1
|
Exertier C, Montemiglio LC, Tognaccini L, Zamparelli C, Vallone B, Olczak T, Śmiga M, Smulevich G, Malatesta F. Gaseous ligand binding to Porphyromonas gingivalis HmuY hemophore-like protein in complex with heme. J Inorg Biochem 2025; 269:112879. [PMID: 40073653 DOI: 10.1016/j.jinorgbio.2025.112879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/14/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025]
Abstract
Porphyromonas gingivalis is the main pathogenic player in the development of periodontitis. To acquire heme, being an essential source of iron and protoporphyrin IX, P. gingivalis utilizes TonB-dependent outer membrane heme receptor (HmuR) and heme-binding hemophore-like protein (HmuY) as the main system for heme uptake from host hemoproteins. In this work, we present an extensive spectroscopic characterization of the binding of exogenous gaseous ligands to the holo-form of the HmuY (HmuY-heme) to unravel the mechanistic basis of heme release. Our data are consistent with a scenario where heme release from HmuY-heme is a multistep process that requires the initial rupture of one of the two heme‑iron coordination bonds with endogenous histidines.
Collapse
Affiliation(s)
- Cécile Exertier
- Institute of Molecular Biology and Pathology (IBPM), CNR, c/o Department of Biochemical Sciences "A. Rossi Fanelli", University of Rome, Sapienza, P.le Aldo Moro, 5, 00185 Rome, Italy.
| | - Linda Celeste Montemiglio
- Institute of Molecular Biology and Pathology (IBPM), CNR, c/o Department of Biochemical Sciences "A. Rossi Fanelli", University of Rome, Sapienza, P.le Aldo Moro, 5, 00185 Rome, Italy.
| | - Lorenzo Tognaccini
- Dipartimento di Chimica "Ugo Schiff" (DICUS), Università di Firenze, Via della Lastruccia 3, I-50019 Sesto Fiorentino, FI, Italy.
| | - Carlotta Zamparelli
- Department of Biochemical Sciences "A. Rossi Fanelli", University of Rome, Sapienza, P.le Aldo Moro, 5, 00185 Rome, Italy.
| | - Beatrice Vallone
- Department of Biochemical Sciences "A. Rossi Fanelli", University of Rome, Sapienza, P.le Aldo Moro, 5, 00185 Rome, Italy.
| | - Teresa Olczak
- Laboratory of Medical Biology, Faculty of Biotechnology, University of Wrocław, 14A F. Joliot-Curie St., 50-383 Wrocław, Poland.
| | - Michał Śmiga
- Laboratory of Medical Biology, Faculty of Biotechnology, University of Wrocław, 14A F. Joliot-Curie St., 50-383 Wrocław, Poland.
| | - Giulietta Smulevich
- Dipartimento di Chimica "Ugo Schiff" (DICUS), Università di Firenze, Via della Lastruccia 3, I-50019 Sesto Fiorentino, FI, Italy.
| | - Francesco Malatesta
- Department of Biochemical Sciences "A. Rossi Fanelli", University of Rome, Sapienza, P.le Aldo Moro, 5, 00185 Rome, Italy.
| |
Collapse
|
2
|
Freindorf M, Antonio JJ, Kraka E. Iron-histidine bonding in bishistidyl hemoproteins-A local vibrational mode study. J Comput Chem 2024; 45:574-588. [PMID: 38041830 DOI: 10.1002/jcc.27267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/09/2023] [Accepted: 11/11/2023] [Indexed: 12/04/2023]
Abstract
We investigated the intrinsic strength of distal and proximal FeN bonds for both ferric and ferrous oxidation states of bishistidyl hemoproteins from bacteria, animals, human, and plants, including two cytoglobins, ten hemoglobins, two myoglobins, six neuroglobins, and six phytoglobins. As a qualified measure of bond strength, we used local vibrational force constants ka (FeN) based on local mode theory developed in our group. All calculations were performed with a hybrid QM/MM ansatz. Starting geometries were taken from available x-ray structures. ka (FeN) values were correlated with FeN bond lengths and covalent bond character. We also investigated the stiffness of the axial NFeN bond angle. Our results highlight that protein effects are sensitively reflected in ka (FeN), allowing one to compare trends in diverse protein groups. Moreover, ka (NFeN) is a perfect tool to monitor changes in the axial heme framework caused by different protein environments as well as different Fe oxidation states.
Collapse
Affiliation(s)
- Marek Freindorf
- Chemistry Department, Southern Methodist University, Dallas, Texas, USA
| | - Juliana J Antonio
- Chemistry Department, Southern Methodist University, Dallas, Texas, USA
| | - Elfi Kraka
- Chemistry Department, Southern Methodist University, Dallas, Texas, USA
| |
Collapse
|
3
|
Du DX, Simjanoska M, Fitzpatrick AWP. Four-dimensional microED of conformational dynamics in protein microcrystals on the femto-to-microsecond timescales. J Struct Biol 2023; 215:107941. [PMID: 36773734 DOI: 10.1016/j.jsb.2023.107941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023]
Abstract
As structural determination of protein complexes approaches atomic resolution, there is an increasing focus on conformational dynamics. Here we conceptualize the combination of two techniques which have become established in recent years: microcrystal electron diffraction and ultrafast electron microscopy. We show that the extremely low dose of pulsed photoemission still enables microED due to the strength of the electron bunching from diffraction of the protein crystals. Indeed, ultrafast electron diffraction experiments on protein crystals have already been demonstrated to be effective in measuring intermolecular forces in protein microcrystals. We discuss difficulties that may arise in the acquisition and processing of data and the overall feasibility of the experiment, paying specific attention to dose and signal-to-noise ratio. In doing so, we outline a detailed workflow that may be effective in minimizing the dose on the specimen. A series of model systems that would be good candidates for initial experiments is provided.
Collapse
Affiliation(s)
- Daniel X Du
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY 10032, USA
| | - Marija Simjanoska
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY 10032, USA
| | - Anthony W P Fitzpatrick
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY 10032, USA.
| |
Collapse
|
4
|
Conformational Dynamics of Phytoglobin BvPgb1.2 from Beta vulgaris ssp. vulgaris. Int J Mol Sci 2023; 24:ijms24043973. [PMID: 36835381 PMCID: PMC9961634 DOI: 10.3390/ijms24043973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/09/2023] [Accepted: 02/12/2023] [Indexed: 02/18/2023] Open
Abstract
Plant hemoglobins, often referred to as phytoglobins, play important roles in abiotic stress tolerance. Several essential small physiological metabolites can be bound to these heme proteins. In addition, phytoglobins can catalyze a range of different oxidative reactions in vivo. These proteins are often oligomeric, but the degree and relevance of subunit interactions are largely unknown. In this study, we delineate which residues are involved in dimer formation of a sugar beet phytoglobin type 1.2 (BvPgb1.2) using NMR relaxation experiments. E. coli cells harboring a phytoglobin expression vector were cultivated in isotope-labeled (2H, 13C and 15N) M9 medium. The triple-labeled protein was purified to homogeneity using two chromatographic steps. Two forms of BvPgb1.2 were examined, the oxy-form and the more stable cyanide-form. Using three-dimensional triple-resonance NMR experiments, sequence-specific assignments for CN-bound BvPgb1.2 were achieved for 137 backbone amide cross-peaks in the 1H-15N TROSY spectrum, which amounts to 83% of the total number of 165 expected cross-peaks. A large proportion of the non-assigned residues are located in α-helixes G and H, which are proposed to be involved in protein dimerization. Such knowledge around dimer formation will be instrumental for developing a better understanding of phytoglobins' roles in planta.
Collapse
|
5
|
Oxidative Implications of Substituting a Conserved Cysteine Residue in Sugar Beet Phytoglobin BvPgb 1.2. Antioxidants (Basel) 2022; 11:antiox11081615. [PMID: 36009334 PMCID: PMC9404779 DOI: 10.3390/antiox11081615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/09/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
Phytoglobins (Pgbs) are plant-originating heme proteins of the globin superfamily with varying degrees of hexacoordination. Pgbs have a conserved cysteine residue, the role of which is poorly understood. In this paper, we investigated the functional and structural role of cysteine in BvPgb1.2, a Class 1 Pgb from sugar beet (Beta vulgaris), by constructing an alanine-substituted mutant (Cys86Ala). The substitution had little impact on structure, dimerization, and heme loss as determined by X-ray crystallography, size-exclusion chromatography, and an apomyoglobin-based heme-loss assay, respectively. The substitution significantly affected other important biochemical properties. The autoxidation rate increased 16.7- and 14.4-fold for the mutant versus the native protein at 25 °C and 37 °C, respectively. Thermal stability similarly increased for the mutant by ~2.5 °C as measured by nano-differential scanning fluorimetry. Monitoring peroxidase activity over 7 days showed a 60% activity decrease in the native protein, from 33.7 to 20.2 U/mg protein. When comparing the two proteins, the mutant displayed a remarkable enzymatic stability as activity remained relatively constant throughout, albeit at a lower level, ~12 U/mg protein. This suggests that cysteine plays an important role in BvPgb1.2 function and stability, despite having seemingly little effect on its tertiary and quaternary structure.
