1
|
Lemaire O, Wagner T. All-in-One CO 2 Capture and Transformation: Lessons from Formylmethanofuran Dehydrogenases. Acc Chem Res 2024; 57:3512-3523. [PMID: 39584476 PMCID: PMC11656701 DOI: 10.1021/acs.accounts.4c00623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/26/2024]
Abstract
Carbon-one-unit (C1) feedstocks are generally used in the chemical synthesis of organic molecules, such as solvents, drugs, polymers, and fuels. Contrary to the dangerous and polluting carbon monoxide mostly coming from fossil fuels, formate and formamide are attractive alternative feedstocks for chemical synthesis. As these are currently mainly obtained from the oil industry, novel synthetic routes have been developed based on the transformation of the greenhouse gas CO2. Such developments are motivated by the urgent need for carbon chemical recycling, leading to a sustainable future. The inert nature of CO2 represents a challenge for chemists to activate and specifically convert the molecule through an affordable and efficient process. The chemical transformation could be inspired by biological CO2 activation, in which highly specialized enzymes perform atmospheric CO2 fixation through relatively abundant metal catalysts. In this Account, we describe and discuss the potential of one of the most efficient biological CO2-converting systems: the formylmethanofuran dehydrogenase (abbreviated as FMD).FMDs are multienzymatic complexes found in archaea that capture CO2 as a formyl group branched on the amine moiety of the methanofuran (MFR) cofactor. This overall reaction leading to formyl-MFR production does not require ATP hydrolysis as compared to the CO2-fixing microbes relying on the reductive Wood-Ljungdahl pathway, highlighting a different operative mode that saves cellular energy. FMD reaction represents the entry point in hydrogenotrophic methanogenesis (H2 and CO2 dependent or formate dependent) and operates in reverse in other methanogenic pathways and microbial metabolisms. Therefore, FMD is a key enzyme in the planetary carbon cycle. After decades of investigations, recent studies have provided a description of the FMD structure, reaction mechanism, and potential for the electroreduction of CO2, to which our laboratory has been actively contributing. FMD is an "all-in-one" enzyme catalyzing a redox-active transformation coupled to a redox-neutral transformation at two very different metal cofactors where new C-H and C-N bonds are made. First, the principle of the overall reaction consisting of an exergonic CO2 reduction coupled with an endergonic formate condensation on MFR is resumed. Then, this Account exposes the molecular details of the active sites and provides an overview of each catalytic mechanism. It also describes the natural versatility of electron-delivery modules fueling CO2 reduction and extends it to the possibilities of using artificial systems such as electrodes. A perspective concludes on how the mechanistic of FMD could be applied to produce CO2-based chemical intermediates to synthesize organic molecules. Indeed, through its biochemical properties, the enzyme opens opportunities for CO2 electroreduction to generate molecules such as formate and formamide derivatives, which are all intermediates for synthesizing organic compounds. Transferring the chemical knowledge acquired from these biological systems would provide coherent models that can lead to further development in the field of synthetic biology and bio-inspired synthetic chemistry to perform large-scale CO2 conversion into building blocks for chemical synthesis.
Collapse
Affiliation(s)
- Olivier
N. Lemaire
- Max Planck Institute for
Marine Microbiology, Celsiusstraße 1, 28359 Bremen, Germany
| | | |
Collapse
|
2
|
Papageorgiou AC. Structural Characterization of Multienzyme Assemblies: An Overview. Methods Mol Biol 2022; 2487:51-72. [PMID: 35687229 DOI: 10.1007/978-1-0716-2269-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Multienzyme assemblies have attracted significant attention in recent years for use in industrial applications instead of single enzymes. Owing to their ability to catalyze cascade reactions, multienzyme assemblies have become inspirational tools for the in vitro construction of multienzyme molecular machines. The use of such molecular machines could offer several advantages such as fewer side reactions, a high product yield, a fast reaction speed, easy product separation, a tolerable toxic environment, and robust system operability compared to current microbial cell catalytic systems. Besides, they can provide all the benefits found in the use of enzymes, including reusability, catalytic efficiency, and specificity. Similar to single enzymes, multienzyme assemblies could offer economical and environmentally friendly alternatives to conventional catalysts and play a central role as biocatalysts in green chemistry applications. However, detailed characterization of multienzyme assemblies and a full understanding of their mechanistic details are required for their efficient use in industrial biotransformations. Since the determination of the first enzyme structure in 1965, structural information has played a pivotal role in the characterization of enzymes and elucidation of their structure-function relationship. Among the structural biology techniques, X-ray crystallography has provided key mechanistic details into multienzyme assemblies. Here, the structural characterization of multienzyme assemblies is reviewed and several examples are provided.
Collapse
|
3
|
Arseni D, Hasegawa M, Murzin AG, Kametani F, Arai M, Yoshida M, Ryskeldi-Falcon B. Structure of pathological TDP-43 filaments from ALS with FTLD. Nature 2022; 601:139-143. [PMID: 34880495 PMCID: PMC7612255 DOI: 10.1038/s41586-021-04199-3] [Citation(s) in RCA: 171] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/02/2021] [Indexed: 01/25/2023]
Abstract
The abnormal aggregation of TAR DNA-binding protein 43 kDa (TDP-43) in neurons and glia is the defining pathological hallmark of the neurodegenerative disease amyotrophic lateral sclerosis (ALS) and multiple forms of frontotemporal lobar degeneration (FTLD)1,2. It is also common in other diseases, including Alzheimer's and Parkinson's. No disease-modifying therapies exist for these conditions and early diagnosis is not possible. The structures of pathological TDP-43 aggregates are unknown. Here we used cryo-electron microscopy to determine the structures of aggregated TDP-43 in the frontal and motor cortices of an individual who had ALS with FTLD and from the frontal cortex of a second individual with the same diagnosis. An identical amyloid-like filament structure comprising a single protofilament was found in both brain regions and individuals. The ordered filament core spans residues 282-360 in the TDP-43 low-complexity domain and adopts a previously undescribed double-spiral-shaped fold, which shows no similarity to those of TDP-43 filaments formed in vitro3,4. An abundance of glycine and neutral polar residues facilitates numerous turns and restricts β-strand length, which results in an absence of β-sheet stacking that is associated with cross-β amyloid structure. An uneven distribution of residues gives rise to structurally and chemically distinct surfaces that face external densities and suggest possible ligand-binding sites. This work enhances our understanding of the molecular pathogenesis of ALS and FTLD and informs the development of diagnostic and therapeutic agents that target aggregated TDP-43.
