1
|
Elder J, Broome JA, Bushnell EAC. Computational Insights into the Regeneration of Ovothiol and Ergothioneine and Their Selenium Analogues by Glutathione. ACS OMEGA 2022; 7:31813-31821. [PMID: 36120043 PMCID: PMC9476190 DOI: 10.1021/acsomega.2c02506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Ovothiol and ergothioneine are powerful antioxidants that readily react with oxidants by forming their respective disulfides. In fact, ovothiol is widely considered one of the most powerful natural antioxidants. However, for these antioxidants to be again involved in reacting with oxidants, they must be regenerated via the reduction of the disulfide bonds. In the present work, the regeneration of the antioxidants ovothiol and ergothioneine and their selenium analogues, by the closed-shell nucleophilic attack of glutathione, was investigated using density functional theory. From the calculated thermodynamic data, the attack of glutathione on OSSO and EYYE (where Y = S and/or Se) will readily occur in solution. Moreover, in comparison to the reference reaction GSH + GSSG → GSSG + GSH, all reactions are expected to be faster. Overall, the results presented herein show that the key antioxidant GSH should readily recycle ovothiol, ovoselenol, ergothioneine, and ergoseloneine from OYYO and EYYE (where Y = S and/or Se).
Collapse
|
2
|
Abstract
A new methodology for the synthesis of small molecules containing the S-Se bond is reported. Aryl- and alkyl-selenols react smoothly with N-thiophthalimides to afford the corresponding selenenylsulfides through a clean SN2 path occurring at the sulfur atom. The reaction proceeds under very mild conditions in DMF in absence of catalysts for most of the substrates. The scope of the reaction was found to be broad, allowing a wide series of selenols and N-thiophtalimides to be efficiently employed in this procedure. Owing to the instability of the S-Se bond, selenenylsulfides exhibited a remarkable tendency to disproportionate to the corresponding symmetric diselenides and disulfides. Preliminary evaluation of the catalytic antioxidant properties of novel selenenylsulfides showed their behaviour as GPx mimics.
Collapse
|
3
|
A Computational Investigation of the Binding of the Selenium Analogues of Ergothioneine and Ovothiol to Cu(I) and Cu(II) and the Effect of Binding on the Redox Potential of the Cu(II)/Cu(I) Redox Couple. J CHEM-NY 2019. [DOI: 10.1155/2019/9593467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The complexes formed from the binding of ovoselenol (OSeH) and ergoseloneine (ESeH) to Cu(II) and Cu(I) have been investigated with DFT methods. From the calculated thermodynamics, the binding of OSeH and ESeH to Cu(II) and Cu(I) ions increases the reduction potential for the Cu(II)/Cu(I) redox couple. The calculated reduction potentials for the Cu(II)(OSe)2/Cu(I)(OSeH)3+ and Cu(II)(ESe)2/Cu(I)(ESeH)3+ redox couples were found to be 1.15 V and 1.24 V in a dilute aqueous solution. By combining the half reactions for the oxidation of OSeH to the diselenide OSeSeO with the reduction of Cu(II)(OSe)2 to Cu(I)(OSeH)3+, the calculated EMF was 0.90 V. For the oxidation of ESeH to the diselenide ESeSeE with the concomitant reduction of Cu(II)(ESe)2 to Cu(I)(ESeH)3+, the calculated EMF was 0.67 V. Thus, for both systems, the reduction of Cu(II) to Cu(I) with concomitant formation of either diselenide is thermodynamically favourable, and it is expected that both OSeH and ESeH are suitable for the protection against copper induced oxidative damage. As a result, the inhibition of the recycling of Cu(I) to Cu(II) is thermodynamically favourable in the presence of OSeH and ESeH.