Collapse
|
6
|
Dong Y, Bao Q, Gao M, Qiu W, Song Z. A novel mechanism study of microplastic and As co-contamination on indica rice (Oryza sativa L.). JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126694. [PMID: 34332483 DOI: 10.1016/j.jhazmat.2021.126694] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/01/2021] [Accepted: 07/17/2021] [Indexed: 05/23/2023]
Abstract
Although the compound pollution of microplastics and arsenic (As) in paddy soil can affect the growth and quality of rice, relevant research on this phenomenon was limited. Therefore, we combined a pot experiment with computational chemistry to explore the effects and mechanism of polystyrene (PSMP) and polytetrafluoroethylene (PTFE) microplastics on As bioavailability. PSMP and PTFE interacted with rice root exudates through van der Waals forces, approached the rice root system, inhibited root activity, reduced the relative abundance of Geobacteria and Anaeromyxobacter, and consequently reduced the iron plaques on the root surfaces. Consequently, As uptake by the rice was inhibited. PSMP and PTFE reduced the hemoglobin content by directly destroying its tertiary structure, thereby retarding rice growth. In contrast, As increased the hemoglobin content by inducing reactive oxygen species in rice. Under the influence of PSMP, PTFE, and As, the activities of soluble starch synthase and pyrophosphorylase in rice grains were inhibited, and starch accumulation decreased. Thus, PSMP, PTFE, and As reduced rice biomass and yield owing to their physiological toxicity and adverse impacts on root activity. Grain yields in soil with an As content of 86.3 mg·kg-1, 0.5% small particle-sized PSMP, and 0.5% small particle-sized PTFE decreased by 30.7%, 20.6%, and 19.4%, respectively, compared to the control. This study determined the comprehensive mechanism through which PSMP and PTFE affect As bioavailability, which is critical for managing rice biomass and low yields in As and microplastic co-contaminated soil.
Collapse
Affiliation(s)
- Youming Dong
- Department of Civil and Environmental Engineering, Shantou University, Shantou 515063, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs of China, Tianjin 300191, China
| | - Qiongli Bao
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs of China, Tianjin 300191, China
| | - Minling Gao
- Department of Civil and Environmental Engineering, Shantou University, Shantou 515063, China
| | - Weiwen Qiu
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 4704, Christchurch 8140, New Zealand
| | - Zhengguo Song
- Department of Civil and Environmental Engineering, Shantou University, Shantou 515063, China.
| |
Collapse
|
7
|
Becana M, Yruela I, Sarath G, Catalán P, Hargrove MS. Plant hemoglobins: a journey from unicellular green algae to vascular plants. THE NEW PHYTOLOGIST 2020; 227:1618-1635. [PMID: 31960995 DOI: 10.1111/nph.16444] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 12/24/2019] [Indexed: 05/17/2023]
Abstract
Globins (Glbs) are widely distributed in archaea, bacteria and eukaryotes. They can be classified into proteins with 2/2 or 3/3 α-helical folding around the heme cavity. Both types of Glbs occur in green algae, bryophytes and vascular plants. The Glbs of angiosperms have been more intensively studied, and several protein structures have been solved. They can be hexacoordinate or pentacoordinate, depending on whether a histidine is coordinating or not at the sixth position of the iron atom. The 3/3 Glbs of class 1 and the 2/2 Glbs (also called class 3 in plants) are present in all angiosperms, whereas the 3/3 Glbs of class 2 have been only found in early angiosperms and eudicots. The three Glb classes are expected to play different roles. Class 1 Glbs are involved in hypoxia responses and modulate NO concentration, which may explain their roles in plant morphogenesis, hormone signaling, cell fate determination, nutrient deficiency, nitrogen metabolism and plant-microorganism symbioses. Symbiotic Glbs derive from class 1 or class 2 Glbs and transport O2 in nodules. The physiological roles of class 2 and class 3 Glbs are poorly defined but could involve O2 and NO transport and/or metabolism, respectively. More research is warranted on these intriguing proteins to determine their non-redundant functions.
Collapse
Affiliation(s)
- Manuel Becana
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (CSIC), Apartado 13034, 50080, Zaragoza, Spain
| | - Inmaculada Yruela
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (CSIC), Apartado 13034, 50080, Zaragoza, Spain
- Group of Biochemistry, Biophysics and Computational Biology (BIFI-Unizar) Joint Unit to CSIC, Edificio I+D Campus Río Ebro, 50018, Zaragoza, Spain
| | - Gautam Sarath
- Wheat, Sorghum, and Forage Research Unit, USDA-ARS, East Campus, University of Nebraska-Lincoln, Lincoln, NE, 86583, USA
| | - Pilar Catalán
- Group of Biochemistry, Biophysics and Computational Biology (BIFI-Unizar) Joint Unit to CSIC, Edificio I+D Campus Río Ebro, 50018, Zaragoza, Spain
- Escuela Politécnica Superior de Huesca, Universidad de Zaragoza, 22071, Huesca, Spain
| | - Mark S Hargrove
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
8
|
Daane JM, Giordano D, Coppola D, di Prisco G, Detrich HW, Verde C. Adaptations to environmental change: Globin superfamily evolution in Antarctic fishes. Mar Genomics 2019; 49:100724. [PMID: 31735579 DOI: 10.1016/j.margen.2019.100724] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 10/27/2019] [Accepted: 11/01/2019] [Indexed: 02/08/2023]
Abstract
The ancient origins and functional versatility of globins make them ideal subjects for studying physiological adaptation to environmental change. Our goals in this review are to describe the evolution of the vertebrate globin gene superfamily and to explore the structure/function relationships of hemoglobin, myoglobin, neuroglobin and cytoglobin in teleost fishes. We focus on the globins of Antarctic notothenioids, emphasizing their adaptive features as inferred from comparisons with human proteins. We dedicate this review to Guido di Prisco, our co-author, colleague, friend, and husband of C.V. Ever thoughtful, creative, and enthusiastic, Guido spearheaded study of the structure, function, and evolution of the hemoglobins of polar fishes - this review is testimony to his wide-ranging contributions. Throughout his career, Guido inspired younger scientists to embrace polar biological research, and he challenged researchers of all ages to explore evolutionary adaptation in the context of global climate change. Beyond his scientific contributions, we will miss his warmth, his culture, and his great intellect. Guido has left an outstanding legacy, one that will continue to inspire us and our research.
Collapse
Affiliation(s)
- Jacob M Daane
- Department of Marine and Environmental Sciences, Northeastern University Marine Science Center, Nahant, MA 01908, USA
| | - Daniela Giordano
- Institute of Biosciences and BioResources (IBBR), CNR, Via Pietro Castellino 111, 80131 Napoli, Italy; Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Daniela Coppola
- Institute of Biosciences and BioResources (IBBR), CNR, Via Pietro Castellino 111, 80131 Napoli, Italy; Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Guido di Prisco
- Institute of Biosciences and BioResources (IBBR), CNR, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - H William Detrich
- Department of Marine and Environmental Sciences, Northeastern University Marine Science Center, Nahant, MA 01908, USA
| | - Cinzia Verde
- Institute of Biosciences and BioResources (IBBR), CNR, Via Pietro Castellino 111, 80131 Napoli, Italy; Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy.
| |
Collapse
|
9
|
Zhang J, Buegger F, Albert A, Ghirardo A, Winkler B, Schnitzler JP, Hebelstrup KH, Durner J, Lindermayr C. Phytoglobin overexpression promotes barley growth in the presence of enhanced level of atmospheric nitric oxide. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4521-4537. [PMID: 31245808 PMCID: PMC6736386 DOI: 10.1093/jxb/erz249] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 05/17/2019] [Indexed: 05/03/2023]
Abstract
To investigate the effect of high atmospheric NO concentrations on crop plants and the role of phytoglobins under these conditions, we performed a long-term study on barley 'Golden Promise' wild type (WT), class 1 phytoglobin knockdown (HvPgb1.1-) and class 1 phytoglobin overexpression (HvPgb1.1+) lines. Plants were cultivated with nitrogen-free nutrient solution during the entire growth period and were fumigated with different NO concentration (ambient, 800, 1500, and 3000 ppb). Analysis of fresh weight, stem number, chlorophyll content, and effective quantum yield of PSII showed that NO fumigation promoted plant growth and tillering significantly in the HvPgb1.1+ line. After 80 d of NO fumigation, dry matter weight, spikes number, kernel number, and plant kernel weight were significantly increased in HvPgb1.1+ plants with increasing NO concentration. In contrast, yield decreased in WT and HvPgb1.1- plants the higher the NO level. Application of atmospheric 15NO and 15NO2 demonstrated NO specificity of phytoglobins. 15N from 15NO could be detected in RNA, DNA, and proteins of barley leaves and the 15N levels were significantly higher in HvPgb1.1+ plants in comparison with HvPgb1.1- and WT plants. Our results demonstrate that overexpression of phytoglobins allows plants to more efficiently use atmospheric NO as N source.
Collapse
Affiliation(s)
- Jiangli Zhang
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Franz Buegger
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Andreas Albert
- Research Unit Environmental Simulation, Helmholtz Zentrum München, Neuherberg, Germany
| | - Andrea Ghirardo
- Research Unit Environmental Simulation, Helmholtz Zentrum München, Neuherberg, Germany
| | - Barbro Winkler
- Research Unit Environmental Simulation, Helmholtz Zentrum München, Neuherberg, Germany
| | - Jörg-Peter Schnitzler
- Research Unit Environmental Simulation, Helmholtz Zentrum München, Neuherberg, Germany
| | | | - Jörg Durner
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biochemical Plant Pathology, Technische Universität München, Freising, Germany
| | - Christian Lindermayr
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany
- Correspondence:
| |
Collapse
|
10
|
Stasolla C, Huang S, Hill RD, Igamberdiev AU. Spatio-temporal expression of phytoglobin: a determining factor in the NO specification of cell fate. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4365-4377. [PMID: 30838401 DOI: 10.1093/jxb/erz084] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 02/11/2019] [Indexed: 05/12/2023]
Abstract
Plant growth and development rely on the orchestration of cell proliferation, differentiation, and ultimately death. After varying rounds of divisions, cells respond to positional cues by acquiring a specific fate and embarking upon distinct developmental pathways which might differ significantly from those of adjacent cells exposed to diverse cues. Differential cell behavior is most apparent in response to stress, when some cells might be more vulnerable than others to the same stress condition. This appears to be the case for stem cells which show abnormal features of differentiation and ultimately signs of deterioration at the onset of specific types of stress such as hypoxia and water deficit. A determining factor influencing cell behavior during growth and development, and cell response during conditions of stress is nitric oxide (NO), the level of which can be regulated by phytoglobins (Pgbs), known scavengers of NO. The modulation of NO by Pgbs can be cell, tissue, and/or organ specific, as revealed by the expression patterns of Pgbs dictated by the presence of distinct cis-regulatory elements in their promoters. This review discusses how the temporal and spatial Pgb expression pattern influences NO-mediated responses and ultimately cell fate acquisition in plant developmental processes.