Collapse
Affiliation(s)
- Diana Arseni
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Masato Hasegawa
- Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | | | - Fuyuki Kametani
- Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Makoto Arai
- Department of Psychiatry and Behavioural Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Mari Yoshida
- Institute for Medical Science of Aging, Aichi Medical University, Aichi, Japan
| | | |
Collapse
|
4
|
Vanoni MA. Iron-sulfur flavoenzymes: the added value of making the most ancient redox cofactors and the versatile flavins work together. Open Biol 2021; 11:210010. [PMID: 33947244 PMCID: PMC8097209 DOI: 10.1098/rsob.210010] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Iron-sulfur (Fe-S) flavoproteins form a broad and growing class of complex, multi-domain and often multi-subunit proteins coupling the most ancient cofactors (the Fe-S clusters) and the most versatile coenzymes (the flavin coenzymes, FMN and FAD). These enzymes catalyse oxidoreduction reactions usually acting as switches between donors of electron pairs and acceptors of single electrons, and vice versa. Through selected examples, the enzymes' structure−function relationships with respect to rate and directionality of the electron transfer steps, the role of the apoprotein and its dynamics in modulating the electron transfer process will be discussed.
Collapse
Affiliation(s)
- Maria Antonietta Vanoni
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| |
Collapse
|
5
|
Methylofuran is a prosthetic group of the formyltransferase/hydrolase complex and shuttles one-carbon units between two active sites. Proc Natl Acad Sci U S A 2019; 116:25583-25590. [PMID: 31776258 PMCID: PMC6926001 DOI: 10.1073/pnas.1911595116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Methylotrophs play a crucial role in the global carbon cycle as they oxidize reduced one-carbon compounds such as methanol or methane to CO2. The step-wise conversion of these substrates generally takes place while the one-carbon units are bound to diffusible carrier molecules. However, our crystal structure of the formyltransferase/hydrolase complex from Methylorubrum extorquens demonstrates that the one-carbon carrier methylofuran tightly binds to the enzyme via its extended and branched polyglutamate chain. A swinging motion of the coenzyme then shuttles one-carbon units between the two active sites of the enzyme complex over a distance of 50 Å. The structure further highlights how the bacterial formate generation system relates to the archaeal CO2 fixation system. Methylotrophy, the ability of microorganisms to grow on reduced one-carbon substrates such as methane or methanol, is a feature of various bacterial species. The prevailing oxidation pathway depends on tetrahydromethanopterin (H4MPT) and methylofuran (MYFR), an analog of methanofuran from methanogenic archaea. Formyltransferase/hydrolase complex (Fhc) generates formate from formyl-H4MPT in two consecutive reactions where MYFR acts as a carrier of one-carbon units. Recently, we chemically characterized MYFR from the model methylotroph Methylorubrum extorquens and identified an unusually long polyglutamate side chain of up to 24 glutamates. Here, we report on the crystal structure of Fhc to investigate the function of the polyglutamate side chain in MYFR and the relatedness of the enzyme complex with the orthologous enzymes in archaea. We identified MYFR as a prosthetic group that is tightly, but noncovalently, bound to Fhc. Surprisingly, the structure of Fhc together with MYFR revealed that the polyglutamate side chain of MYFR is branched and contains glutamates with amide bonds at both their α- and γ-carboxyl groups. This negatively charged and branched polyglutamate side chain interacts with a cluster of conserved positively charged residues of Fhc, allowing for strong interactions. The MYFR binding site is located equidistantly from the active site of the formyltransferase (FhcD) and metallo-hydrolase (FhcA). The polyglutamate serves therefore an additional function as a swinging linker to shuttle the one-carbon carrying amine between the two active sites, thereby likely increasing overall catalysis while decreasing the need for high intracellular MYFR concentrations.
Collapse
|
6
|
Swuec P, Chaves-Sanjuan A, Camilloni C, Vanoni MA, Bolognesi M. Cryo-EM Structures of Azospirillum brasilense Glutamate Synthase in Its Oligomeric Assemblies. J Mol Biol 2019; 431:4523-4526. [PMID: 31473159 DOI: 10.1016/j.jmb.2019.08.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/13/2019] [Accepted: 08/19/2019] [Indexed: 10/26/2022]
Abstract
Bacterial NADPH-dependent glutamate synthase (GltS) is a complex iron-sulfur flavoprotein that catalyzes the reductive synthesis of two L-Glu molecules from L-Gln and 2-oxo-glutarate. GltS functional unit hosts an α-subunit (αGltS) and a β-subunit (βGltS) that assemble in different αβ oligomers in solution. Here, we present the cryo-electron microscopy structures of Azospirillum brasilense GltS in four different oligomeric states (α4β3, α4β4, α6β4 and α6β6, in the 3.5- to 4.1-Å resolution range). Our study provides a comprehensive GltS model that details the inter-protomeric assemblies and allows unequivocal location of the FAD cofactor and of two electron transfer [4Fe-4S]+1,+2 clusters within βGltS.
Collapse
Affiliation(s)
- Paolo Swuec
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy; Centro di Ricerca Pediatrica Romeo ed Enrica Invernizzi, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Antonio Chaves-Sanjuan
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Carlo Camilloni
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Maria Antonietta Vanoni
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Martino Bolognesi
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy; Centro di Ricerca Pediatrica Romeo ed Enrica Invernizzi, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy.
