1
|
Fabjan J, Koniuszewski F, Schaar B, Ernst M. Structure-Guided Computational Methods Predict Multiple Distinct Binding Modes for Pyrazoloquinolinones in GABA A Receptors. Front Neurosci 2021; 14:611953. [PMID: 33519364 PMCID: PMC7844064 DOI: 10.3389/fnins.2020.611953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/23/2020] [Indexed: 12/16/2022] Open
Abstract
Pyrazoloquinolinones (PQs) are a versatile class of GABAA receptor ligands. It has been demonstrated that high functional selectivity for certain receptor subtypes can be obtained by specific substitution patterns, but so far, no clear SAR rules emerge from the studies. As is the case for many GABAA receptor targeting chemotypes, PQs can interact with distinct binding sites on a given receptor pentamer. In pentamers of αβγ composition, such as the most abundant α1β2γ2 subtype, many PQs are high affinity binders of the benzodiazepine binding site at the extracellular α+/γ2- interfaces. There they display a functionally near silent, flumazenil-like allosteric activity. More recently, interactions with extracellular α+/β- interfaces have been investigated, where strong positive modulation can be steered toward interesting subtype preferences. The most prominent examples are functionally α6-selective PQs. Similar to benzodiazepines, PQs also seem to interact with sites in the transmembrane domain, mainly the sites used by etomidate and barbiturates. This promiscuity leads to potential contributions from multiple sites to net modulation. Developing ligands that interact exclusively with the extracellular α+/β- interfaces would be desired. Correlating functional profiles with binding sites usage is hampered by scarce and heterogeneous experimental data, as shown in our meta-analysis of aggregated published data. In the absence of experimental structures, bound states can be predicted with pharmacophore matching methods and with computational docking. We thus performed pharmacophore matching studies for the unwanted sites, and computational docking for the extracellular α1,6+/β3- interfaces. The results suggest that PQs interact with their binding sites with diverse binding modes. As such, rational design of improved ligands needs to take a complex structure-activity landscape with branches between sub-series of derivatives into account. We present a workflow, which is suitable to identify and explore potential branching points on the structure-activity landscape of any small molecule chemotype.
Collapse
Affiliation(s)
| | | | | | - Margot Ernst
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
2
|
C. Malakar C, Singh V, Devi N, Gupta A, Gujjarappa R. Synthesis of Pyrazolo[4,3-c]quinolines and the C-C Bond Cleavage during Reductive Cyclization. HETEROCYCLES 2021. [DOI: 10.3987/com-20-14403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
3
|
Shaik A, Agarwal HK, Bhakuni R, Kirubakaran S. Novel Pyrazolo[4, 3-c]Quinolin-3-One Derivatives as PDE5A Inhibitors. Curr Top Med Chem 2019; 19:305-315. [PMID: 30747070 DOI: 10.2174/1568026619666190208164402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 01/29/2019] [Accepted: 02/07/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND PDE5A is a phosphodiesterase which specifically hydrolyzes the cGMP to GMP. It takes part in several physiological and pathological pathways and is considered an important drug target. Currently, PDE5 inhibitors (ex; Sildenafil, Tadalafil) available in the market are not only being used for the treatment of erectile dysfunction but at the same time, they are also in clinical trials being investigated as anticancer agents. MATERIALS & METHODS In this work, we have examined pyrazolo [4,3-c]quinolin-3-ones as PDE5A inhibitors. Pyrazolo [4,3-c]quinolin-3-ones are the class of tricyclic heterocyclic derivatives having a variety of therapeutically interesting drug candidates known for their anti-inflammatory, anti-viral, anti-anxiety and anti-cancer activity. Therefore, synthetic methods providing access to pyrazolo [4, 3-c] quinolin-3-ones are immensely valuable. Here, we are reporting a simple but efficient route for the synthesis of novel 8-morpholino-2-aryl - 2, 5-dihydro-3H-pyrazolo [4, 3-c] quinolin-3-one derivatives. RESULTS Further, molecular docking studies of synthesized compounds with human PDE5A protein showed that all the compounds exhibited good docking score in comparison with known inhibitors. In addition, all the synthesized molecules were evaluated against HCT116 cell lines for their antitumor activity. CONCLUSION Among all the synthesized compounds, compound 5a, 5d, and 6e showed better cytotoxicity. Thus, these derivatives can be studied as potential inhibitors of PDE5A.