Collapse
Affiliation(s)
- Claudio Stasolla
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Shuanglong Huang
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Robert D Hill
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| |
Collapse
|
11
|
Sugar beet hemoglobins: reactions with nitric oxide and nitrite reveal differential roles for nitrogen metabolism. Biochem J 2019; 476:2111-2125. [PMID: 31285352 PMCID: PMC6668756 DOI: 10.1042/bcj20190154] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/23/2019] [Accepted: 07/08/2019] [Indexed: 12/14/2022]
Abstract
In contrast with human hemoglobin (Hb) in red blood cells, plant Hbs do not transport oxygen, instead research points towards nitrogen metabolism. Using comprehensive and integrated biophysical methods we characterized three sugar beet Hbs: BvHb1.1, BvHb1.2 and BvHb2. Their affinities for oxygen, CO, and hexacoordination were determined. Their role in nitrogen metabolism was studied by assessing their ability to bind NO, to reduce nitrite (NiR, nitrite reductase), and to form nitrate (NOD, NO dioxygenase). Results show that BvHb1.2 has high NOD-like activity, in agreement with the high nitrate levels found in seeds where this protein is expressed. BvHb1.1, on the other side, is equally capable to bind NO as to form nitrate, its main role would be to protect chloroplasts from the deleterious effects of NO. Finally, the ubiquitous, reactive, and versatile BvHb2, able to adopt 'open and closed forms', would be part of metabolic pathways where the balance between oxygen and NO is essential. For all proteins, the NiR activity is relevant only when nitrite is present at high concentrations and both NO and oxygen are absent. The three proteins have distinct intrinsic capabilities to react with NO, oxygen and nitrite; however, it is their concentration which will determine the BvHbs' activity.
Collapse
|
12
|
Herman JL. Enhancing Statistical Multiple Sequence Alignment and Tree Inference Using Structural Information. Methods Mol Biol 2019; 1851:183-214. [PMID: 30298398 DOI: 10.1007/978-1-4939-8736-8_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
For highly divergent sequences, there is often insufficient information to reliably construct alignments and phylogenetic trees. Since protein structure may be strongly conserved despite large divergences in sequence, structural information can be used to help identify homology in such cases.While there exist well-studied models of sequence evolution, structurally informed alignment methods have typically made use of geometric measures of deviation that do not take into account the underlying mutational processes. In order to integrate structural information into sequence-based evolutionary models, we recently developed a stochastic model of structural evolution on a phylogenetic tree and implemented this as the StructAlign plugin for the StatAlign statistical alignment package.In this chapter, we will outline the types of analyses that can be carried out using StructAlign, illustrating how the inclusion of structural information can be used to inform joint estimation of alignments and trees. StructAlign can also be used to infer branch-specific rates of structural evolution, and analysis of an example globin dataset highlights strong variation in the inferred rate across the tree. While structure is more highly conserved within clades, the rate of structural divergence as a function of sequence variation is larger between functionally divergent proteins. Allowing for the rate of structural divergence to vary over the tree results in an improved fit to the empirically observed pairwise RMSD values.
Collapse
Affiliation(s)
- Joseph L Herman
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
13
|
Ascenzi P, De Simone G, Ciaccio C, Santucci R, Coletta M. Hydroxylamine-induced oxidation of ferrous CO-bound carboxymethylated-cytochrome c. J PORPHYR PHTHALOCYA 2018. [DOI: 10.1142/s1088424618501055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The hexa-coordinated metal center of horse heart cyt[Formula: see text] (cyt[Formula: see text] is at the root of its low reactivity. In contrast, carboxymethylated cyt[Formula: see text] (CM-cyt[Formula: see text] displays myoglobin-like properties. Herein, kinetics of CO binding to ferrous CM-cyt[Formula: see text] (CM-cyt[Formula: see text](II)) and of the irreversible oxidation of ferrous carbonylated CM-cyt[Formula: see text] (CM-cyt[Formula: see text](II)-CO) by hydroxylamine (HA), at pH 5.8 and 20.0 [Formula: see text]C, are reported. HA irreversibly oxidizes CM-cyt[Formula: see text](II)-CO with the 1:2 stoichiometry leading to the formation of the ferric species (CM-cyt[Formula: see text](III)) without the observation of intermediates. Present data indicate that: (i) the rate of CO dissociation from CM-cyt[Formula: see text](II)-CO represents the rate-limiting step of HA-mediated oxidation of the carbonylated metal center, (ii) the fast oxidation of CM-cyt[Formula: see text](II)-CO from HA reflects the penta-coordination of the transient CM-cyt[Formula: see text](II) species, (iii) the HA-catalyzed conversion of CM-cyt[Formula: see text](II)-CO to CM-cyt[Formula: see text](III) could proceed via the geminate mechanism, (iv) values of the second-order rate constants for the carbonylation and the HA-mediated oxidation of ferrous heme-proteins are linearly correlated reflecting the penta- or hexa-coordination of the metal center, the free energy for the in-plane positioning of the heme-Fe atom in the unliganded species, and the arrangement of the distal portion of the heme pocket that affects ligand and/or electron transfer.
Collapse
Affiliation(s)
- Paolo Ascenzi
- Interdepartmental Laboratory for Electron Microscopy, Roma Tre University, I-00146 Roma, Italy
| | | | - Chiara Ciaccio
- Department of Clinical Sciences and Translational Medicine, University of Roma “Tor Vergata”, I-00133 Roma, Italy
- Interuniversity Consortium for the Research on Chemistry of Metals in Biological Systems, I-70126 Bari, Italy
| | - Roberto Santucci
- Department of Clinical Sciences and Translational Medicine, University of Roma “Tor Vergata”, I-00133 Roma, Italy
| | - Massimo Coletta
- Department of Clinical Sciences and Translational Medicine, University of Roma “Tor Vergata”, I-00133 Roma, Italy
- Interuniversity Consortium for the Research on Chemistry of Metals in Biological Systems, I-70126 Bari, Italy
| |
Collapse
|
14
|
Butcher D, Bernad S, Derrien V, Sebban P, Miksovska J. Role of Ionic Strength and pH in Modulating Thermodynamic Profiles Associated with CO Escape from Rice Nonsymbiotic Hemoglobin 1. J Phys Chem B 2017; 121:351-364. [PMID: 28072536 DOI: 10.1021/acs.jpcb.6b06933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Type 1 nonsymbiotic hemoglobins are found in a wide variety of land plants and exhibit very high affinities for exogenous gaseous ligands. These proteins are presumed to have a role in protecting plant cells from oxidative stress under etiolated/hypoxic conditions through NO dioxygenase activity. In this study we have employed photoacoustic calorimetry, time-resolved absorption spectroscopy, and classical molecular dynamics simulations in order to elucidate thermodynamics, kinetics, and ligand migration pathways upon CO photodissociation from WT and a H73L mutant of type 1 nonsymbiotic hemoglobin from Oryza sativa (rice). We observe a temperature dependence of the resolved thermodynamic parameters for CO photodissociation from CO-rHb1 which we attribute to temperature dependent formation of a network of electrostatic interactions in the vicinity of the heme propionate groups. We also observe slower ligand escape from the protein matrix under mildly acidic conditions in both the WT and H73L mutant (τ = 134 ± 19 and 90 ± 15 ns). Visualization of transient hydrophobic channels within our classical molecular dynamics trajectories allows us to attribute this phenomenon to a change in the ligand migration pathway which occurs upon protonation of the distal His73, His117, and His152. Protonation of these residues may be relevant to the functioning of the protein in vivo given that etiolation/hypoxia can cause a decrease in intracellular pH in plant cells.
Collapse
Affiliation(s)
- David Butcher
- Department of Chemistry and Biochemistry, Florida International University , Miami Florida 33199, United States
| | - Sophie Bernad
- Laboratoire de Chimie Physique, Université Paris-Sud 11 , 91405 Orsay, France
| | - Valerie Derrien
- Laboratoire de Chimie Physique, Université Paris-Sud 11 , 91405 Orsay, France
| | - Pierre Sebban
- Laboratoire de Chimie Physique, Université Paris-Sud 11 , 91405 Orsay, France
| | - Jaroslava Miksovska
- Department of Chemistry and Biochemistry, Florida International University , Miami Florida 33199, United States.,Biomolecular Sciences Institute, Florida International University , Miami, Florida 33199, United States
| |
Collapse
|
15
|
Residues in the Distal Heme Pocket of Arabidopsis Non-Symbiotic Hemoglobins: Implication for Nitrite Reductase Activity. Int J Mol Sci 2016; 17:ijms17050640. [PMID: 27136534 PMCID: PMC4881466 DOI: 10.3390/ijms17050640] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 04/13/2016] [Accepted: 04/19/2016] [Indexed: 02/08/2023] Open
Abstract
It is well-established that plant hemoglobins (Hbs) are involved in nitric oxide (NO) metabolism via NO dioxygenase and/or nitrite reductase activity. The ferrous-deoxy Arabidopsis Hb1 and Hb2 (AHb1 and AHb2) have been shown to reduce nitrite to NO under hypoxia. Here, to test the hypothesis that a six- to five-coordinate heme iron transition might mediate the control of the nitrite reduction rate, we examined distal pocket mutants of AHb1 and AHb2 for nitrite reductase activity, NO production and spectroscopic features. Absorption spectra of AHbs distal histidine mutants showed that AHb1 mutant (H69L) is a stable pentacoordinate high-spin species in both ferrous and ferric states, whereas heme iron in AHb2 mutant (H66L) is hexacoordinated low-spin with Lys69 as the sixth ligand. The bimolecular rate constants for nitrite reduction to NO were 13.3 ± 0.40, 7.3 ± 0.5, 10.6 ± 0.8 and 171.90 ± 9.00 M−1·s−1 for AHb1, AHb2, AHb1 H69L and AHb2 H66L, respectively, at pH 7.4 and 25 °C. Consistent with the reductase activity, the amount of NO detected by chemiluminescence was significantly higher in the AHb2 H66L mutant. Our data indicate that nitrite reductase activity is determined not only by heme coordination, but also by a unique distal heme pocket in each AHb.