| |
Collapse
|
7
|
Tsitkov S, Pesenti T, Palacci H, Blanchet J, Hess H. Queueing Theory-Based Perspective of the Kinetics of “Channeled” Enzyme Cascade Reactions. ACS Catal 2018. [DOI: 10.1021/acscatal.8b02760] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Stanislav Tsitkov
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| | - Theo Pesenti
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
- École Supérieure de Physique et de Chimie Industrielles (ESPCI), Paris, 75231 Cedex 05, France
| | - Henri Palacci
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| | - Jose Blanchet
- Management Science and Engineering, Stanford University, Palo Alto, California 94305, United States
| | - Henry Hess
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| |
Collapse
|
8
|
Zanello P. Structure and electrochemistry of proteins harboring iron-sulfur clusters of different nuclearities. Part II. [4Fe-4S] and [3Fe-4S] iron-sulfur proteins. J Struct Biol 2018; 202:250-263. [DOI: 10.1016/j.jsb.2018.01.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/11/2018] [Accepted: 01/29/2018] [Indexed: 01/27/2023]
|
9
|
Fam RR, Hiong KC, Choo CY, Wong WP, Chew SF, Ip YK. Molecular characterization of a novel algal glutamine synthetase (GS) and an algal glutamate synthase (GOGAT) from the colorful outer mantle of the giant clam, Tridacna squamosa , and the putative GS-GOGAT cycle in its symbiotic zooxanthellae. Gene 2018; 656:40-52. [DOI: 10.1016/j.gene.2018.02.062] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 02/09/2018] [Accepted: 02/23/2018] [Indexed: 12/25/2022]
|
10
|
Hirasawa M, Solis J, Vaidyanathan N, Srivastava AP, Wynn RM, Sutton RB, Knaff DB. Identification of the ferredoxin interaction sites on ferredoxin-dependent glutamate synthase from Synechocystis sp. PCC 6803. PHOTOSYNTHESIS RESEARCH 2017; 134:317-328. [PMID: 28975508 DOI: 10.1007/s11120-017-0446-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 09/19/2017] [Indexed: 06/07/2023]
Abstract
Based on in silico docking methods, five amino acids in glutamate synthase (Gln-467, His-1144, Asn-1147, Arg-1162, and Trp-676) likely constitute key binding residues in the interface of a glutamate synthase:ferredoxin complex. Although all interfacial mutants studied showed the ability to form a complex under low ionic strength, these docking mutations showed significantly less ferredoxin-dependent activities, while still retaining enzymatic activity. Furthermore, isothermal titration calorimetry showed a possible 1:2 molar ratio between the wild-type glutamate synthase and ferredoxin. However, each of our interfacial mutants showed only a 1:1 complex with ferredoxin, suggesting that the mutations directly affect the glutamate synthase:ferredoxin heterodimer interface.
Collapse
Affiliation(s)
- Masakazu Hirasawa
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409-1061, USA
| | - Jacaranda Solis
- Center for Biotechnology and Genomics, Texas Tech University, Lubbock, TX, 79409-3132, USA
- Immunology and Molecular Microbiology, Texas Tech University Health Science Center, Lubbock, TX, 79430-6591, USA
| | - Nanditha Vaidyanathan
- Center for Biotechnology and Genomics, Texas Tech University, Lubbock, TX, 79409-3132, USA
- Depuy Synthes Companies, 1302 Wrights Lane East, West Chester, PA, 19380, USA
| | - Anurag P Srivastava
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409-1061, USA
- Department of Biochemistry and Molecular Biology, Rosalind Franklin University of Medicine and Science, North Chicago, Illinoi, 60064, USA
| | - R Max Wynn
- Departments of Internal Medicine and Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, 75390-9038, USA.
| | - Roger B Sutton
- Department of Cell Physiology and Molecular Biophysics, Texas Tech Health Science Center, Lubbock, TX, 79430-6551, USA
| | - David B Knaff
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409-1061, USA
- Center for Biotechnology and Genomics, Texas Tech University, Lubbock, TX, 79409-3132, USA
| |
Collapse
|
11
|
Liu LK, Becker DF, Tanner JJ. Structure, function, and mechanism of proline utilization A (PutA). Arch Biochem Biophys 2017; 632:142-157. [PMID: 28712849 DOI: 10.1016/j.abb.2017.07.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/11/2017] [Accepted: 07/12/2017] [Indexed: 01/13/2023]
Abstract
Proline has important roles in multiple biological processes such as cellular bioenergetics, cell growth, oxidative and osmotic stress response, protein folding and stability, and redox signaling. The proline catabolic pathway, which forms glutamate, enables organisms to utilize proline as a carbon, nitrogen, and energy source. FAD-dependent proline dehydrogenase (PRODH) and NAD+-dependent glutamate semialdehyde dehydrogenase (GSALDH) convert proline to glutamate in two sequential oxidative steps. Depletion of PRODH and GSALDH in humans leads to hyperprolinemia, which is associated with mental disorders such as schizophrenia. Also, some pathogens require proline catabolism for virulence. A unique aspect of proline catabolism is the multifunctional proline utilization A (PutA) enzyme found in Gram-negative bacteria. PutA is a large (>1000 residues) bifunctional enzyme that combines PRODH and GSALDH activities into one polypeptide chain. In addition, some PutAs function as a DNA-binding transcriptional repressor of proline utilization genes. This review describes several attributes of PutA that make it a remarkable flavoenzyme: (1) diversity of oligomeric state and quaternary structure; (2) substrate channeling and enzyme hysteresis; (3) DNA-binding activity and transcriptional repressor function; and (4) flavin redox dependent changes in subcellular location and function in response to proline (functional switching).
Collapse
Affiliation(s)
- Li-Kai Liu
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, United States
| | - Donald F Becker
- Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, 68588-0664, United States.
| | - John J Tanner
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, United States; Department of Chemistry, University of Missouri, Columbia, MO, 65211, United States.
| |
Collapse
|
12
|
The competition between chemistry and biology in assembling iron-sulfur derivatives. Molecular structures and electrochemistry. Part IV. {[Fe3S4](SγCys)3} proteins. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2016.09.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Wagner T, Ermler U, Shima S. The methanogenic CO2 reducing-and-fixing enzyme is bifunctional and contains 46 [4Fe-4S] clusters. Science 2016; 354:114-117. [DOI: 10.1126/science.aaf9284] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 09/02/2016] [Indexed: 11/02/2022]
|
14
|
Vanoni MA. Glutamate synthase: A case-study for in silico drug screening on a complex iron–sulfur flavoenzyme? Gene X 2015; 564:233-5. [DOI: 10.1016/j.gene.2015.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 04/01/2015] [Indexed: 10/23/2022] Open
|
15
|
Tanwar AS, Sindhikara DJ, Hirata F, Anand R. Determination of the formylglycinamide ribonucleotide amidotransferase ammonia pathway by combining 3D-RISM theory with experiment. ACS Chem Biol 2015; 10:698-704. [PMID: 25551173 DOI: 10.1021/cb501015r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Molecular tunnels in enzyme systems possess variable architecture and are therefore difficult to predict. In this work, we design and apply an algorithm to resolve the pathway followed by ammonia using the bifunctional enzyme formylglycinamide ribonucleotide amidotransferase (FGAR-AT) as a model system. Though its crystal structure has been determined, an ammonia pathway connecting the glutaminase domain to the 30 Å distal FGAR/ATP binding site remains elusive. Crystallography suggested two purported paths: an N-terminal-adjacent path (path 1) and an auxiliary ADP-adjacent path (path 2). The algorithm presented here, RismPath, which enables fast and accurate determination of solvent distribution inside a protein channel, predicted path 2 as the preferred mode of ammonia transfer. Supporting experimental studies validate the identity of the path, and results lead to the conclusion that the residues in the middle of the channel do not partake in catalytic coupling and serve only as channel walls facilitating ammonia transfer.