Collapse
Affiliation(s)
- Althaf Shaik
- Discipline of Chemistry, Indian Institute of Technology Gandhinagar, Gujarat-382355, India
| | - Harshit K Agarwal
- Discipline of Chemistry, Indian Institute of Technology Gandhinagar, Gujarat-382355, India
| | - Rashmi Bhakuni
- Discipline of Biological Engineering, Indian Institute of Technology Gandhinagar, Gujarat-382355, India
| | - Sivapriya Kirubakaran
- Discipline of Chemistry, Indian Institute of Technology Gandhinagar, Gujarat-382355, India.,Discipline of Biological Engineering, Indian Institute of Technology Gandhinagar, Gujarat-382355, India
| |
Collapse
|
4
|
Stadler M, Monticelli S, Seidel T, Luger D, Salzer I, Boehm S, Holzer W, Schwarzer C, Urban E, Khom S, Langer T, Pace V, Hering S. Design, Synthesis, and Pharmacological Evaluation of Novel β2/3 Subunit-Selective γ-Aminobutyric Acid Type A (GABA A) Receptor Modulators. J Med Chem 2018; 62:317-341. [PMID: 30289721 DOI: 10.1021/acs.jmedchem.8b00859] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Subunit-selective modulation of γ-aminobutyric acid type A receptors (GABAAR) is considered to exert fewer side effects compared to unselective clinically used drugs. Here, the β2/3 subunit-selective GABAAR modulators valerenic acid (VA) and loreclezole (LOR) guided the synthesis of novel subunit-selective ligands with simplified structures. We studied their effects on GABAARs expressed in Xenopus laevis oocytes using two-microelectrode voltage clamp technique. Five compounds showed significantly more efficacious modulation of GABA-evoked currents than VA and LOR with retained potency and selectivity. Compound 18 [( E)-2-Cyano-3-(2,4-dichlorophenyl)but-2-enamide] induced the highest maximal modulation of GABA-induced chloride currents ( Emax: 3114 ± 242%), while 12 [( Z)-3-(2,4-dichlorophenyl)but-2-enenitrile] displayed the highest potency (EC50: 13 ± 2 μM). Furthermore, in hippocampal neurons 12 facilitated phasic and tonic GABAergic inhibition, and in vivo studies revealed significantly more potent protection against pentylenetetrazole (PTZ)-induced seizures compared to VA and LOR. Collectively, compound 12 constitutes a novel, simplified, and subunit-selective GABAAR modulator with low-dose anticonvulsant activity.
Collapse
Affiliation(s)
- Marco Stadler
- Department of Pharmacology and Toxicology , University of Vienna , Althanstraße 14 , 1090 Vienna , Austria
| | - Serena Monticelli
- Department of Pharmaceutical Chemistry , University of Vienna , Althanstraße 14 , 1090 Vienna , Austria
| | - Thomas Seidel
- Department of Pharmaceutical Chemistry , University of Vienna , Althanstraße 14 , 1090 Vienna , Austria
| | - Denise Luger
- Department of Pharmacology and Toxicology , University of Vienna , Althanstraße 14 , 1090 Vienna , Austria
| | - Isabella Salzer
- Department of Neurophysiology and Neuropharmacology , Medical University Vienna , Schwarzspanierstraße 17 , 1090 Vienna , Austria
| | - Stefan Boehm
- Department of Neurophysiology and Neuropharmacology , Medical University Vienna , Schwarzspanierstraße 17 , 1090 Vienna , Austria
| | - Wolfgang Holzer
- Department of Pharmaceutical Chemistry , University of Vienna , Althanstraße 14 , 1090 Vienna , Austria
| | - Christoph Schwarzer
- Department of Pharmacology , Medical University Innsbruck , Peter-Mayr-Straße 1a , 6020 Innsbruck , Austria
| | - Ernst Urban
- Department of Pharmaceutical Chemistry , University of Vienna , Althanstraße 14 , 1090 Vienna , Austria
| | - Sophia Khom
- Department of Pharmacology and Toxicology , University of Vienna , Althanstraße 14 , 1090 Vienna , Austria.,Department of Neuroscience , The Scripps Research Institute , 10550 N Torrey Pines Road , La Jolla , California 92037 , United States
| | - Thierry Langer