Collapse
|
16
|
Mukhi N, Dhindwal S, Uppal S, Kapoor A, Arya R, Kumar P, Kaur J, Kundu S. Structural and Functional Significance of the N- and C-Terminal Appendages in Arabidopsis Truncated Hemoglobin. Biochemistry 2016; 55:1724-40. [PMID: 26913482 DOI: 10.1021/acs.biochem.5b01013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Plant hemoglobins constitute three distinct groups: symbiotic, nonsymbiotic, and truncated hemoglobins. Structural investigation of symbiotic and nonsymbiotic (class I) hemoglobins revealed the presence of a vertebrate-like 3/3 globin fold in these proteins. In contrast, plant truncated hemoglobins are similar to bacterial truncated hemoglobins with a putative 2/2 α-helical globin fold. While multiple structures have been reported for plant hemoglobins of the first two categories, for plant truncated globins only one structure has been reported of late. Here, we report yet another crystal structure of the truncated hemoglobin from Arabidopsis thaliana (AHb3) with two water molecules in the heme pocket, of which one is distinctly coordinated to the heme iron, unlike the only available crystal structure of AHb3 with a hydroxyl ligand. AHb3 was monomeric in its crystallographic asymmetric unit; however, dimer was evident in the crystallographic symmetry, and the globin indeed existed as a stable dimer in solution. The tertiary structure of the protein exhibited a bacterial-like 2/2 α-helical globin fold with an additional N-terminal α-helical extension and disordered C-termini. To address the role of these extended termini in AHb3, which is yet unknown, N- and C-terminal deletion mutants were created and characterized and molecular dynamics simulations performed. The C-terminal deletion had an insignificant effect on most properties but perturbed the dimeric equilibrium of AHb3 and significantly influenced azide binding kinetics in the ferric state. These results along with the disordered nature of the C-terminus indicated its putative role in intramolecular or intermolecular interactions probably regulating protein-ligand and protein-protein interactions. While the N-terminal deletion did not change the overall globin fold, stability, or ligand binding kinetics, it seemed to have influenced coordination at the heme iron, the hydration status of the active site, and the quaternary structure of AHb3. Evidence indicated that the N-terminus is the predominant factor regulating the quaternary interaction appropriate to physiological requirements, dynamics of the side chains in the heme pocket, and tunnel organization in the protein matrix.
Collapse
Affiliation(s)
- Nitika Mukhi
- Department of Genetics, University of Delhi South Campus , New Delhi 110021, India
| | - Sonali Dhindwal
- Department of Biotechnology, Indian Institute of Technology , Roorkee, Uttarakhand 247667, India
| | - Sheetal Uppal
- Department of Biochemistry, University of Delhi South Campus , New Delhi 110021, India
| | - Abhijeet Kapoor
- Department of Biochemistry, University of Delhi South Campus , New Delhi 110021, India
| | - Richa Arya
- Department of Biochemistry, University of Delhi South Campus , New Delhi 110021, India
| | - Pravindra Kumar
- Department of Biotechnology, Indian Institute of Technology , Roorkee, Uttarakhand 247667, India
| | - Jagreet Kaur
- Department of Genetics, University of Delhi South Campus , New Delhi 110021, India
| | - Suman Kundu
- Department of Biochemistry, University of Delhi South Campus , New Delhi 110021, India
| |
Collapse
|
17
|
Ascenzi P, Sbardella D, Fiocchetti M, Santucci R, Coletta M. NO2−-mediated nitrosylation of ferrous microperoxidase-11. J Inorg Biochem 2015; 153:121-127. [DOI: 10.1016/j.jinorgbio.2015.06.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 06/03/2015] [Accepted: 06/30/2015] [Indexed: 11/29/2022]
|
18
|
De Henau S, Tilleman L, Vangheel M, Luyckx E, Trashin S, Pauwels M, Germani F, Vlaeminck C, Vanfleteren JR, Bert W, Pesce A, Nardini M, Bolognesi M, De Wael K, Moens L, Dewilde S, Braeckman BP. A redox signalling globin is essential for reproduction in Caenorhabditis elegans. Nat Commun 2015; 6:8782. [PMID: 26621324 PMCID: PMC4686822 DOI: 10.1038/ncomms9782] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 10/02/2015] [Indexed: 12/17/2022] Open
Abstract
Moderate levels of reactive oxygen species (ROS) are now recognized as redox signalling molecules. However, thus far, only mitochondria and NADPH oxidases have been identified as cellular sources of ROS in signalling. Here we identify a globin (GLB-12) that produces superoxide, a type of ROS, which serves as an essential signal for reproduction in C. elegans. We find that GLB-12 has an important role in the regulation of multiple aspects in germline development, including germ cell apoptosis. We further describe how GLB-12 displays specific molecular, biochemical and structural properties that allow this globin to act as a superoxide generator. In addition, both an intra- and extracellular superoxide dismutase act as key partners of GLB-12 to create a transmembrane redox signal. Our results show that a globin can function as a driving factor in redox signalling, and how this signal is regulated at the subcellular level by multiple control layers.
Collapse
Affiliation(s)
- Sasha De Henau
- Department of Biology, Ghent University, Ghent B-9000, Belgium
| | - Lesley Tilleman
- Department of Biomedical Sciences, University of Antwerp, Antwerp B-2000, Belgium
| | | | - Evi Luyckx
- Department of Biomedical Sciences, University of Antwerp, Antwerp B-2000, Belgium
| | - Stanislav Trashin
- Department of Chemistry, University of Antwerp, Antwerp B-2000, Belgium
| | - Martje Pauwels
- Department of Chemistry, University of Antwerp, Antwerp B-2000, Belgium
| | - Francesca Germani
- Department of Biomedical Sciences, University of Antwerp, Antwerp B-2000, Belgium
| | | | | | - Wim Bert
- Department of Biology, Ghent University, Ghent B-9000, Belgium
| | - Alessandra Pesce
- Department of Physics, University of Genova, Genova I-16146, Italy
| | - Marco Nardini
- Department of Biosciences, University of Milano, Milano I-20133, Italy
| | - Martino Bolognesi
- Department of Biosciences, University of Milano, Milano I-20133, Italy
- CNR-IBF and CIMAINA, University of Milano, Milano I-20133, Italy
| | - Karolien De Wael
- Department of Chemistry, University of Antwerp, Antwerp B-2000, Belgium
| | - Luc Moens
- Department of Biomedical Sciences, University of Antwerp, Antwerp B-2000, Belgium
| | - Sylvia Dewilde
- Department of Biomedical Sciences, University of Antwerp, Antwerp B-2000, Belgium
| | | |
Collapse
|
19
|
Open and Lys-His Hexacoordinated Closed Structures of a Globin with Swapped Proximal and Distal Sites. Sci Rep 2015; 5:11407. [PMID: 26094577 PMCID: PMC4476040 DOI: 10.1038/srep11407] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 05/22/2015] [Indexed: 11/24/2022] Open
Abstract
Globins are haem-binding proteins with a conserved fold made up of α-helices and can possess diverse properties. A putative globin-coupled sensor from Methylacidiphilum infernorum, HGbRL, contains an N-terminal globin domain whose open and closed structures reveal an untypical dimeric architecture. Helices E and F fuse into an elongated helix, resulting in a novel site-swapped globin fold made up of helices A–E, hence the distal site, from one subunit and helices F–H, the proximal site, from another. The open structure possesses a large cavity binding an imidazole molecule, while the closed structure forms a unique Lys–His hexacoordinated species, with the first turn of helix E unravelling to allow Lys52(E10) to bind to the haem. Ligand binding induces reorganization of loop CE, which is stabilized in the closed form, and helix E, triggering a large conformational movement in the open form. These provide a mechanical insight into how a signal may be relayed between the globin domain and the C-terminal domain of HGbRL, a Roadblock/LC7 domain. Comparison with HGbI, a closely related globin, further underlines the high degree of structural versatility that the globin fold is capable of, enabling it to perform a diversity of functions.
Collapse
|
20
|
Interaction of apoNeuroglobin with heme–Aβ complexes relevant to Alzheimer’s disease. J Biol Inorg Chem 2015; 20:563-74. [DOI: 10.1007/s00775-015-1241-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 01/13/2015] [Indexed: 01/09/2023]
|
21
|
Abstract
Hemoglobins (Hbs) corresponding to non-symbiotic (nsHb) and truncated (tHb) Hbs have been identified in rice (
Oryza). This review discusses the major findings from the current studies on rice Hbs. At the molecular level, a family of the
nshb genes, consisting of
hb1,
hb2,
hb3,
hb4 and
hb5, and a single copy of the
thb gene exist in
Oryza sativa var. indica and
O.
sativa var. japonica, Hb transcripts coexist in rice organs and Hb polypeptides exist in rice embryonic and vegetative organs and in the cytoplasm of differentiating cells. At the structural level, the crystal structure of rice Hb1 has been elucidated, and the structures of the other rice Hbs have been modeled. Kinetic analysis indicated that rice Hb1 and 2, and possibly rice Hb3 and 4, exhibit a very high affinity for O
2, whereas rice Hb5 and tHb possibly exhibit a low to moderate affinity for O
2. Based on the accumulated information on the properties of rice Hbs and data from the analysis of other plant and non-plant Hbs, it is likely that Hbs play a variety of roles in rice organs, including O
2-transport, O
2-sensing, NO-scavenging and redox-signaling. From an evolutionary perspective, an outline for the evolution of rice Hbs is available. Rice
nshb and
thb genes vertically evolved through different lineages, rice nsHbs evolved into clade I and clade II lineages and rice
nshbs and
thbs evolved under the effect of neutral selection. This review also reveals lacunae in our ability to completely understand rice Hbs. Primary lacunae are the absence of experimental information about the precise functions of rice Hbs, the properties of modeled rice Hbs and the
cis-elements and
trans-acting factors that regulate the expression of rice
hb genes, and the partial understanding of the evolution of rice Hbs.