Collapse
Affiliation(s)
- Ajay S. Tanwar
- Department
of Chemistry, Indian Institute of Technology, IIT-Bombay, Mumbai 400076, India
| | - Daniel J. Sindhikara
- College
of Life Sciences, Ritsumeikan University and Molecular Design Frontier Co. Ltd., Kyoto, Japan
| | - Fumio Hirata
- College
of Life Sciences, Ritsumeikan University and Molecular Design Frontier Co. Ltd., Kyoto, Japan
| | - Ruchi Anand
- Department
of Chemistry, Indian Institute of Technology, IIT-Bombay, Mumbai 400076, India
| |
Collapse
|
16
|
Uddin R, Saeed K, Khan W, Azam SS, Wadood A. Metabolic pathway analysis approach: Identification of novel therapeutic target against methicillin resistant Staphylococcus aureus. Gene 2015; 556:213-26. [DOI: 10.1016/j.gene.2014.11.056] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 11/18/2014] [Accepted: 11/25/2014] [Indexed: 12/31/2022]
|
17
|
Tripathy JN, Hirasawa M, Sutton RB, Dasgupta A, Vaidyanathan N, Zabet-Moghaddam M, Florencio FJ, Srivastava AP, Knaff DB. A loop unique to ferredoxin-dependent glutamate synthases is not absolutely essential for ferredoxin-dependent catalytic activity. PHOTOSYNTHESIS RESEARCH 2015; 123:129-139. [PMID: 25288260 DOI: 10.1007/s11120-014-0044-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 09/22/2014] [Indexed: 06/03/2023]
Abstract
It had been proposed that a loop, typically containing 26 or 27 amino acids, which is only present in monomeric, ferredoxin-dependent, "plant-type" glutamate synthases and is absent from the catalytic α-subunits of both NADPH-dependent, heterodimeric glutamate synthases found in non-photosynthetic bacteria and NADH-dependent heterodimeric cyanobacterial glutamate synthases, plays a key role in productive binding of ferredoxin to the plant-type enzymes. Site-directed mutagenesis has been used to delete the entire 27 amino acid-long loop in the ferredoxin-dependent glutamate synthase from the cyanobacterium Synechocystis sp. PCC 6803. The specific activity of the resulting loopless variant of this glutamate synthase, when reduced ferredoxin serves as the electron donor, is actually higher than that of the wild-type enzyme, suggesting that this loop is not absolutely essential for efficient electron transfer from reduced ferredoxin to the enzyme. These results are consistent with the results of an in-silico study that suggests that the loop is unlikely to interact directly with ferredoxin in the energetically most favorable model of a 1:1 complex of ferredoxin with the wild-type enzyme.
Collapse
Affiliation(s)
- Jatindra N Tripathy
- Center for Biotechnology and Genomics, Texas Tech University, Lubbock, TX, 79409-3132, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Kimata-Ariga Y, Hase T. Multiple complexes of nitrogen assimilatory enzymes in spinach chloroplasts: possible mechanisms for the regulation of enzyme function. PLoS One 2014; 9:e108965. [PMID: 25271437 PMCID: PMC4182809 DOI: 10.1371/journal.pone.0108965] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 09/05/2014] [Indexed: 12/23/2022] Open
Abstract
Assimilation of nitrogen is an essential biological process for plant growth and productivity. Here we show that three chloroplast enzymes involved in nitrogen assimilation, glutamate synthase (GOGAT), nitrite reductase (NiR) and glutamine synthetase (GS), separately assemble into distinct protein complexes in spinach chloroplasts, as analyzed by western blots under blue native electrophoresis (BN-PAGE). GOGAT and NiR were present not only as monomers, but also as novel complexes with a discrete size (730 kDa) and multiple sizes (>120 kDa), respectively, in the stromal fraction of chloroplasts. These complexes showed the same mobility as each monomer on two-dimensional (2D) SDS-PAGE after BN-PAGE. The 730 kDa complex containing GOGAT dissociated into monomers, and multiple complexes of NiR reversibly converted into monomers, in response to the changes in the pH of the stromal solvent. On the other hand, the bands detected by anti-GS antibody were present not only in stroma as a conventional decameric holoenzyme complex of 420 kDa, but also in thylakoids as a novel complex of 560 kDa. The polypeptide in the 560 kDa complex showed slower mobility than that of the 420 kDa complex on the 2D SDS-PAGE, implying the assembly of distinct GS isoforms or a post-translational modification of the same GS protein. The function of these multiple complexes was evaluated by in-gel GS activity under native conditions and by the binding ability of NiR and GOGAT with their physiological electron donor, ferredoxin. The results indicate that these multiplicities in size and localization of the three nitrogen assimilatory enzymes may be involved in the physiological regulation of their enzyme function, in a similar way as recently described cases of carbon assimilatory enzymes.
Collapse
Affiliation(s)
- Yoko Kimata-Ariga
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
- * E-mail:
| | - Toshiharu Hase
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
19
|
Regulation of the intersubunit ammonia tunnel in Mycobacterium tuberculosis glutamine-dependent NAD+ synthetase. Biochem J 2012; 443:417-26. [PMID: 22280445 DOI: 10.1042/bj20112210] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Glutamine-dependent NAD+ synthetase is an essential enzyme and a validated drug target in Mycobacterium tuberculosis (mtuNadE). It catalyses the ATP-dependent formation of NAD+ from NaAD+ (nicotinic acid-adenine dinucleotide) at the synthetase active site and glutamine hydrolysis at the glutaminase active site. An ammonia tunnel 40 Å (1 Å=0.1 nm) long allows transfer of ammonia from one active site to the other. The enzyme displays stringent kinetic synergism; however, its regulatory mechanism is unclear. In the present paper, we report the structures of the inactive glutaminase C176A variant in an apo form and in three synthetase-ligand complexes with substrates (NaAD+/ATP), substrate analogue {NaAD+/AMP-CPP (adenosine 5'-[α,β-methylene]triphosphate)} and intermediate analogues (NaAD+/AMP/PPi), as well as the structure of wild-type mtuNadE in a product complex (NAD+/AMP/PPi/glutamate). This series of structures provides snapshots of the ammonia tunnel during the catalytic cycle supported also by kinetics and mutagenesis studies. Three major constriction sites are observed in the tunnel: (i) at the entrance near the glutaminase active site; (ii) in the middle of the tunnel; and (iii) at the end near the synthetase active site. Variation in the number and radius of the tunnel constrictions is apparent in the crystal structures and is related to ligand binding at the synthetase domain. These results provide new insight into the regulation of ammonia transport in the intermolecular tunnel of mtuNadE.