- Department of Pharmaceutical Chemistry , University of Vienna , Althanstraße 14 , 1090 Vienna , Austria
| | - Vittorio Pace
- Department of Pharmaceutical Chemistry , University of Vienna , Althanstraße 14 , 1090 Vienna , Austria
| | - Steffen Hering
- Department of Pharmacology and Toxicology , University of Vienna , Althanstraße 14 , 1090 Vienna , Austria
| |
Collapse
|
5
|
Synthesis and 1H, 13C and 15N NMR characterisation of substituted Pyrazolo[4,3-c]quinolines and related compounds. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.04.061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Malvacio I, Cuzzolin A, Sturlese M, Vera DMA, Moyano EL, Moro S. Synthesis and preliminary structure-activity relationship study of 2-aryl-2H-pyrazolo[4,3-c]quinolin-3-ones as potential checkpoint kinase 1 (Chk1) inhibitors. J Enzyme Inhib Med Chem 2017; 33:171-183. [PMID: 29210298 PMCID: PMC6010083 DOI: 10.1080/14756366.2017.1404592] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The serine-threonine checkpoint kinase 1 (Chk1) plays a critical role in the cell cycle arrest in response to DNA damage. In the last decade, Chk1 inhibitors have emerged as a novel therapeutic strategy to potentiate the anti-tumour efficacy of cytotoxic chemotherapeutic agents. In the search for new Chk1 inhibitors, a congeneric series of 2-aryl-2 H-pyrazolo[4,3-c]quinolin-3-one (PQ) was evaluated by in-vitro and in-silico approaches for the first time. A total of 30 PQ structures were synthesised in good to excellent yields using conventional or microwave heating, highlighting that 14 of them are new chemical entities. Noteworthy, in this preliminary study two compounds 4e2 and 4h2 have shown a modest but significant reduction in the basal activity of the Chk1 kinase. Starting from these preliminary results, we have designed the second generation of analogous in this class and further studies are in progress in our laboratories.
Collapse
Affiliation(s)
- Ivana Malvacio
- a Department of Organic Chemistry, INFIQC, School of Chemical Sciences , National University of Cordoba , Cordoba , Argentina.,b Molecular Modeling Section (MMS), Dipartimento di Scienze Farmaceutiche , Università degli Studi di Padova , via Marzolo, Padova , Italy
| | - Alberto Cuzzolin
- b Molecular Modeling Section (MMS), Dipartimento di Scienze Farmaceutiche , Università degli Studi di Padova , via Marzolo, Padova , Italy
| | - Mattia Sturlese
- b Molecular Modeling Section (MMS), Dipartimento di Scienze Farmaceutiche , Università degli Studi di Padova , via Marzolo, Padova , Italy
| | - D Mariano A Vera
- c Department of Chemistry, QUIAMM-INBIOTEC, School of Exact and Natural Sciences , National University of Mar del Plata , Mar del Plata , Buenos Aires , Argentina
| | - E Laura Moyano
- a Department of Organic Chemistry, INFIQC, School of Chemical Sciences , National University of Cordoba , Cordoba , Argentina
| | - Stefano Moro
- b Molecular Modeling Section (MMS), Dipartimento di Scienze Farmaceutiche , Università degli Studi di Padova , via Marzolo, Padova , Italy
| |
Collapse
|
7
|
Lavrard H, Larini P, Popowycz F. Superacidic Cyclization of Activated Anthranilonitriles into 2-Unsubstituted-4-aminoquinolines. Org Lett 2017; 19:4203-4206. [PMID: 28749689 DOI: 10.1021/acs.orglett.7b01798] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
4-Aminoquinolines were prepared in a three-step synthesis starting from substituted anthranilonitriles. The condensation on 1,1,1-trichloro-4-ethoxybut-3-enone proceeded efficiently either neat or in refluxing EtOH. Cyclization in superacidic trifluoromethanesulfonic acid provided unstable intermediate, which upon treatment with NaOEt in ethanol, afforded the expected esters. Theoretical investigations pointed out a monoprotonated nitrilium as the reactive species during the cyclization process.