Collapse
|
4
|
Álvarez-Pérez M, Ali W, Marć MA, Handzlik J, Domínguez-Álvarez E. Selenides and Diselenides: A Review of Their Anticancer and Chemopreventive Activity. Molecules 2018. [PMID: 29534447 PMCID: PMC6017218 DOI: 10.3390/molecules23030628] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Selenium and selenocompounds have attracted the attention and the efforts of scientists worldwide due to their promising potential applications in cancer prevention and/or treatment. Different organic selenocompounds, with diverse functional groups that contain selenium, have been reported to exhibit anticancer and/or chemopreventive activity. Among them, selenocyanates, selenoureas, selenoesters, selenium-containing heterocycles, selenium nanoparticles, selenides and diselenides have been considered in the search for efficiency in prevention and treatment of cancer and other related diseases. In this review, we focus our attention on the potential applications of selenides and diselenides in cancer prevention and treatment that have been reported so far. The around 80 selenides and diselenides selected herein as representative compounds include promising antioxidant, prooxidant, redox-modulating, chemopreventive, anticancer, cytotoxic and radioprotective compounds, among other activities. The aim of this work is to highlight the possibilities that these novel organic selenocompounds can offer in an effort to contribute to inspire medicinal chemists in their search of new promising derivatives.
Collapse
Affiliation(s)
- Mónica Álvarez-Pérez
- Instituto de Química Orgánica General, Consejo Superior de Investigaciones Científicas (IQOG, CSIC), Juan de la Cierva 3, 28006 Madrid, Spain.
| | - Wesam Ali
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, Campus B2 1, D-66123 Saarbruecken, Germany.
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Cracow, Poland.
| | - Małgorzata Anna Marć
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Cracow, Poland.
| | - Jadwiga Handzlik
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Cracow, Poland.
| | - Enrique Domínguez-Álvarez
- Instituto de Química Orgánica General, Consejo Superior de Investigaciones Científicas (IQOG, CSIC), Juan de la Cierva 3, 28006 Madrid, Spain.
| |
Collapse
|
5
|
Barbosa NV, Nogueira CW, Nogara PA, de Bem AF, Aschner M, Rocha JBT. Organoselenium compounds as mimics of selenoproteins and thiol modifier agents. Metallomics 2017; 9:1703-1734. [PMID: 29168872 DOI: 10.1039/c7mt00083a] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Selenium is an essential trace element for animals and its role in the chemistry of life relies on a unique functional group: the selenol (-SeH) group. The selenol group participates in critical redox reactions. The antioxidant enzymes glutathione peroxidase (GPx) and thioredoxin reductase (TrxR) exemplify important selenoproteins. The selenol group shares several chemical properties with the thiol group (-SH), but it is much more reactive than the sulfur analogue. The substitution of S by Se has been exploited in organic synthesis for a long time, but in the last 4 decades the re-discovery of ebselen (2-phenyl-1,2-benzisoselenazol-3(2H)-one) and the demonstration that it has antioxidant and therapeutic properties has renovated interest in the field. The ability of ebselen to mimic the reaction catalyzed by GPx has been viewed as the most important molecular mechanism of action of this class of compound. The term GPx-like or thiol peroxidase-like reaction was previously coined in the field and it is now accepted as the most important chemical attribute of organoselenium compounds. Here, we will critically review the literature on the capacity of organoselenium compounds to mimic selenoproteins (particularly GPx) and discuss some of the bottlenecks in the field. Although the GPx-like activity of organoselenium compounds contributes to their pharmacological effects, the superestimation of the GPx-like activity has to be questioned. The ability of these compounds to oxidize the thiol groups of proteins (the thiol modifier effects of organoselenium compounds) and to spare selenoproteins from inactivation by soft-electrophiles (MeHg+, Hg2+, Cd2+, etc.) might be more relevant for the explanation of their pharmacological effects than their GPx-like activity. In our view, the exploitation of the thiol modifier properties of organoselenium compounds can be harnessed more rationally than the use of low mass molecular structures to mimic the activity of high mass macromolecules that have been shaped by millions to billions of years of evolution.