Collapse
|
20
|
Shinmura K, Muraki N, Yoshida A, Hase T, Kurisu G. Crystallization and preliminary X-ray studies of an electron-transfer complex of ferredoxin and ferredoxin-dependent glutamate synthase from the cyanobacterium Leptolyngbya boryana. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:324-7. [PMID: 22442234 PMCID: PMC3310542 DOI: 10.1107/s1744309112003387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 01/26/2012] [Indexed: 11/11/2022]
Abstract
Ferredoxin (Fd) dependent glutamate synthase (Fd-GOGAT) is a key enzyme involved in nitrogen assimilation that catalyzes the two-electron reductive conversion of Gln and 2-oxoglutarate to two molecules of Glu. Fd serves as an electron donor for Fd-GOGAT and the two proteins form a transient electron-transfer complex. In this study, these two proteins were cocrystallized using the hanging-drop vapour-diffusion method. Diffraction data were collected and processed at 2.65 Å resolution. The crystals belonged to space group P4(3), with unit-cell parameters a = b = 84.95, c = 476.31 Å.
Collapse
Affiliation(s)
- Kanako Shinmura
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Norifumi Muraki
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Ayako Yoshida
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Toshiharu Hase
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Genji Kurisu
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
21
|
Zhao L, Dewage SW, Bell MJ, Chang KM, Fatma S, Joshi N, Silva G, Cisneros GA, Hendrickson TL. The kinase activity of the Helicobacter pylori Asp-tRNA(Asn)/Glu-tRNA(Gln) amidotransferase is sensitive to distal mutations in its putative ammonia tunnel. Biochemistry 2012; 51:273-85. [PMID: 22229412 DOI: 10.1021/bi201143x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Helicobacter pylori (Hp) Asp-tRNA(Asn)/Glu-tRNA(Gln) amidotransferase (AdT) plays important roles in indirect aminoacylation and translational fidelity. AdT has two active sites, in two separate subunits. Kinetic studies have suggested that interdomain communication occurs between these subunits; however, this mechanism is not well understood. To explore domain-domain communication in AdT, we adapted an assay and optimized it to kinetically characterize the kinase activity of Hp AdT. This assay was applied to the analysis of a series of point mutations at conserved positions throughout the putative AdT ammonia tunnel that connects the two active sites. Several mutations that caused significant decreases in AdT's kinase activity (reduced by 55-75%) were identified. Mutations at Thr149 (37 Å distal to the GatB kinase active site) and Lys89 (located at the interface of GatA and GatB) were detrimental to AdT's kinase activity, suggesting that these mutations have disrupted interdomain communication between the two active sites. Models of wild-type AdT, a valine mutation at Thr149, and an arginine mutation at Lys89 were subjected to molecular dynamics simulations. A comparison of wild-type, T149V, and K89R AdT simulation results unmasks 59 common residues that are likely involved in connecting the two active sites.
Collapse
Affiliation(s)
- Liangjun Zhao
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Dincturk HB, Cunin R, Akce H. Expression and functional analysis of glutamate synthase small subunit-like proteins from archaeon Pyrococcus horikoshii. Microbiol Res 2010; 166:294-303. [PMID: 20630732 DOI: 10.1016/j.micres.2010.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 03/07/2010] [Accepted: 03/18/2010] [Indexed: 11/30/2022]
Abstract
Glutamate synthase, glutamine α-ketoglutarate amidotransferase (often abbreviated as GOGAT) is a key enzyme in the early stages of ammonia assimilation in bacteria, algae and plants, catalyzing the reductive transamidation of the amido nitrogen from glutamine to α-ketoglutarate to form two molecules of glutamate. Most bacterial glutamate synthases consist of a large and small subunit. The genomes of three Pyrococcus species harbour several open reading frames which show homology with the small subunit of glutamate synthase. There are no open reading frames which may be coding for a large subunit responsible for the glutamate formation in these pyrococcal genomes. In this work, two open reading frames PH0876 and PH1873 from P. horikoshii were cloned and expressed in Escherichia coli as soluble proteins. Both proteins show NADPH-dependent oxidoreductase activity using artificial electron acceptors iodonitrotetrazolium chloride at thermophilic conditions. It is possible that these open reading frames are the products of gene duplication and that they are the early forms of an electron transfer domain in archaea which may have later contributed to many electron transfer enzymes.
Collapse
Affiliation(s)
- H Benan Dincturk
- Department of Molecular Biology and Genetics, Faculty of Sciences and Letters, Istanbul Technical University Maslak, 34469 Istanbul, Turkey.
| | | | | |
Collapse
|
23
|
Glass JB, Wolfe-Simon F, Anbar AD. Coevolution of metal availability and nitrogen assimilation in cyanobacteria and algae. GEOBIOLOGY 2009; 7:100-23. [PMID: 19320747 DOI: 10.1111/j.1472-4669.2009.00190.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Marine primary producers adapted over eons to the changing chemistry of the oceans. Because a number of metalloenzymes are necessary for N assimilation, changes in the availability of transition metals posed a particular challenge to the supply of this critical nutrient that regulates marine biomass and productivity. Integrating recently developed geochemical, biochemical, and genetic evidence, we infer that the use of metals in N assimilation - particularly Fe and Mo - can be understood in terms of the history of metal availability through time. Anoxic, Fe-rich Archean oceans were conducive to the evolution of Fe-using enzymes that assimilate abiogenic NH(4)(+) and NO(2)(-). The N demands of an expanding biosphere were satisfied by the evolution of biological N(2) fixation, possibly utilizing only Fe. Trace O(2) in late Archean environments, and the eventual 'Great Oxidation Event' c. 2.3 Ga, mobilized metals such as Mo, enabling the evolution of Mo (or V)-based N(2) fixation and the Mo-dependent enzymes for NO(3)(-) assimilation and denitrification by prokaryotes. However, the subsequent onset of deep-sea euxinia, an increasingly-accepted idea, may have kept ocean Mo inventories low and depressed Fe, limiting the rate of N(2) fixation and the supply of fixed N. Eukaryotic ecosystems may have been particularly disadvantaged by N scarcity and the high Mo requirement of eukaryotic NO(3)(-) assimilation. Thorough ocean oxygenation in the Neoproterozoic led to Mo-rich oceans, possibly contributing to the proliferation of eukaryotes and thus the Cambrian explosion of metazoan life. These ideas can be tested by more intensive study of the metal requirements in N assimilation and the biological strategies for metal uptake, regulation, and storage.