Collapse
Affiliation(s)
- Raúl Arredondo-Peter
- Laboratorio de Biofísica y Biología Molecular, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, 62210, Mexico
| | - Jose F Moran
- Instituto de Agrobiotecnología, IdAB-CSIC-Universidad Pública de Navarra-Gobierno de Navarra, Navarre, E-31192, Spain
| | - Gautam Sarath
- Grain, Forage and Bioenergy Research Unit, USDA-ARS, University of Nebraska-Lincoln, Lincoln, NE, 68583-0937, USA
| |
Collapse
|
22
|
Du JF, Li W, Li L, Wen GB, Lin YW, Tan X. Regulating the coordination state of a heme protein by a designed distal hydrogen-bonding network. ChemistryOpen 2014; 4:97-101. [PMID: 25969804 PMCID: PMC4420578 DOI: 10.1002/open.201402108] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Indexed: 01/03/2023] Open
Abstract
Heme coordination state determines the functional diversity of heme proteins. Using myoglobin as a model protein, we designed a distal hydrogen-bonding network by introducing both distal glutamic acid (Glu29) and histidine (His43) residues and regulated the heme into a bis-His coordination state with native ligands His64 and His93. This resembles the heme site in natural bis-His coordinated heme proteins such as cytoglobin and neuroglobin. A single mutation of L29E or F43H was found to form a distinct hydrogen-bonding network involving distal water molecules, instead of the bis-His heme coordination, which highlights the importance of the combination of multiple hydrogen-bonding interactions to regulate the heme coordination state. Kinetic studies further revealed that direct coordination of distal His64 to the heme iron negatively regulates fluoride binding and hydrogen peroxide activation by competing with the exogenous ligands. The new approach developed in this study can be generally applicable for fine-tuning the structure and function of heme proteins.
Collapse
Affiliation(s)
- Jun-Fang Du
- School of Chemistry and Chemical Engineering, University of South China Hengyang, 421001, (P. R. China))
| | - Wei Li
- Department of Chemistry and Institute of Biomedical Science, Fudan University Shanghai, 200433, (P. R. China)
| | - Lianzhi Li
- School of Chemistry and Chemical Engineering, Liaocheng University Liaocheng, 252059, (P. R. China)
| | - Ge-Bo Wen
- Laboratory of Protein Structure and Function, University of South China Hengyang, 421001, (P. R. China)
| | - Ying-Wu Lin
- School of Chemistry and Chemical Engineering, University of South China Hengyang, 421001, (P. R. China)) ; Laboratory of Protein Structure and Function, University of South China Hengyang, 421001, (P. R. China)
| | - Xiangshi Tan
- Department of Chemistry and Institute of Biomedical Science, Fudan University Shanghai, 200433, (P. R. China)
| |
Collapse
|
23
|
Urarte E, Asensio AC, Tellechea E, Pires L, Moran JF. Evaluation of the anti-nitrative effect of plant antioxidants using a cowpea Fe-superoxide dismutase as a target. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 83:356-364. [PMID: 25221924 DOI: 10.1016/j.plaphy.2014.08.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 08/24/2014] [Indexed: 06/03/2023]
Abstract
Nitric oxide cytotoxicity arises from its rapid conversion to peroxynitrite (ONOO(-)) in the presence of superoxide, provoking functional changes in proteins by nitration of tyrosine residues. The physiological significance of this post-translational modification is associated to tissue injury in animals, but has not been yet clarified in plants. The objective of this study was to establish new approaches that could help to understand ONOO(-) reactivity in plants. A recombinant Fe-superoxide dismutase from cowpea (Vigna unguiculata (L.) Walp.), rVuFeSOD, was the target of the ONOO(-)-generator SIN-1, and the anti-nitrative effect of plant antioxidants and haemoglobins was tested in vitro. Nitration on rVuFeSOD was evaluated immunochemically or as the loss of its enzymatic activity. This assay proved to be useful to test a variety of plant compounds for anti-nitrative capacity. Experimental data confirmed that rice (Oryza sativa L.) haemoglobin-1 (rOsHbI) and cowpea leghaemoglobin-2 exerted a protective function against ONOO(-) by diminishing nitration on rVuFeSOD. Both plant haemoglobins were nitrated by SIN-1. The chelator desferrioxamine suppressed nitration in rOsHbI, indicating that Fe plays a key role in the reaction. The removal of the haem moiety in rOsHbI importantly suppressed nitration, evidencing that this reaction may be self-catalyzed. Among small antioxidants, ascorbate remarkably decreased nitration in all tests. The phenolic compounds caffeic acid, gallic acid, pyrogallol, 4-hydroxybenzoic acid and the flavonoid gossypin also diminished tyrosine nitration and protected rVuFeSOD to different extents. It is concluded that small plant antioxidants, especially ascorbate, and haemoglobins may well play key roles in ONOO(-) homeostasis in vivo.
Collapse
Affiliation(s)
- Estibaliz Urarte
- Institute of Agrobiotechnology, IdAB-CSIC-Public University of Navarre-Government of Navarre, Avda. Pamplona 123, E-31192, Mutilva, Navarre, Spain
| | - Aaron C Asensio
- CEMITEC, Polígono Mocholí, Plaza Cein 4, E-31110, Noain, Navarre, Spain
| | - Edurne Tellechea
- CEMITEC, Polígono Mocholí, Plaza Cein 4, E-31110, Noain, Navarre, Spain
| | - Laura Pires
- Institute of Agrobiotechnology, IdAB-CSIC-Public University of Navarre-Government of Navarre, Avda. Pamplona 123, E-31192, Mutilva, Navarre, Spain
| | - Jose F Moran
- Institute of Agrobiotechnology, IdAB-CSIC-Public University of Navarre-Government of Navarre, Avda. Pamplona 123, E-31192, Mutilva, Navarre, Spain.
| |
Collapse
|
24
|
Affiliation(s)
- Luisa B. Maia
- REQUIMTE/CQFB, Departamento
de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - José J. G. Moura
- REQUIMTE/CQFB, Departamento
de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
25
|
Hebelstrup KH, Shah JK, Simpson C, Schjoerring JK, Mandon J, Cristescu SM, Harren FJM, Christiansen MW, Mur LAJ, Igamberdiev AU. An assessment of the biotechnological use of hemoglobin modulation in cereals. PHYSIOLOGIA PLANTARUM 2014; 150:593-603. [PMID: 24118006 DOI: 10.1111/ppl.12115] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 09/30/2013] [Accepted: 10/01/2013] [Indexed: 05/11/2023]
Abstract
Non-symbiotic hemoglobin (nsHb) genes are ubiquitous in plants, but their biological functions have mostly been studied in model plant species rather than in crops. nsHb influences cell signaling and metabolism by modulating the levels of nitric oxide (NO). Class 1 nsHb is upregulated under hypoxia and is involved in various biotic and abiotic stress responses. Ectopic overexpression of nsHb in Arabidopsis thaliana accelerates development, whilst targeted overexpression in seeds can increase seed yield. Such observations suggest that manipulating nsHb could be a valid biotechnological target. We studied the effects of overexpression of class 1 nsHb in the monocotyledonous crop plant barley (Hordeum vulgare cv. Golden Promise). nsHb was shown to be involved in NO metabolism in barley, as ectopic overexpression reduced the amount of NO released during hypoxia. Further, as in Arabidopsis, nsHb overexpression compromised basal resistance toward pathogens in barley. However, unlike Arabidopsis, nsHb ectopic overexpression delayed growth and development in barley, and seed specific overexpression reduced seed yield. Thus, nsHb overexpression in barley does not seem to be an efficient strategy for increasing yield in cereal crops. These findings highlight the necessity for using actual crop plants rather than laboratory model plants when assessing the effects of biotechnological approaches to crop improvement.
Collapse
Affiliation(s)
- Kim H Hebelstrup
- Department of Molecular Biology and Genetics, Aarhus University, Flakkebjerg, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Igamberdiev AU, Stasolla C, Hill RD. Low Oxygen Stress, Nonsymbiotic Hemoglobins, NO, and Programmed Cell Death. LOW-OXYGEN STRESS IN PLANTS 2014. [DOI: 10.1007/978-3-7091-1254-0_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
27
|
Wang X, Hargrove MS. Nitric oxide in plants: the roles of ascorbate and hemoglobin. PLoS One 2013; 8:e82611. [PMID: 24376554 PMCID: PMC3869716 DOI: 10.1371/journal.pone.0082611] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 11/04/2013] [Indexed: 11/18/2022] Open
Abstract
Ascorbic acid and hemoglobins have been linked to nitric oxide metabolism in plants. It has been hypothesized that ascorbic acid directly reduces plant hemoglobin in support of NO scavenging, producing nitrate and monodehydroascorbate. In this scenario, monodehydroascorbate reductase uses NADH to reduce monodehydroascorbate back to ascorbate to sustain the cycle. To test this hypothesis, rates of rice nonsymbiotic hemoglobin reduction by ascorbate were measured directly, in the presence and absence of purified rice monodehydroascorbate reductase and NADH. Solution NO scavenging was also measured methodically in the presence and absence of rice nonsymbiotic hemoglobin and monodehydroascorbate reductase, under hypoxic and normoxic conditions, in an effort to gauge the likelihood of these proteins affecting NO metabolism in plant tissues. Our results indicate that ascorbic acid slowly reduces rice nonsymbiotic hemoglobin at a rate identical to myoglobin reduction. The product of the reaction is monodehydroascorbate, which can be efficiently reduced back to ascorbate in the presence of monodehydroascorbate reductase and NADH. However, our NO scavenging results suggest that the direct reduction of plant hemoglobin by ascorbic acid is unlikely to serve as a significant factor in NO metabolism, even in the presence of monodehydroascorbate reductase. Finally, the possibility that the direct reaction of nitrite/nitrous acid and ascorbic acid produces NO was measured at various pH values mimicking hypoxic plant cells. Our results suggest that this reaction is a likely source of NO as the plant cell pH drops below 7, and as nitrite concentrations rise to mM levels during hypoxia.
