED AC 2008; 10:150-7. [DOI: 10.1021/cc700152v] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- John Isbell
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121
| |
Collapse
|
17
|
Abstract
This protocol describes a procedure for the Ugi four-component condensation. It describes the general mechanism as well as the effects of the nature of the components on the Ugi reaction. It also describes the effects of the reaction conditions on the reaction, along with special procedures and workup. The experimental procedure is exemplified by a description of the preparation of N-cyclohexyl 2-[N-(2-chloroacetyl)-N-(4-chlorobenzyl)]amino-2-(4-chlorophenyl)acetamide, a typical Ugi product, that is subsequently used for the synthesis of a 2,5-diketopiperazine, an example of an important type of pharmaceutical compound. The experimental procedure is then extended to the synthesis of a 1,5-disubstituted tetrazole via Ugi four-component condensation. The protocol describes the preparation and characterization of the new 1-cyclohexyl-5-(1-phenylamino-2-methyl)propyltetrazole. The total time for the synthesis and isolation of the two example reactions in parallel is 3 d.
Collapse
Affiliation(s)
- Stefano Marcaccini
- Dipartimento di Chimica Organica Ugo Schiff, Università di Firenze, Via della Lastruccia, 13, I-50019 Sesto Fiorentino, Italy
| | | |
Collapse
|
18
|
Ako T, Daikoku S, Ohtsuka I, Kato R, Kanie O. A Method of Orthogonal Oligosaccharide Synthesis Leading to a Combinatorial Library Based on Stationary Solid-Phase Reaction. Chem Asian J 2006; 1:798-813. [PMID: 17441123 DOI: 10.1002/asia.200600210] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A new, efficient synthesis of oligosaccharides, which involves solid-phase reactions without mixing in combination with an orthogonal-glycosylation strategy, is described. Despite a great deal of biological interest, the combinatorial chemistry of oligosaccharides is an extremely difficult subject. The problems include 1) lengthy synthetic protocols required for the synthesis and 2) the variety of glycosylation conditions necessary for individual reactions. These issues were addressed and solved by using the orthogonal-coupling protocol and the application of a temperature gradient to provide appropriate conditions for individual reactions. Furthermore, we succeeded in carrying out solid-phase reactions with neither mechanical mixing nor flow. In this report, the synthesis of a series of trisaccharides, namely, alpha/beta-L-Fuc-(1-->6)-alpha/beta-D-Gal-(1-->2/3/4/6)-alpha/beta-D-Glc-octyl, is reported to demonstrate the eligibility of the synthetic method in combinatorial chemistry.
Collapse
Affiliation(s)
- Takuro Ako
- Mitsubishi Kagaku Institute of Life Sciences, 11 Minamiooya, Machida-shi, Tokyo 194-8511, Japan
| | | | | | | | | |
Collapse
|
19
|
Huang L, Kerns RJ. Diversity-oriented chemical modification of heparin: Identification of charge-reduced N-acyl heparin derivatives having increased selectivity for heparin-binding proteins. Bioorg Med Chem 2006; 14:2300-13. [PMID: 16314105 DOI: 10.1016/j.bmc.2005.11.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2005] [Revised: 11/07/2005] [Accepted: 11/07/2005] [Indexed: 02/05/2023]
Abstract
The diversity-oriented chemical modification of heparin is shown to afford charge-reduced heparin derivatives that possess increased selectivity for binding heparin-binding proteins. Variable N-desulfonation of heparin was employed to afford heparin fractions possessing varied levels of free amine. These N-desulfonated heparin fractions were selectively N-acylated with structurally diverse carboxylic acids using a parallel synthesis protocol to generate a library of 133 heparin-derived structures. Screening library members to compare affinity for heparin-binding proteins revealed unique heparin-derived structures possessing increased affinity and selectivity for individual heparin-binding proteins. Moreover, N-sulfo groups in heparin previously shown to be required for heparin to bind specific proteins have been replaced with structurally diverse non-anionic moieties to afford identification of charge-reduced heparin derivatives that bind these proteins with equivalent or increased affinity compared to unmodified heparin. The methods described here outline a process that we feel will be applicable to the systematic chemical modification of natural polyanionic polysaccharides and the preparation of synthetic oligosaccharides to identify charge-reduced high affinity ligands for heparin-binding proteins.