Collapse
Affiliation(s)
- Hubert Lavrard
- Université Lyon 1, CNRS, INSA , CPE, UMR 5246, ICBMS, COB, 20 Avenue Albert Einstein, F-69621 Villeurbanne Cedex, France
| | - Paolo Larini
- Université Lyon 1, CNRS, INSA , CPE, UMR 5246, ICBMS, ITEMM, 43 Bd du 11 novembre 1918, F-69622 Villeurbanne, France
| | - Florence Popowycz
- Université Lyon 1, CNRS, INSA , CPE, UMR 5246, ICBMS, COB, 20 Avenue Albert Einstein, F-69621 Villeurbanne Cedex, France
| |
Collapse
|
8
|
Tomassoli I, Herlem G, Picaud F, Benchekroun M, Bautista-Aguilera OM, Luzet V, Jimeno ML, Gharbi T, Refouvelet B, Ismaili L. Synthesis, regioselectivity, and DFT analysis of new antioxidant pyrazolo[4,3-c]quinoline-3,4-diones. MONATSHEFTE FUR CHEMIE 2016. [DOI: 10.1007/s00706-016-1660-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
9
|
Alizadeh A, Moafi L, Ghanbaripour R, Abadi MH, Zhu Z, Kubicki M. A new route for the synthesis of 1,3,4-trisubstituted pyrazolo[4,3-c]quinolines via a multicomponent reaction. Tetrahedron 2015. [DOI: 10.1016/j.tet.2015.03.062] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Faizi M, Dabirian S, Tajali H, Ahmadi F, Zavareh ER, Shahhosseini S, Tabatabai SA. Novel agonists of benzodiazepine receptors: Design, synthesis, binding assay and pharmacological evaluation of 1,2,4-triazolo[1,5-a]pyrimidinone and 3-amino-1,2,4-triazole derivatives. Bioorg Med Chem 2015; 23:480-7. [DOI: 10.1016/j.bmc.2014.12.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 12/10/2014] [Accepted: 12/11/2014] [Indexed: 02/06/2023]
|
11
|
Ferreira VF, Leal KZ, Lindgren EB, de Oliveira MR, de Souza MCB, Vasconcelos TR, Wardell JL, Wardell SM, Yoneda JD. Structural evaluation of three 2-phenylpyrazolo[4,3-c]quinolin-3-one monohydrates. J Mol Struct 2013. [DOI: 10.1016/j.molstruc.2013.08.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Maluleka MM, Mphahlele MJ. 6,8-Dibromo-4-chloroquinoline-3-carbaldehyde as a synthon in the development of novel 1,6,8-triaryl-1H-pyrazolo[4,3-c]quinolines. Tetrahedron 2013. [DOI: 10.1016/j.tet.2012.10.103] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
13
|
|
14
|
|
15
|
A diversity-oriented synthesis of pyrazolo[4,3-f]quinoline derivatives with potential bioactivities via microwave-assisted multi-component reactions. Mol Divers 2010; 15:497-505. [DOI: 10.1007/s11030-010-9272-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Accepted: 08/16/2010] [Indexed: 10/19/2022]
|
16
|
Pérez-Garrido A, Helguera AM, Rodríguez FG, Cordeiro MNDS. QSAR models to predict mutagenicity of acrylates, methacrylates and alpha,beta-unsaturated carbonyl compounds. Dent Mater 2010; 26:397-415. [PMID: 20122717 DOI: 10.1016/j.dental.2009.11.158] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2009] [Revised: 09/08/2009] [Accepted: 11/26/2009] [Indexed: 11/17/2022]
Abstract
OBJECTIVE The purpose of this study is to develop a quantitative structure-activity relationship (QSAR) model that can distinguish mutagenic from non-mutagenic species with alpha,beta-unsaturated carbonyl moiety using two endpoints for this activity - Ames test and mammalian cell gene mutation test - and also to gather information about the molecular features that most contribute to eliminate the mutagenic effects of these chemicals. METHODS Two data sets were used for modeling the two mutagenicity endpoints: (1) Ames test and (2) mammalian cells mutagenesis. The first one comprised 220 molecules, while the second one 48 substances, ranging from acrylates, methacrylates to alpha,beta-unsaturated carbonyl compounds. The QSAR models were developed by applying linear discriminant analysis (LDA) along with different sets of descriptors computed using the DRAGON software. RESULTS For both endpoints, there was a concordance of 89% in the prediction and 97% confidentiality by combining the three models for the Ames test mutagenicity. We have also identified several structural alerts to assist the design of new monomers. SIGNIFICANCE These individual models and especially their combination are attractive from the point of view of molecular modeling and could be used for the prediction and design of new monomers that do not pose a human health risk.