Collapse
Affiliation(s)
- Xiaoguang Wang
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - Mark S. Hargrove
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
- * E-mail:
| |
Collapse
|
28
|
Royo B, Sosna M, Asensio AC, Moran JF, Ferapontova EE. Direct electrochemistry and environmental sensing of rice hemoglobin immobilized at graphite electrodes. J Electroanal Chem (Lausanne) 2013. [DOI: 10.1016/j.jelechem.2013.06.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
29
|
Wally OS, Mira MM, Hill RD, Stasolla C. Hemoglobin regulation of plant embryogenesis and plant pathogen interaction. PLANT SIGNALING & BEHAVIOR 2013; 8:25264. [PMID: 23759548 PMCID: PMC3999057 DOI: 10.4161/psb.25264] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Plant hemoglobins are ubiquitous molecules involved in several aspects of plant development and stress responses. Studies on the functional aspects of plant hemoglobins at the cellular level in these processes are limited, despite their ability to scavenge nitric oxide (NO), an important signal molecule interfering with hormone synthesis and sensitivity. This mini-review summarizes current knowledge on plant hemoglobins, analyzes their participation in plant pathogen interaction and embryogenesis and proposes a possible model centering on jasmonic acid (JA) as a downstream component of hemoglobin responses.
Collapse
|
30
|
Elhiti M, Hebelstrup KH, Wang A, Li C, Cui Y, Hill RD, Stasolla C. Function of type-2 Arabidopsis hemoglobin in the auxin-mediated formation of embryogenic cells during morphogenesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 74:946-58. [PMID: 23510449 DOI: 10.1111/tpj.12181] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 03/04/2013] [Accepted: 03/13/2013] [Indexed: 05/22/2023]
Abstract
Suppression of Arabidopsis GLB2, a type-2 nonsymbiotic hemoglobin, enhances somatic embryogenesis by increasing auxin production. In the glb2 knock-out line (GLB2-/-), polarization of PIN1 proteins and auxin maxima occurred at the base of the cotyledons of the zygotic explants, which are the sites of embryogenic tissue formation. These changes were also accompanied by a transcriptional upregulation of WUSCHEL (WUS) and SOMATIC EMBRYOGENESIS RECEPTOR KINASE (SERK1), which are markers of embryogenic competence. The increased auxin levels in the GLB2-/- line were ascribed to the induction of several key enzymes of the tryptophan and IAA biosynthetic pathways, including ANTHRANILATE SYNTHASE (α subunit; ASA1), CYTOCHROME P79B2 (CYP79B2) and AMIDASE1 (AMI1). The effects of GLB2 suppression on somatic embryogenesis and IAA synthesis are mediated by increasing levels of nitric oxide (NO) within the embryogenic cells, which repress the expression of the transcription factor MYC2, a well-characterized repressor of the auxin biosynthetic pathway. A model is proposed in which the suppression of GLB2 reduces the degree of NO scavenging by oxyhemoglobin, thereby increasing the cellular NO concentration. The increased levels of NO repress the expression of MYC2, relieving the inhibition of IAA synthesis and increasing cellular IAA, which is the inductive signal promoting embryogenic competence. Besides providing a model for the induction phase of embryogenesis in vitro, these studies propose previously undescribed functions for plant hemoglobins.
Collapse
Affiliation(s)
- Mohamed Elhiti
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T2N2, Canada
| | | | | | | | | | | | | |
Collapse
|
31
|
Matilla AJ, Rodríguez-Gacio MDC. Non-symbiotic hemoglobins in the life of seeds. PHYTOCHEMISTRY 2013; 87:7-15. [PMID: 23286879 DOI: 10.1016/j.phytochem.2012.11.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 11/13/2012] [Accepted: 11/21/2012] [Indexed: 06/01/2023]
Abstract
Non-symbiotic hemoglobins (nsHbs), ancestors of symbiotic-Hbs, are hexacoordinated dimeric proteins, for which the crystal structure is well described. According to the extent of hexacoordination, nsHbs are classified as belonging to class-1 (nsHbs1) or class-2 (nsHbs2). The nsHbs1 show weak hexacoordination, moderate rates of O(2)-binding, very small rates of O(2) dissociation, and a remarkably high affinity for O(2), all suggesting a function involving O(2) scavenging. In contrast, the nsHbs2 exhibit strong hexacoordination, low rates of O(2)-binding and moderately low O(2) dissociation and affinity, suggesting a sensing role for sustained low (μM) levels of O(2). The existence of spatial and specific expression of nsHbs1 suggests that nsHbs play tissue-specific rather than housekeeping functions. The permeation of O(2) into seeds is usually prevented during the desiccation phase and early imbibition, generating an internal hypoxic environment that leads to ATP limitation. During evolution, the seed has acquired mechanisms to prevent or reduce this hypoxic stress. The nsHbs1/NO cycle appear to be involved in modulating the redox state in the seed and in maintaining an active metabolism. Under O(2) deficit, NADH and NO are synthesized in the seed and nsHbs1 scavenges O(2), which is used to transform NO into NO(3)(-) with concomitant formation of Fe(3+)-nsHbs1. Expression of nsHbs1 is not detectable in dry viable seeds. However, in the seeds cross-talk occurs between nsHbs1 and NO during germination. This review considers the current status of our knowledge of seed nsHbs and considers key issues of further work to better understand their role in seed physiology.
Collapse
Affiliation(s)
- Angel J Matilla
- Department of Plant Physiology, University of Santiago de Compostela, 15782 Santiago de Compostela, A Coruña, Spain.
| | | |
Collapse
|
32
|
Morzan UN, Capece L, Marti MA, Estrin DA. Quaternary structure effects on the hexacoordination equilibrium in rice hemoglobin rHb1: Insights from molecular dynamics simulations. Proteins 2013; 81:863-73. [DOI: 10.1002/prot.24245] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 12/11/2012] [Accepted: 12/14/2012] [Indexed: 11/09/2022]
|
33
|
Mukhi N, Dhindwal S, Uppal S, Kumar P, Kaur J, Kundu S. X-ray crystallographic structural characteristics of Arabidopsis hemoglobin I and their functional implications. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1944-56. [PMID: 23485912 DOI: 10.1016/j.bbapap.2013.02.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 02/16/2013] [Accepted: 02/19/2013] [Indexed: 11/24/2022]
Abstract
Genome of the model dicot flowering plant, Arabidopsis thaliana, a popular tool for understanding molecular biology of plant physiology, encodes all three classes of plant hemoglobins that differ in their sequence, ligand binding and spectral properties. As such these globins are of considerable attention. Crystal structures of few members of plant class I nonsymbiotic hemoglobin have been described earlier. Here we report the crystal structure of Arabidopsis class I hemoglobin (AHb1) to 2.2Ǻ and compare its key features with the structures of similar nonsymbiotic hemoglobin from other species. Crystal structure of AHb1 is homologous to the related members with similar globin fold and heme pocket architecture. The structure is homodimeric in the asymmetric unit with both distal and proximal histidines coordinating to the heme iron atom. Residues lining the dimeric interface are also conserved in AHb1 with the exception of additional electrostatic interaction between H112 and E113 of each subunit and that involving Y119 through two water molecules. In addition, differences in heme pocket non-covalent interactions, a novel Ser residue at F7 position, Xe binding site variability, internal cavity topology differences, CD loop conformation and stability and other such properties might explain kinetic variability in AHb1. Detailed cavity analysis of AHb1 showed the presence of a novel long tunnel connecting the distal pockets of both the monomers. Presence of such tunnel, along with conformational heterogeneity observed in the two chains, might suggest cooperative ligand binding and support its role in NO scavenging. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins.
Collapse
Affiliation(s)
- Nitika Mukhi
- Department of Genetics, University of Delhi South Campus, New Delhi, India
| | | | | | | | | | | |
Collapse
|
34
|
Vázquez-Limón C, Castro-Bustos S, Arredondo-Peter R. Spectroscopic analysis of moss (Ceratodon purpureus and Physcomitrella patens) recombinant non-symbiotic hemoglobins. Commun Integr Biol 2013; 5:527-30. [PMID: 23336017 PMCID: PMC3541314 DOI: 10.4161/cib.21473] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Non-symbiotic hemoglobins (nsHbs) are O2-binding proteins widely distributed in land plants, including primitive bryophytes. Little is known about the properties of bryophyte nsHbs. Here, we report the spectroscopic characterization of two moss recombinant nsHbs, CerpurnsHb of Ceratodon purpureus and PhypatnsHb of Physcomitrella patens. Spectra showed that the absorption maxima of the ferrous and ferric forms of recombinant CerpurnsHb are located at 418, 531 and 557 nm and 407, 537, 569 (shoulder) and 632 (shoulder) nm, respectively, and of PhypatnsHb are located at 422, 529 and 557 nm and 407, 531, 571 (shoulder) and 647 (shoulder) nm, respectively. These absorption maxima are similar to those of rice Hb1. Also, the absorption maxima of the oxygenated ferrous form of recombinant CerpurnsHb and PhypatnsHb are located at 412, 541 and 575 nm and 414, 541 and 574 nm, respectively, similar to those of oxygenated rice Hb1 and cowpea leghemoglobin II. This evidence indicates that CerpurnsHb and PhypatnsHb are mostly hexacoordinate and that they bind O2.
Collapse
Affiliation(s)
- Consuelo Vázquez-Limón
- Laboratorio de Biofísica y Biología Molecular; Departamento de Bioquímica y Biología Molecular; Facultad de Ciencias; Universidad Autónoma del Estado de Morelos; Cuernavaca, Morelos México
| | | | | |
Collapse
|
35
|
Tosqui P, Colombo MF. Neuroglobin and cytoglobin: two new members of globin family. Rev Bras Hematol Hemoter 2012; 33:307-11. [PMID: 23049323 PMCID: PMC3415764 DOI: 10.5581/1516-8484.20110082] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 03/14/2011] [Indexed: 01/01/2023] Open
Abstract
The globin family has long been defined by myoglobin and hemoglobin, proteins with the functions of oxygen storage and transportation, respectively. Recently, two new members of this family were discovered: neuroglobin present in neurons and retinal cells and cytoglobin found in various types of tissue. The increased expression of these proteins in hypoxic conditions first suggested a role in oxygen supply. However structural and functional differences, such as the hexacoordinated heme, a high autoxidation rate and different concentrations between different cellular types, have dismissed this hypothesis. The protective role of these globins has already been established. In vitro and in vivo studies have demonstrated increased survival of neurons under stress in the presence of neuroglobin and increased resistance to neurodegenerative diseases. However the mechanism remains unknown. Functions, including detoxification of nitric oxide, free radical scavenging and as an antioxidant and signaling of apoptosis, have also been suggested for neuroglobin and an antifibrotic function for cytoglobin.