Collapse
Affiliation(s)
- Liusheng Huang
- Division of Medicinal and Natural Products Chemistry, University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|
20
|
Cochran S, Li CP, Bytheway I. An Experimental and Molecular-Modeling Study of the Binding of Linked Sulfated Tetracyclitols to FGF-1 and FGF-2. Chembiochem 2005; 6:1882-90. [PMID: 16175541 DOI: 10.1002/cbic.200500089] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The experimental binding affinities of a series of linked sulfated tetracyclitols [Cyc2N-R-NCyc2, where Cyc = C6H6(OSO3Na)3 and R = (CH2)n (n = 2-10), p-xylyl or (C2H4)2-Ncyc] for the fibroblast growth factors FGF-1 and FGF-2 have been measured by using a surface plasmon resonance assay. The KD values range from 7.0 nM to 1.1 microM for the alkyl-linked ligands. The binding affinity is independent of the flexibility of the linker, as replacement of the alkyl linker with a rigid p-xylyl group did not affect the KD. Calculations suggest that binding modes for the p-xylyl-linked ligand are similar to those calculated for the flexible alkyl-linked tetracyclitols. The possible formation of cross-linked FGF:cyclitol complexes was examined by determining KD values at increasing protein concentrations. No changes in KD were observed; this suggesting that only 1:1 complexes are formed under these assay conditions. Monte Carlo multiple-minima calculations of low-energy conformers of the FGF-bound ligands showed that all of the sulfated tetracyclitol ligands can bind effectively in the heparan sulfate-binding sites of FGF-1 and FGF-2. Binding affinities of these complexes were estimated by the Linear Interaction Energy (LIE) method to within a root-mean-square deviation of 1 kcal mol(-1) of the observed values. The effect of incorporating cations to balance the overall charge of the complexes during the LIE calculations was also explored.
Collapse
Affiliation(s)
- Siska Cochran
- Drug Design Group, Progen Industries Ltd. P.O. Box 28, Richlands BC, Queensland 4077, Australia
| | | | | |
Collapse
|
21
|
Maynard HD, Hubbell JA. Discovery of a sulfated tetrapeptide that binds to vascular endothelial growth factor. Acta Biomater 2005; 1:451-9. [PMID: 16701826 DOI: 10.1016/j.actbio.2005.04.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2005] [Revised: 04/05/2005] [Accepted: 04/07/2005] [Indexed: 11/17/2022]
Abstract
Molecules that mimic the sulfated glycosaminoglycan heparin and bind to heparin-binding growth factors would serve as important building blocks for synthetic biomaterials, e.g. to create a growth factor reservoir within a matrix. Peptide-based heparin mimetics would be particularly attractive, given the ease of peptide synthesis and modification. A sulfated tetrapeptide that fits this description and binds to vascular endothelial growth factor (VEGF) was discovered using a rationally-designed combinatorial approach. A approximately 6600 member library of tetrapeptides, designed to include heparin functionality, was synthesized by solid-phase Fmoc chemistry. The library was analyzed on-resin for VEGF binding using a fluorescence assay that employed a 7-amino-4-methylcoumarin-modified VEGF(165). The beads were ranked according to fluorescent signal and SY(SO(3))DY(SO(3)) was identified as the top binder. The binding affinity of the peptide for VEGF(165) was ascertained by surface plasmon resonance and compared with the heparin mimic suramin; the peptide binds to VEGF(165) 100-fold stronger than the sulfonated compound. These results suggest that the identified peptide may be useful in biomaterial applications where binding of VEGF is desired.
Collapse
Affiliation(s)
- Heather D Maynard
- Department of Materials Science and Institute for Biomedical Engineering, Swiss Federal Institute of Technology and University of Zurich, Switzerland
| | | |
Collapse
|
22
|
Liu L, Ping Li C, Cochran S, Ferro V. Application of the four-component Ugi condensation for the preparation of sulfated glycoconjugate libraries. Bioorg Med Chem Lett 2004; 14:2221-6. [PMID: 15081013 DOI: 10.1016/j.bmcl.2004.02.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2003] [Revised: 02/04/2004] [Accepted: 02/04/2004] [Indexed: 11/23/2022]
Abstract
A focused library of novel, sulfated glycoconjugates was synthesized by utilizing carbohydrate-derived blocks in the four-component Ugi condensation. Library members comprise a sulfated monosaccharide linked by various spacers to either an aromatic or monosulfated moiety, or a second sulfated monosaccharide. The affinities of these heparan sulfate (HS) mimetics for the HS-binding fibroblast growth factors FGF-1 and FGF-2 were measured via a surface plasmon resonance solution affinity assay.
Collapse
Affiliation(s)
- Ligong Liu
- Drug Design Group, Progen Industries Ltd, 2806 Ipswich Rd, Darra, Qld 4076, Australia
| | | | | | | |
Collapse
|