Collapse
Affiliation(s)
- Alfonso Pérez-Garrido
- Enviromental Engineering and Toxicology Dpt., Catholic University of San Antonio, Guadalupe, Murcia, Spain.
| | | | | | | |
Collapse
|
17
|
López Rivilli MJ, Moyano EL, Yranzo GI. An alternative approach toward 2-aryl-2H-pyrazolo[4,3-c]-quinolin-3-ones by a multistep synthesis. Tetrahedron Lett 2010. [DOI: 10.1016/j.tetlet.2009.10.123] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
18
|
Hollands EC, Dale TJ, Baxter AW, Meadows HJ, Powell AJ, Clare JJ, Trezise DJ. Population Patch-Clamp Electrophysiology Analysis of Recombinant GABAA α1β3γ2 Channels Expressed in HEK-293 Cells. ACTA ACUST UNITED AC 2009; 14:769-80. [DOI: 10.1177/1087057109335675] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
γ-Amino butyric acid (GABA)—activated Cl— channels are critical mediators of inhibitory postsynaptic potentials in the CNS. To date, rational design efforts to identify potent and selective GABAA subtype ligands have been hampered by the absence of suitable high-throughput screening approaches. The authors describe 384-well population patch-clamp (PPC) planar array electrophysiology methods for the study of GABAA receptor pharmacology. In HEK293 cells stably expressing human α1β3γ2 GABAA channels, GABA evoked outward currents at 0 mV of 1.05 ± 0.08 nA, measured 8 s post GABA addition. The IGABA was linear and reversed close to the theoretical ECl (—56 mV). Concentration-response curve analysis yielded a mean pEC50 value of 5.4 and Hill slope of 1.5, and for a series of agonists, the rank order of potency was muscimol > GABA > isoguvacine. A range of known positive modulators, including diazepam and pentobarbital, produced concentration-dependent augmentation of the GABA EC 20 response (1 µM). The competitive antagonists bicuculline and gabazine produced concentration-dependent, parallel, rightward displacement of GABA curves with pA2 and slope values of 5.7 and 1.0 and 6.7 and 1.0, respectively. In contrast, picrotoxin (0.2-150 µM) depressed the maximal GABA response, implying a non-competitive antagonism. Overall, the pharmacology of human α1β3γ2 GABAA determined by PPC was highly similar to that obtained by conventional patch-clamp methods. In small-scale single-shot screens, Z′ values of >0.5 were obtained in agonist, modulator, and antagonist formats with hit rates of 0% to 3%. The authors conclude that despite the inability of the method to resolve the peak agonist responses, PPC can rapidly and usefully quantify pharmacology for the α1β3γ2 GABAA isoform. These data suggest that PPC may be a valuable approach for a focused set and secondary screening of GABAA receptors and other slow ligand-gated ion channels. ( Journal of Biomolecular Screening 2009:769-780)
Collapse
Affiliation(s)
- Emma C. Hollands
- Biochemical & Cellular Targets, Molecular Discovery Research, GlaxoSmithKline R&D, Harlow, Essex, United Kingdom
| | - Tim J. Dale
- Biochemical & Cellular Targets, Molecular Discovery Research, GlaxoSmithKline R&D, Harlow, Essex, United Kingdom
| | - Andrew W. Baxter
- Biochemical & Cellular Targets, Molecular Discovery Research, GlaxoSmithKline R&D, Harlow, Essex, United Kingdom
| | - Helen J. Meadows
- Biochemical & Cellular Targets, Molecular Discovery Research, GlaxoSmithKline R&D, Harlow, Essex, United Kingdom
| | - Andrew J. Powell