Collapse
Affiliation(s)
- Priscilla Tosqui
- Physics Department, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista "Júlio de Mesquita Filho" - IBILCE-UNESP, São Jose do Rio Preto, SP, Brazil
| | | |
Collapse
|
36
|
Mur LAJ, Sivakumaran A, Mandon J, Cristescu SM, Harren FJM, Hebelstrup KH. Haemoglobin modulates salicylate and jasmonate/ethylene-mediated resistance mechanisms against pathogens. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:4375-87. [PMID: 22641422 PMCID: PMC3421983 DOI: 10.1093/jxb/ers116] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 03/19/2012] [Accepted: 03/19/2012] [Indexed: 05/19/2023]
Abstract
Nitric oxide (NO) plays a role in defence against hemibiotrophic pathogens mediated by salicylate (SA) and also necrotrophic pathogens influenced by jasmonate/ethylene (JA/Et). This study examined how NO-oxidizing haemoglobins (Hb) encoded by GLB1, GLB2, and GLB3 in Arabidopsis could influence both defence pathways. The impact of Hb on responses to the hemibiotrophic Pseudomonas syringae pathovar tomato (Pst) AvrRpm1 and the necrotrophic Botrytis cinerea were investigated using glb1, glb2, and glb3 mutant lines and also CaMV 35S GLB1 and GLB2 overexpression lines. In glb1, but not glb2 and glb3, increased resistance was observed to both pathogens but was compromised in the 35S-GLB1. A quantum cascade laser-based sensor measured elevated NO production in glb1 infected with Pst AvrRpm1 and B. cinerea, which was reduced in 35S-GLB1 compared to Col-0. SA accumulation was increased in glb1 and reduced in 35S-GLB1 compared to controls following attack by Pst AvrRpm1. Similarly, JA and Et levels were increased in glb1 but decreased in 35S-GLB1 in response to attack by B. cinerea. Quantitative PCR assays indicated reduced GLB1 expression during challenge with either pathogen, thus this may elevate NO concentration and promote a wide-ranging defence against pathogens.
Collapse
Affiliation(s)
- Luis A J Mur
- Aberystwyth University, Institute of Biological, Environmental and Rural Sciences, Aberystwyth, Wales, SY23 3DA, UK.
| | | | | | | | | | | |
Collapse
|
37
|
Balsamo A, Sannino F, Merlino A, Parrilli E, Tutino ML, Mazzarella L, Vergara A. Role of the tertiary and quaternary structure in the formation of bis-histidyl adducts in cold-adapted hemoglobins. Biochimie 2012; 94:953-60. [DOI: 10.1016/j.biochi.2011.12.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 12/14/2011] [Indexed: 10/14/2022]
|
38
|
Hill RD. Non-symbiotic haemoglobins-What's happening beyond nitric oxide scavenging? AOB PLANTS 2012; 2012:pls004. [PMID: 22479675 PMCID: PMC3292739 DOI: 10.1093/aobpla/pls004] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 01/25/2012] [Indexed: 05/19/2023]
Abstract
BACKGROUND AND AIMS Non-symbiotic haemoglobins have been an active research topic for over 30 years, during which time a considerable portfolio of knowledge has accumulated relative to their chemical and molecular properties, and their presence and mode of induction in plants. While progress has been made towards understanding their physiological role, there remain a number of unanswered questions with respect to their biological function. This review attempts to update recent progress in this area and to introduce a hypothesis as to how non-symbiotic haemoglobins might participate in regulating hormone signal transduction. PRINCIPAL RESULTS Advances have been made towards understanding the structural nuances that explain some of the differences in ligand association characteristics of class 1 and class 2 non-symbiotic haemoglobins. Non-symbiotic haemoglobins have been found to function in seed development and germination, flowering, root development and differentiation, abiotic stress responses, pathogen invasion and symbiotic bacterial associations. Microarray analyses under various stress conditions yield uneven results relative to non-symbiotic haemoglobin expression. Increasing evidence of the role of nitric oxide (NO) in hormone responses and the known involvement of non-symbiotic haemoglobins in scavenging NO provide opportunities for fruitful research, particularly at the cellular level. CONCLUSIONS Circumstantial evidence suggests that non-symbiotic haemoglobins may have a critical function in the signal transduction pathways of auxin, ethylene, jasmonic acid, salicylic acid, cytokinin and abscisic acid. There is a strong need for research on haemoglobin gene expression at the cellular level relative to hormone signal transduction.
Collapse
|
39
|
Gupta KJ, Hebelstrup KH, Mur LAJ, Igamberdiev AU. Plant hemoglobins: important players at the crossroads between oxygen and nitric oxide. FEBS Lett 2011; 585:3843-9. [PMID: 22036787 DOI: 10.1016/j.febslet.2011.10.036] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 10/17/2011] [Accepted: 10/18/2011] [Indexed: 11/16/2022]
Abstract
Plant hemoglobins constitute a diverse group of hemeproteins and evolutionarily belong to three different classes. Class 1 hemoglobins possess an extremely high affinity to oxygen and their main function consists in scavenging of nitric oxide (NO) at very low oxygen levels. Class 2 hemoglobins have a lower oxygen affinity and they facilitate oxygen supply to developing tissues. Symbiotic hemoglobins in nodules have mostly evolved from class 2 hemoglobins. Class 3 hemoglobins are truncated and represent a clade with a very low similarity to class 1 and 2 hemoglobins. They may regulate oxygen delivery at high O(2) concentrations. Depending on their physical properties, hemoglobins belong either to hexacoordinate non-symbiotic or pentacoordinate symbiotic groups. Plant hemoglobins are plausible targets for improving resistance to multiple stresses.
Collapse
Affiliation(s)
- Kapuganti J Gupta
- Department of Plant Physiology, University of Rostock, Rostock, Germany
| | | | | | | |
Collapse
|
40
|
Scorciapino MA, Wallon C, Ceccarelli M. MD simulations of plant hemoglobins: the hexa- to penta-coordinate structural transition. Theor Chem Acc 2011. [DOI: 10.1007/s00214-011-1041-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
41
|
Wang Y, Elhiti M, Hebelstrup KH, Hill RD, Stasolla C. Manipulation of hemoglobin expression affects Arabidopsis shoot organogenesis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2011; 49:1108-1116. [PMID: 21741261 DOI: 10.1016/j.plaphy.2011.06.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 06/16/2011] [Indexed: 05/28/2023]
Abstract
Over the past few years non-symbiotic plant hemoglobins have been described in a variety of plant species where they fulfill several functions ranging from detoxification processes to basic aspects of plant growth and post-embryonic development. To date no information is available on the role of hemoglobins during in vitro morphogenesis. Shoot organogenesis was induced in Arabidopsis lines constitutively expressing class 1, 2 and 3 hemoglobins (GLB1, 2 and 3) and lines in which the respective genes were either downregulated by RNAi (GLB1) or knocked out (GLB2 and GLB3). The process was executed by culturing root explants on an initial auxin-rich callus induction medium (CIM) followed by a transfer onto a cytokinin-containing shoot induction medium (SIM). While the repression of GLB2 inhibited organogenesis the over-expression of GLB1 or GLB2 enhanced the number of shoots produced in culture, and altered the transcript levels of genes participating in cytokinin perception and signalling. The up-regulation of GLB1 or GLB2 activated CKI1 and AHK3, genes encoding cytokinin receptors and affected the transcript levels of cytokinin responsive regulators (ARRs). The expression of Type-A ARRs (ARR4, 5, 7, 15, and 16), feed-back repressors of the cytokinin pathway, was repressed in both hemoglobin over-expressors whereas that of several Type-B ARRs (ARR2, 12, and 13), transcription activators of cytokinin-responsive genes, was induced. Such changes enhanced the sensitivity of the root explants to cytokinin allowing the 35S::GLB1 and 35S::GLB2 lines to produce shoots at low cytokinin concentrations which did not promote organogenesis in the WT line. These results show that manipulation of hemoglobin can modify shoot organogenesis in Arabidopsis and possibly in those systems partially or completely unresponsive to applications of exogenous cytokinins.
Collapse
Affiliation(s)
- Yaping Wang
- Department of Plant Science, University of Manitoba, Winnipeg, R3T2N2, Canada
| | | | | | | | | |
Collapse
|
42
|
Spyrakis F, Bruno S, Bidon-Chanal A, Luque FJ, Abbruzzetti S, Viappiani C, Dominici P, Mozzarelli A. Oxygen binding to Arabidopsis thaliana AHb2 nonsymbiotic hemoglobin: evidence for a role in oxygen transport. IUBMB Life 2011; 63:355-62. [PMID: 21618402 DOI: 10.1002/iub.470] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Nonsymbiotic hemoglobins AHb1 and AHb2 discovered in Arabidopsis thaliana are likely to carry out distinct physiological roles, in consideration of their differences in sequence, structure, expression pattern, and tissue localization. Despite a relatively fast autoxidation in the presence of O(2) , we were able to collect O(2) -binding curves for AHb2 in the presence of a reduction enzymatic system. AHb2 binds O(2) noncooperatively with a p50 of 0.021 ± 0.003 Torr, a value consistent with a recently proposed role in O(2) transport. The analysis of the internal cavities derived from the structures sampled in molecular dynamics simulations confirms strong differences with AHb1, proposed to work as a NO deoxygenase in vivo. Overall, our results are consistent with a role for AHb2 as an oxygen carrier, as recently proposed on the basis of experiments on AHb2-overexpressing mutants of A. thaliana.