Collapse
Affiliation(s)
- Nilda V Barbosa
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| | - Cristina W Nogueira
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| | - Pablo A Nogara
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| | - Andreza F de Bem
- Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - João B T Rocha
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
6
|
The complete microspeciation of ovothiol A disulfide: a hexabasic symmetric biomolecule. J Pharm Biomed Anal 2014; 107:209-16. [PMID: 25594898 DOI: 10.1016/j.jpba.2014.12.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 12/15/2014] [Accepted: 12/16/2014] [Indexed: 11/20/2022]
Abstract
The site-specific acid-base properties of ovothiol A disulfide (OvSSOv), the smallest hexabasic multifunctional biomolecule with complex interdependent moieties, were studied with (1)H NMR-pH and potentiometric titrations. The unprecedented complexity of the protonation microequilibria could be overcome by taking into account the mirror-image molecular symmetry, synthesizing and studying auxiliary model compounds and developing a custom-tailored evaluation method. The amino, imidazole, and carboxylate moieties are quantified in terms of 192 microscopic protonation constants and 64 microspecies, 96 and 36 of which are chemically different ones, respectively. Nine pairwise interactivity parameters also characterize the OvSSOv-proton system at the level of molecular subunits. These data allow understanding and influencing the co-dependent acid-base and redox properties of the highly complex OvSH-OvSSOv and related thiol-disulfide systems, which provide protection against oxidative stress. This work is the first complete microspeciation of a hexabasic molecule.
Collapse
|
7
|
Mirzahosseini A, Orgován G, Hosztafi S, Noszál B. The complete microspeciation of ovothiol A, the smallest octafarious antioxidant biomolecule. Anal Bioanal Chem 2014; 406:2377-87. [PMID: 24510213 DOI: 10.1007/s00216-014-7631-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 01/03/2014] [Accepted: 01/15/2014] [Indexed: 11/30/2022]
Abstract
Ovothiol A, a small biomolecule with highly potent antioxidant capacity, and three newly synthesized derivatives were studied by (1)H NMR, (15)N NMR, UV-pH titrations, and a customized evaluation method. The omni-interactive imidazole, amino, carboxylate, and thiolate moieties of ovothiol A are quantified in terms of 32 microscopic protonation constants, the relative concentrations of 16 microspecies, 6 pairwise interactivity parameters, and 8 protonation shifts. The highest and lowest imidazole basicities differ by a record-breaking five orders of magnitude, and the predominant thiolate protonation constant is by far the smallest known thiolate logK value. The latter provides an indication as to why ovothiol A occurs naturally under deep-water circumstances only. Since thiolate basicities are in correlation with thiol-disulfide redox potentials, the eight different, fine-tunable thiolate basicities offer versatile and highly specific antioxidant capacities within one single molecular skeleton. This work is the first complete microspeciation of a tetrabasic, nonsymmetrical natural compound.
Collapse
Affiliation(s)
- Arash Mirzahosseini
- Department of Pharmaceutical Chemistry, Research Group of Drugs of Abuse and Doping Agents, Hungarian Academy of Sciences, Semmelweis University, 1092, Budapest, Hőgyes E. u. 9, Hungary
| | | | | | | |
Collapse
|
8
|
Copper-catalyzed three- five- or seven-component coupling reactions: the selective synthesis of cyanomethylamines, N,N-bis(cyanomethyl)amines and N,N'-bis(cyanomethyl)methylenediamines based on a Strecker-type synthesis. Molecules 2013; 18:12488-99. [PMID: 24152671 PMCID: PMC6270086 DOI: 10.3390/molecules181012488] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 09/27/2013] [Accepted: 09/27/2013] [Indexed: 12/05/2022] Open
Abstract
We have demonstrated that a cooperative catalytic system comprised of CuCl and Cu(OTf)2 could be used to effectively catalyse the three-, five- and seven-component coupling reactions of aliphatic or aromatic amines, formaldehyde, and trimethylsilyl cyanide (TMSCN), and selectively produce in good yields the corresponding cyanomethylamines, N,N-bis(cyanomethyl)amines and N,N'-bis(cyanomethyl)methylenediamines.