- Biochemical & Cellular Targets, Molecular Discovery Research, GlaxoSmithKline R&D, Harlow, Essex, United Kingdom
| | - Jeff J. Clare
- Biochemical & Cellular Targets, Molecular Discovery Research, GlaxoSmithKline R&D, Harlow, Essex, United Kingdom
| | - Derek J. Trezise
- Biochemical & Cellular Targets, Molecular Discovery Research, GlaxoSmithKline R&D, Harlow, Essex, United Kingdom,
| |
Collapse
|
19
|
Szárics E, Riedl Z, Nyikos L, Hajós G, Kardos J. Interaction of novel condensed triazine derivatives with central and peripheral type benzodiazepine receptors: synthesis, in vitro pharmacology and modelling. Eur J Med Chem 2006; 41:445-56. [PMID: 16530296 DOI: 10.1016/j.ejmech.2005.10.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2004] [Revised: 10/18/2005] [Accepted: 10/26/2005] [Indexed: 11/28/2022]
Abstract
Structurally related sets of triazino-quinoline, triazino-isoquinoline and pyrido-triazine derivatives were synthesised and their binding interactions with central (CBR)- and peripheral-type (PBR) benzodiazepine binding sites have been characterised. Of 33 compounds tested, a new compound, 2-(4-methylphenyl)-3H- [1,2,4] triazino [2, 3-a] quinolin-3-one (1 g) showed the lowest CBR binding inhibition constant (K(i) = 42 +/- 9 nM) and the highest CBR over PBR selectivity (>1300). All but the 4-methylphenyl (1 g) structural modifications decreased the affinity and selectivity of the parent compound, 2-phenyl-3H- [1,2,4]triazino[2,3-a]quinolin-3-one (1d) (K(i) = 69 +/- 9 nM, selectivity >890). Molecular interactions between selected ligands (standards and triazine derivatives) and alpha(1)gamma(2) subunit-interface residues in a GABA(A) receptor extracellular domain homology model have been calculated. Comparing data with calculations confirmed hydrogen bonding to gamma(2)Thr142 and hydrophobic interaction with alpha(1)His101 as being essential for high-affinity CBR binding.
Collapse
Affiliation(s)
- Eva Szárics
- Department of Neurochemistry, Institute of Biomolecular Chemistry, Chemical Research Center, Hungarian Academy of Sciences, Budapest
| | | | | | | | | |
Collapse
|
20
|
Campagna F, Palluotto F, Carotti A, Maciocco E. Synthesis, central and peripheral benzodiazepine receptor affinity of pyrazole and pyrazole-containing polycyclic derivatives. ACTA ACUST UNITED AC 2004; 59:849-56. [PMID: 15544788 DOI: 10.1016/j.farmac.2004.05.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2004] [Accepted: 05/14/2004] [Indexed: 11/27/2022]
Abstract
A series of new pyrazole-condensed 6,5,5 tricyclic compounds were synthesized and tested to evaluate their binding affinities at both central (CBR) and peripheral (PBR) benzodiazepine receptors. Some 1-aryl-5-phenylpyrazole derivatives were also prepared and tested for comparison with their corresponding rigid tricyclic analogs. Among the newly synthesized 1-aryl-1,4-dihydro-indeno[1,2-c]pyrazoles bearing both an ethoxycarbonyl group at position 3 and a carbonyl function at the position 4, compound 4b emerged as a new potent (IC(50) = 26.4 nM) and selective CBR ligand. The 4-oxo-1-aryl-1,4-dihydro-indeno[1,2-c]pyrazole diethylamide derivative 14a was instead identified as a relatively potent (IC(50) = 124 nM) but highly selective PBR ligand.
Collapse
Affiliation(s)
- Francesco Campagna
- Dipartimento Farmacochimico, Università di Bari, via Orabona 4, 70126 Bari, Italy.
| | | | | | | |
Collapse
|