Collapse
Affiliation(s)
- Francesca Spyrakis
- Dipartimento di Chimica Generale ed Inorganica, Chimica Analitica, Chimica Fisica, Università degli Studi di Parma, Italy
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Spyrakis F, Luque FJ, Viappiani C. Structural analysis in nonsymbiotic hemoglobins: what can we learn from inner cavities? PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 181:8-13. [PMID: 21600392 DOI: 10.1016/j.plantsci.2011.03.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 03/24/2011] [Accepted: 03/29/2011] [Indexed: 05/09/2023]
Abstract
Plants contain three classes of hemoglobins which are not associated with nitrogen fixing bacteria, and have been accordingly termed nonsymbiotic hemoglobins. The function of nonsymbiotic hemoglobins is as yet mostly unknown. A NO dioxygenase activity has been proposed and demonstrated for some of them in vitro. In this context, a sound molecular mechanism that relates the structure with the biological activity is crucial to suggest a given physiological role. Insight into such a mechanism is now facilitated by recent progress made in both experimental and computational techniques. These studies have highlighted a number of key structural features implicated in the function of nonsymbiotic hemoglobins. The bis-histidyl hexacoordination of the heme in both its ferric and ferrous states provides a powerful and general tool to modulate reactivity, protein dynamics, and shape of the cavities. In addition, the specific arrangement of distal cavity residues provides effective protection against autoxidation. Inspection of the static crystal structures available for both liganded and unliganded states seems unsufficient to explain the function of these proteins. Function appears to be intimately linked with protein flexibility, which influences the dynamical behavior of inner cavities, capable of delivering apolar reactants to the reaction site, and removing charged reaction products. In this mini review, we demonstrate how the integration of information derived from experimental assays and computational studies is valuable and can shed light into the linkage between structural plasticity of nonsymbiotic hemoglobins and their biological role.
Collapse
Affiliation(s)
- Francesca Spyrakis
- Dipartimento di Chimica Generale ed Inorganica, Chimica Analitica, Chimica Fisica, Università degli Studi di Parma, Italy
| | | | | |
Collapse
|
44
|
Kakar S, Sturms R, Tiffany A, Nix JC, DiSpirito AA, Hargrove MS. Crystal Structures of Parasponia and Trema Hemoglobins: Differential Heme Coordination Is Linked to Quaternary Structure. Biochemistry 2011; 50:4273-80. [DOI: 10.1021/bi2002423] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Smita Kakar
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011, United States
| | - Ryan Sturms
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011, United States
| | - Andrea Tiffany
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011, United States
| | - Jay C. Nix
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Alan A. DiSpirito
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011, United States
| | - Mark S. Hargrove
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
45
|
Lipid binding to cytoglobin leads to a change in haem co-ordination: a role for cytoglobin in lipid signalling of oxidative stress. Biochem J 2011; 434:483-92. [PMID: 21171964 DOI: 10.1042/bj20101136] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cytoglobin is a recently discovered hexa-co-ordinate haemoglobin that does not appear to function as a classical oxygen-binding protein. Its function is unknown and studies on the effects of changes in its expression have not decisively determined its role within the cell. In the present paper, we report that the protein is transformed from hexa-co-ordinate to penta-co-ordinate on binding a lipid molecule. This transformation occurs with the ferric oxidation state of the protein, but not the ferrous state, indicating that this process only occurs under an oxidative environment and may thus be related to redox-linked cell signalling mechanisms. Oleate binds to the protein in a 1:1 stoichiometry and with high affinity (K(d)=0.7 μM); however, stopped-flow kinetic measurements yield a K(d) value of 110 μM. The discrepancy between these K(d) values may be rationalized by recognizing that cytoglobin is a disulfide-linked dimer and invoking co-operativity in oleate binding. The lipid-induced transformation of cytoglobin from hexa-co-ordinate to penta-co-ordinate does not occur with similar hexa-co-ordinate haemoglobins such as neuroglobin, and therefore appears to be a unique property of cytoglobin among the haemoglobin superfamily. The lipid-derived transformation may explain why cytoglobin has enhanced peroxidatic activity, converting lipids into various oxidized products, a property virtually absent from neuroglobin and much decreased in myoglobin. We propose that the binding of ferric cytoglobin to lipids and their subsequent transformation may be integral to the physiological function of cytoglobin, generating cell signalling lipid molecules under an oxidative environment.
Collapse
|
46
|
Merlino A, Howes BD, Prisco GD, Verde C, Smulevich G, Mazzarella L, Vergara A. Occurrence and formation of endogenous histidine hexa-coordination in cold-adapted hemoglobins. IUBMB Life 2011; 63:295-303. [PMID: 21491555 DOI: 10.1002/iub.446] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 02/11/2011] [Indexed: 11/06/2022]
Abstract
Spectroscopic and crystallographic evidence of endogenous (His) ligation at the sixth coordination site of the heme iron has been reported for monomeric, dimeric, and tetrameric hemoglobins (Hbs) in both ferrous (hemochrome) and ferric (hemichrome) oxidation states. In particular, the ferric bis- histidyl adduct represents a common accessible ordered state for the β chains of all tetrameric Hbs isolated from Antarctic and sub-Antarctic fish. Indeed, the crystal structures of known tetrameric Hbs in the bis-His state are characterized by a different binding state of the α and β chains. An overall analysis of the bis-histidyl adduct of globin structures deposited in the Protein Data Bank reveals a marked difference between hemichromes in tetrameric Hbs compared to monomeric/dimeric Hbs. Herein, we review the structural, spectroscopic and stability features of hemichromes in tetrameric Antarctic fish Hbs. The role of bis-histidyl adducts is also addressed in a more evolutionary context alongside the concept of its potential physiological role.
Collapse
Affiliation(s)
- Antonello Merlino
- Department of Chemistry "Paolo Corradini," University of Naples "Federico II," Complesso Universitario Monte S. Angelo, Italy
| | | | | | | | | | | | | |
Collapse
|
47
|
Igamberdiev AU, Bykova NV, Hill RD. Structural and functional properties of class 1 plant hemoglobins. IUBMB Life 2011; 63:146-52. [DOI: 10.1002/iub.439] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
48
|
Makino M, Sawai H, Shiro Y, Sugimoto H. Crystal structure of the carbon monoxide complex of human cytoglobin. Proteins 2011; 79:1143-53. [DOI: 10.1002/prot.22950] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 11/05/2010] [Accepted: 11/19/2010] [Indexed: 12/31/2022]
|
49
|
Howes BD, Giordano D, Boechi L, Russo R, Mucciacciaro S, Ciaccio C, Sinibaldi F, Fittipaldi M, Martí MA, Estrin DA, di Prisco G, Coletta M, Verde C, Smulevich G. The peculiar heme pocket of the 2/2 hemoglobin of cold-adapted Pseudoalteromonas haloplanktis TAC125. J Biol Inorg Chem 2010; 16:299-311. [PMID: 21076847 DOI: 10.1007/s00775-010-0726-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Accepted: 10/11/2010] [Indexed: 11/25/2022]
Abstract
The genome of the cold-adapted bacterium Pseudoalteromonas haloplanktis TAC125 contains multiple genes encoding three distinct monomeric hemoglobins exhibiting a 2/2 α-helical fold. In the present work, one of these hemoglobins is studied by resonance Raman, electronic absorption and electronic paramagnetic resonance spectroscopies, kinetic measurements, and different bioinformatic approaches. It is the first cold-adapted bacterial hemoglobin to be characterized. The results indicate that this protein belongs to the 2/2 hemoglobin family, Group II, characterized by the presence of a tryptophanyl residue on the bottom of the heme distal pocket in position G8 and two tyrosyl residues (TyrCD1 and TyrB10). However, unlike other bacterial hemoglobins, the ferric state, in addition to the aquo hexacoordinated high-spin form, shows multiple hexacoordinated low-spin forms, where either TyrCD1 or TyrB10 can likely coordinate the iron. This is the first example in which both TyrCD1 and TyrB10 are proposed to be the residues that are alternatively involved in heme hexacoordination by endogenous ligands.
Collapse
Affiliation(s)
- Barry D Howes
- Dipartimento di Chimica, Università di Firenze, 50019, Sesto Fiorentino (FI), Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Bisht NK, Abbruzzetti S, Uppal S, Bruno S, Spyrakis F, Mozzarelli A, Viappiani C, Kundu S. Ligand migration and hexacoordination in type 1 non-symbiotic rice hemoglobin. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1814:1042-53. [PMID: 20940062 DOI: 10.1016/j.bbapap.2010.09.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 09/26/2010] [Accepted: 09/28/2010] [Indexed: 10/19/2022]
Abstract
Type 1 non-symbiotic rice hemoglobin (rHb1) shows bis-histidyl heme hexacoordination and is capable of binding diatomic ligands reversibly. The biological function is as yet unclear, but the high oxygen affinity makes it unlikely to be involved in oxygen transport. In order to gain insight into possible physiological roles, we have studied CO rebinding kinetics after laser flash photolysis of rHb1 in solution and encapsulated in silica gel. CO rebinding to wt rHb1 in solution occurs through a fast geminate phase with no sign of rebinding from internal docking sites. Encapsulation in silica gel enhances migration to internal cavities. Site-directed mutagenesis of FB10, a residue known to have a key role in the regulation of hexacoordination and ligand affinity, resulted in substantial effects on the rebinding kinetics, partly inhibiting ligand exit to the solvent, enhancing geminate rebinding and enabling ligand migration within the internal cavities. The mutation of HE7, one of the histidyl residues involved in the hexacoordination, prevents hexacoordination, as expected, but also exposes ligand migration through a complex system of cavities. This article is part of a Special Issue entitled: Protein Dynamics: Experimental and Computational Approaches.
Collapse
Affiliation(s)
- Nitin Kumar Bisht
- Dipartimento di Fisica, Università degli Studi di Parma, Parma, Italy
| | | | | | | | | | | | | | | |
Collapse
|