Collapse
|
9
|
|
10
|
Crépin A, Wattier N, Petit S, Bischoff L, Fruit C, Marsais F. Aminoacid-derived mercaptoimidazoles. Org Biomol Chem 2009; 7:128-34. [DOI: 10.1039/b810678a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Structural isomers of 2-(2,3 and 4-substituted-phenyl)-1,2-benzisoselenazol-3(2H)-one: A Theoretical Study. J Organomet Chem 2008. [DOI: 10.1016/j.jorganchem.2008.02.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Pearson JK, Boyd RJ. Density Functional Theory Study of the Reaction Mechanism and Energetics of the Reduction of Hydrogen Peroxide by Ebselen, Ebselen Diselenide, and Ebselen Selenol. J Phys Chem A 2007; 111:3152-60. [PMID: 17407273 DOI: 10.1021/jp071499n] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Density functional theory calculations at the B3LYP/6-311++G(3df,3pd)//B3LYP/6-31G(d,p) level have been performed to elucidate the mechanism and reaction energetics for the reduction of hydrogen peroxide by ebselen, ebselen diselenide, ebselen selenol, and their sulfur analogues. The effects of solvation have been included with the CPCM model, and in the case of the selenol anion reaction, diffuse functions were used on heavy atoms for the geometry optimizations and thermochemical calculations. The topology of the electron density in each system was investigated using the quantum theory of atoms in molecules, and a detailed interpretation of the electronic charge and population data as well as the atomic energies is presented. Reaction free energy barriers for the oxidation of ebselen, ebselen diselenide, and ebselen selenol are 36.8, 38.4, and 32.5 kcal/mol, respectively, in good qualitative agreement with experiment. It is demonstrated that the oxidized selenium atom is significantly destabilized in all cases and that the exothermicity of the reactions is attributed to the peroxide oxygen atoms via reduction. The lower barrier to oxidation exhibited by the selenol is largely due to entropic effects in the reactant complex.
Collapse
Affiliation(s)
- Jason K Pearson
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4J3
| | | |
Collapse
|
13
|
Jacob C, Knight I, Winyard PG. Aspects of the biological redox chemistry of cysteine: from simple redox responses to sophisticated signalling pathways. Biol Chem 2006; 387:1385-97. [PMID: 17081111 DOI: 10.1515/bc.2006.174] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The last decade has witnessed an increased interest in cysteine modifications such as sulfenic and sulfinic acids, thiyl radicals, sulfenyl-amides and thiosulfinates, which come together to enable redox sensing, activation, catalysis, switching and cellular signalling. While glutathionylation, sulfenyl-amide formation and disulfide activation are examples of relatively simple redox responses, the sulfinic acid switch in peroxiredoxin enzymes is part of a complex signalling system that involves sulfenic and sulfinic acids and interacts with kinases and sulfiredoxin. Although the in vivo evaluation of sulfur species is still complicated by a lack of appropriate analytical techniques, research into biological sulfur species has gained considerable momentum and promises further excitement in the future.
Collapse
Affiliation(s)
- Claus Jacob
- School of Pharmacy, Saarland University, P.O. Box 151150, D-66041 Saarbrücken, Germany.
| | | | | |
Collapse
|
14
|
Pearson JK, Boyd RJ. Modeling the Reduction of Hydrogen Peroxide by Glutathione Peroxidase Mimics. J Phys Chem A 2006; 110:8979-85. [PMID: 16836462 DOI: 10.1021/jp0615196] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Theoretical calculations have been performed on three model reactions representing the reduction of hydrogen peroxide by ebselen, ebselen selenol, and ebselen diselenide. The reaction surfaces have been investigated at the B3PW91/6-311G(2df,p) level, and single-point energies were calculated using the 6-311++G(3df,3pd) basis set. Solvent effects were included implicitly with the conductor-like polarizable continuum model and in one case with explicit inclusion of three water molecules. Mechanistic information is gained from investigating the critical points using the quantum theory of atoms in molecules. The barriers for the reduction of hydrogen peroxide with the ebselen, ebselen selenol, and ebselen diselenide models are 56.7, 53.4, and 35.3 kcal/mol, respectively, suggesting that ebselen diselenide may be the most active antioxidant in the ebselen GPx redox pathway. Results are also compared to that of the sulfur analogues of the model compounds.