Collapse
Affiliation(s)
- J B Glass
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA.
| | | | | |
Collapse
|
24
|
Jamai A, Salomé PA, Schilling SH, Weber APM, McClung CR. Arabidopsis photorespiratory serine hydroxymethyltransferase activity requires the mitochondrial accumulation of ferredoxin-dependent glutamate synthase. THE PLANT CELL 2009; 21:595-606. [PMID: 19223513 PMCID: PMC2660619 DOI: 10.1105/tpc.108.063289] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The dual affinity of ribulose-1,5-bisphosphate carboxylase/oxygenase for O(2) and CO(2) results in the net loss of fixed carbon and energy in a process termed photorespiration. The photorespiratory cycle is complex and occurs in three organelles, chloroplasts, peroxisomes, and mitochondria, which necessitates multiple steps to transport metabolic intermediates. Genetic analysis has identified a number of mutants exhibiting photorespiratory chlorosis at ambient CO(2), including several with defects in mitochondrial serine hydroxymethyltransferase (SHMT) activity. One class of mutants deficient in SHMT1 activity affects SHM1, which encodes the mitochondrial SHMT required for photorespiration. In this work, we describe a second class of SHMT1-deficient mutants defective in a distinct gene, GLU1, which encodes Ferredoxin-dependent Glutamate Synthase (Fd-GOGAT). Fd-GOGAT is a chloroplastic enzyme responsible for the reassimilation of photorespiratory ammonia as well as for primary nitrogen assimilation. We show that Fd-GOGAT is dual targeted to the mitochondria and the chloroplasts. In the mitochondria, Fd-GOGAT interacts physically with SHMT1, and this interaction is necessary for photorespiratory SHMT activity. The requirement of protein-protein interactions and complex formation for photorespiratory SHMT activity demonstrates more complicated regulation of this crucial high flux pathway than anticipated.
Collapse
Affiliation(s)
- Aziz Jamai
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA
| | | | | | | | | |
Collapse
|
25
|
JONIĆ S, SORZANO C, BOISSET N. Comparison of single-particle analysis and electron tomography approaches: an overview. J Microsc 2008; 232:562-79. [DOI: 10.1111/j.1365-2818.2008.02119.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Podar M, Anderson I, Makarova KS, Elkins JG, Ivanova N, Wall MA, Lykidis A, Mavromatis K, Sun H, Hudson ME, Chen W, Deciu C, Hutchison D, Eads JR, Anderson A, Fernandes F, Szeto E, Lapidus A, Kyrpides NC, Saier MH, Richardson PM, Rachel R, Huber H, Eisen JA, Koonin EV, Keller M, Stetter KO. A genomic analysis of the archaeal system Ignicoccus hospitalis-Nanoarchaeum equitans. Genome Biol 2008; 9:R158. [PMID: 19000309 PMCID: PMC2614490 DOI: 10.1186/gb-2008-9-11-r158] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Revised: 10/21/2008] [Accepted: 11/10/2008] [Indexed: 01/03/2023] Open
Abstract
Sequencing of the complete genome of Ignicoccus hospitalis gives insight into its association with another species of Archaea, Nanoarchaeum equitans. Background The relationship between the hyperthermophiles Ignicoccus hospitalis and Nanoarchaeum equitans is the only known example of a specific association between two species of Archaea. Little is known about the mechanisms that enable this relationship. Results We sequenced the complete genome of I. hospitalis and found it to be the smallest among independent, free-living organisms. A comparative genomic reconstruction suggests that the I. hospitalis lineage has lost most of the genes associated with a heterotrophic metabolism that is characteristic of most of the Crenarchaeota. A streamlined genome is also suggested by a low frequency of paralogs and fragmentation of many operons. However, this process appears to be partially balanced by lateral gene transfer from archaeal and bacterial sources. Conclusions A combination of genomic and cellular features suggests highly efficient adaptation to the low energy yield of sulfur-hydrogen respiration and efficient inorganic carbon and nitrogen assimilation. Evidence of lateral gene exchange between N. equitans and I. hospitalis indicates that the relationship has impacted both genomes. This association is the simplest symbiotic system known to date and a unique model for studying mechanisms of interspecific relationships at the genomic and metabolic levels.
Collapse
Affiliation(s)
- Mircea Podar
- Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN 37831, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Vanoni MA, Curti B. Structure-function studies of glutamate synthases: a class of self-regulated iron-sulfur flavoenzymes essential for nitrogen assimilation. IUBMB Life 2008; 60:287-300. [PMID: 18421771 DOI: 10.1002/iub.52] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Glutamate synthases play with glutamine synthetase an essential role in nitrogen assimilation processes in microorganisms, plants, and lower animals by catalyzing the net synthesis of one molecule of L-glutamate from L-glutamine and 2-oxoglutarate. They exhibit a modular architecture with a common subunit or region, which is responsible for the L-glutamine-dependent glutamate synthesis from 2-oxoglutarate. Here, a PurF- (Type II- or Ntn-) type amidotransferase domain is coupled to the synthase domain, a (beta/alpha)8 barrel containing FMN and one [3Fe-4S]0,+1 cluster, through a approximately 30 angstroms-long intramolecular tunnel for the transfer of ammonia between the sites. In bacterial and eukaryotic GltS, reducing equivalents are provided by reduced pyridine nucleotides thanks to the stable association with a second subunit or region, which acts as a FAD-dependent NAD(P)H oxidoreductase and is responsible for the formation of the two low potential [4Fe-4S]+1,+2 clusters of the enzyme. In photosynthetic cells, reduced ferredoxin is the physiological reductant. This review focus on the mechanism of cross-activation of the synthase and glutaminase reactions in response to the bound substrates and the redox state of the enzyme cofactors, as well as on recent information on the structure of the alphabeta protomer of the NADPH-dependent enzyme, which sheds light on the intramolecular electron transfer pathway between the flavin cofactors.
Collapse
Affiliation(s)
- Maria Antonietta Vanoni
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Via Celoria 26, Milano, Italy.
| | | |
Collapse
|
28
|
Durand P, Golinelli-Pimpaneau B, Mouilleron S, Badet B, Badet-Denisot MA. Highlights of glucosamine-6P synthase catalysis. Arch Biochem Biophys 2008; 474:302-17. [PMID: 18279655 DOI: 10.1016/j.abb.2008.01.026] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Revised: 01/30/2008] [Accepted: 01/31/2008] [Indexed: 10/22/2022]
Abstract
L-Glutamine:d-fructose-6-phosphate amidotransferase, also known as glucosamine-6-phosphate synthase (GlcN6P synthase), which catalyzes the first step in a pathway leading to the formation of uridine 5'-diphospho-N-acetyl-d-glucosamine (UDP-GlcNAc), is a key point in the metabolic control of the biosynthesis of amino sugar-containing macromolecules. The molecular mechanism of the reaction catalyzed by GlcN6P synthase is complex and involves amide bond cleavage followed by ammonia channeling and sugar isomerization. This article provides a comprehensive overview of the present knowledge on this multi-faceted enzyme emphasizing the progress made during the last five years.
Collapse
Affiliation(s)
- Philippe Durand
- Institut de Chimie des Substances Naturelles-CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | | | | | | | | |
Collapse
|
29
|
Cottevieille M, Larquet E, Jonic S, Petoukhov MV, Caprini G, Paravisi S, Svergun DI, Vanoni MA, Boisset N. The subnanometer resolution structure of the glutamate synthase 1.2-MDa hexamer by cryoelectron microscopy and its oligomerization behavior in solution: functional implications. J Biol Chem 2008; 283:8237-49. [PMID: 18199747 DOI: 10.1074/jbc.m708529200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The three-dimensional structure of the hexameric (alphabeta)(6) 1.2-MDa complex formed by glutamate synthase has been determined at subnanometric resolution by combining cryoelectron microscopy, small angle x-ray scattering, and molecular modeling, providing for the first time a molecular model of this complex iron-sulfur flavoprotein. In the hexameric species, interprotomeric alpha-alpha and alpha-beta contacts are mediated by the C-terminal domain of the alpha subunit, which is based on a beta helical fold so far unique to glutamate synthases. The alphabeta protomer extracted from the hexameric model is fully consistent with it being the minimal catalytically active form of the enzyme. The structure clarifies the electron transfer pathway from the FAD cofactor on the beta subunit, to the FMN on the alpha subunit, through the low potential [4Fe-4S](1+/2+) centers on the beta subunit and the [3Fe-4S](0/1+) cluster on the alpha subunit. The (alphabeta)(6) hexamer exhibits a concentration-dependent equilibrium with alphabeta monomers and (alphabeta)(2) dimers, in solution, the hexamer being destabilized by high ionic strength and, to a lower extent, by the reaction product NADP(+). Hexamerization seems to decrease the catalytic efficiency of the alphabeta protomer only 3-fold by increasing the K(m) values measured for l-Gln and 2-OG. However, it cannot be ruled out that the (alphabeta)(6) hexamer acts as a scaffold for the assembly of multienzymatic complexes of nitrogen metabolism or that it provides a means to regulate the activity of the enzyme through an as yet unknown ligand.
Collapse
Affiliation(s)
- Magali Cottevieille
- Département de Biologie Structurale, IMPMC-UMR 7590, CNRS, Universités Paris 6 et Paris 7, IPGP, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Generalized Born solvation models offer a popular method of including electrostatic aspects of solvation free energies within an analytical model that depends only upon atomic coordinates, charges, and dielectric radii. Here, we describe how second derivatives with respect to Cartesian coordinates can be computed in an efficient manner that can be distributed over multiple processors. This approach makes possible a variety of new methods of analysis for these implicit solvation models. We illustrate three of these methods here: the use of Newton-Raphson optimization to obtain precise minima in solution; normal mode analysis to compute solvation effects on the mechanical properties of DNA; and the calculation of configurational entropies in the MM/GBSA model. An implementation of these ideas, using the Amber generalized Born model, is available in the nucleic acid builder (NAB) code, and we present examples for proteins with up to 45,000 atoms. The code has been implemented for parallel computers using both the OpenMP and MPI environments, and good parallel scaling is seen with as many as 144 OpenMP processing threads or MPI processing tasks.
Collapse
|
31
|
Sorzano COS, Jonic S, Cottevieille M, Larquet E, Boisset N, Marco S. 3D electron microscopy of biological nanomachines: principles and applications. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2007; 36:995-1013. [PMID: 17611751 DOI: 10.1007/s00249-007-0203-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2007] [Revised: 06/01/2007] [Accepted: 06/11/2007] [Indexed: 11/21/2022]
Abstract
Transmission electron microscopy is a powerful technique for studying the three-dimensional (3D) structure of a wide range of biological specimens. Knowledge of this structure is crucial for fully understanding complex relationships among macromolecular complexes and organelles in living cells. In this paper, we present the principles and main application domains of 3D transmission electron microscopy in structural biology. Moreover, we survey current developments needed in this field, and discuss the close relationship of 3D transmission electron microscopy with other experimental techniques aimed at obtaining structural and dynamical information from the scale of whole living cells to atomic structure of macromolecular complexes.