Collapse
Affiliation(s)
- Jason K Pearson
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia B3H 4J3, Canada
| | | |
Collapse
|
15
|
Pearson JK, Ban F, Boyd RJ. An Evaluation of Various Computational Methods for the Treatment of Organoselenium Compounds. J Phys Chem A 2005; 109:10373-9. [PMID: 16833333 DOI: 10.1021/jp054185d] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A reliable computational method for the prediction of organoselenium geometries and bond dissociation energies (BDEs) has been determined on the basis of the performance of density functional theory (DFT: B3LYP and B3PW91) and ab initio molecular orbital procedures (Hartree-Fock (HF)) in conjunction with various Pople basis sets including (but not limited to) the 6-31G(d), 6-31G(d,p), 6-311G(d), 6-311G(d,p), 6-311G(2df,p), and 6-311G(3df,3pd) sets. Predicted geometries and BDEs are compared with available experimental data and quadratic configuration interaction including single and double substitutions (QCISD) results. The B3PW91/6-311G(2df,p) level of theory is recommended for the prediction of the geometries and energetics of organoselenium compounds.
Collapse
Affiliation(s)
- Jason K Pearson
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4J3
| | | | | |
Collapse
|
16
|
Hand CE, Taylor NJ, Honek JF. Ab initio studies of the properties of intracellular thiols ergothioneine and ovothiol. Bioorg Med Chem Lett 2005; 15:1357-60. [PMID: 15713386 DOI: 10.1016/j.bmcl.2005.01.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2004] [Revised: 01/05/2005] [Accepted: 01/10/2005] [Indexed: 11/30/2022]
Abstract
Intracellular naturally occurring aromatic thiols such as ergothioneine and the ovothiols have been shown to play a variety of roles in cellular function. A detailed ab initio electronic structure analysis of these thiols is reported evaluating the thermodynamics of the reactions of these intracellular thiols with alkyl thiols, HO*, H2O2, ascorbate and their disulfides.
Collapse
Affiliation(s)
- Christine E Hand
- Chemistry Department, University of Waterloo, Waterloo, Ontario, Canada
| | | | | |
Collapse
|
17
|
Hand CE, Honek JF. Biological chemistry of naturally occurring thiols of microbial and marine origin. JOURNAL OF NATURAL PRODUCTS 2005; 68:293-308. [PMID: 15730267 DOI: 10.1021/np049685x] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The presence of thiols in living systems is critical for the maintenance of cellular redox potentials and protein thiol-disulfide ratios, as well as for the protection of cells from reactive oxygen species. In addition to the well-studied tripeptide glutathione (gamma-Glu-Cys-Gly), a number of compounds have been identified that contribute to these essential cellular roles. This review provides a survey of the chemistry and biochemistry of several critically important and naturally occurring intracellular thiols such as coenzyme M, trypanothione, mycothiol, ergothioneine, and the ovothiols. Coenzyme M is a key thiol required for methane production in methogenic bacteria. Trypanothione and mycothiol are very important to the biochemistry of a number of human pathogens, and the enzymes utilizing these thiols have been recognized as important novel drug targets. Ergothioneine, although synthesized by fungi and the Actinomycetales bacteria, is present at significant physiological levels in humans and may contribute to single electron redox reactions in cells. The ovothiols appear to function as important modulators of reactive oxygen toxicity and appear to serve as small molecule mimics of glutathione peroxidase, a key enzyme in the detoxification of reactive oxygen species.
Collapse
Affiliation(s)
- Christine E Hand
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | | |
Collapse
|