Collapse
Affiliation(s)
- C O S Sorzano
- Bioengineering Lab, Escuela Politécnica Superior, Univ. San Pablo CEU, Campus Urb, Montepríncipe s/n, 28668, Boadilla del Monte, Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
32
|
Kameya M, Ikeda T, Nakamura M, Arai H, Ishii M, Igarashi Y. A novel ferredoxin-dependent glutamate synthase from the hydrogen-oxidizing chemoautotrophic bacterium Hydrogenobacter thermophilus TK-6. J Bacteriol 2007; 189:2805-12. [PMID: 17237175 PMCID: PMC1855818 DOI: 10.1128/jb.01360-06] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glutamate synthases are classified according to their specificities for electron donors. Ferredoxin-dependent glutamate synthases had been found only in plants and cyanobacteria, whereas many bacteria have NADPH-dependent glutamate synthases. In this study, Hydrogenobacter thermophilus, a hydrogen-oxidizing chemoautotrophic bacterium, was shown to possess a ferredoxin-dependent glutamate synthase like those of phototrophs. This is the first observation, to our knowledge, of a ferredoxin-dependent glutamate synthase in a nonphotosynthetic organism. The purified enzyme from H. thermophilus was shown to be a monomer of a 168-kDa polypeptide homologous to ferredoxin-dependent glutamate synthases from phototrophs. In contrast to known ferredoxin-dependent glutamate synthases, the H. thermophilus glutamate synthase exhibited glutaminase activity. Furthermore, this glutamate synthase did not react with a plant-type ferredoxin (Fd3 from this bacterium) containing a [2Fe-2S] cluster but did react with bacterial ferredoxins (Fd1 and Fd2 from this bacterium) containing [4Fe-4S] clusters. Interestingly, the H. thermophilus glutamate synthase was activated by some of the organic acids in the reductive tricarboxylic acid cycle, the central carbon metabolic pathway of this organism. This type of activation has not been reported for any other glutamate synthases, and this property may enable the control of nitrogen assimilation by carbon metabolism.
Collapse
Affiliation(s)
- Masafumi Kameya
- Department of Biotechnology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | |
Collapse
|
33
|
Cámara-Artigas A, Hirasawa M, Knaff DB, Wang M, Allen JP. Crystallization and structural analysis of GADPH from Spinacia oleracea in a new form. Acta Crystallogr Sect F Struct Biol Cryst Commun 2006; 62:1087-92. [PMID: 17077485 PMCID: PMC2225226 DOI: 10.1107/s174430910604200x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2006] [Accepted: 10/10/2006] [Indexed: 11/11/2022]
Abstract
Two crystalline forms of GADPH (D-glyceraldehyde-3-phosphate dehydrogenase) from Spinacia oleracea were obtained using sitting-drop vapor diffusion. Despite the very low concentration of GADPH in the solutions, two crystalline forms were obtained, one of which was the previously reported C222 space group with unit-cell parameters a = 155.3, b = 181.7, c = 107.6 A and the other of which belonged to a new space group I4(1)22, with unit-cell parameters a = b = 120.9, c = 154.5 A. Diffraction data were measured from both native and derivatives, yielding structures at a resolution limit of 3.0 A. Differences at the NAD(+)/NADP(+)-binding site seen in these structures compared with the previously reported structure with bound coenzyme suggest that conformational changes associated with pyridine-nucleotide binding may play a role in the regulation of this enzyme.
Collapse
Affiliation(s)
- Ana Cámara-Artigas
- Departamento Química-Física, Bioquímica y Química Inorgánica, Universidad de Almería, Carretera Sacramento, Almería 04120, Spain
| | - Masakazu Hirasawa
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
| | - David B. Knaff
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
| | - Meitian Wang
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287-1604, USA
| | - James P. Allen
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287-1604, USA
| |
Collapse
|
34
|
Demir V, Dincturk HB. Semi-anaerobic Growth Conditions are Favoured by some Escherichia coli Strains During Heterologous Expression of Some Archaeal Proteins. Mol Biol Rep 2006; 33:59-63. [PMID: 16636918 DOI: 10.1007/s11033-005-5067-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2005] [Indexed: 11/29/2022]
Abstract
Host cell physiology is known to play a crucial role in the expression of foreign genes in heterologous systems. Expression of archaeal genes in anaerobic or semi-anaerobic growth conditions of E. coli has been previously reported to be a means of improving solubility of some proteins. Here, we report that some of the Rosetta strains of E. coli, which harbour the rare tRNA genes for the expression of archaeal genes, favour semi-anaerobic conditions for the expression of putative FMN binding domain of glutamate synthase from Methanocaldococcus jannaschii at low inducer concentrations.
Collapse
Affiliation(s)
- Volkan Demir
- Department of Molecular Biology and Genetics Faculty of Sciences and Letters, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | | |
Collapse
|
35
|
van Breukelen B, Barendregt A, Heck AJR, van den Heuvel RHH. Resolving stoichiometries and oligomeric states of glutamate synthase protein complexes with curve fitting and simulation of electrospray mass spectra. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2006; 20:2490-6. [PMID: 16862623 DOI: 10.1002/rcm.2620] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
A complicating factor in analyzing electrospray ionization mass spectra of intact macromolecular heterogeneous protein complexes is the potential overlap of ions from different species present in solution. Therefore, it is often not possible to assign all ion signals. With the aim of allowing the more efficient and comprehensive analysis of very complex mass spectra of intact heterogeneous protein complexes we developed a software program: SOMMS. The program uses simple user input parameters together with Gaussian curve fitting to simulate putative mass spectra of protein (sub)complexes within a specified charge state window. In addition, the program can simulate spectra for heterogeneous protein complexes using bi- and multinomial distributions and it can calculate zero-charge spectra and relatively quantify the abundance of each component in a mixture. As a proof of concept we analyzed the complex mass spectra of alpha-glutamate synthase and alphabeta-glutamate synthase from Azosprillum brasilense. Using our program we could determine that alpha-glutamate synthase is in equilibrium between its dimeric, tetrameric, hexameric and dodecameric conformation, whereas alphabeta-glutamate synthase forms up to 15 different heterooligomeric assemblies composed of alpha- and beta-subunits. Thus, SOMMS allows resolving stoichiometries and oligomeric states of protein complexes even from very complicated mass spectra. These complexes could not be assigned by using maximum entropy calculations. We compared our mass spectrometry data on glutamate synthases with available X-ray, small-angle X-ray scattering and size-exclusion chromatography data.
Collapse
Affiliation(s)
- Bas van Breukelen
- Utrecht University, Biomolecular Mass Spectrometry, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Sorbonnelaan 16, 3584 CA Utrecht, The Netherlands
| | | | | | | |
Collapse
|
36
|
Abstract
Beta-rolls and beta-helices belong to a larger group of topologically similar proteins with solenoid folds: because their regular secondary structure elements are exclusively beta-strands, they are referred to as beta-solenoids. The number of beta-solenoids whose structures are known is now large enough to support a systematic analysis. Here we survey the distinguishing structural features of beta-solenoids, also documenting their notable diversity. Appraisal of these structures suggests a classification based on handedness, twist, oligomerization state, and coil shape. In addition, beta-solenoids are distinguished by the number of chains that wind around a common axis: the majority are single-stranded but there is a recently discovered subset of triple-stranded beta-solenoids. This survey has revealed some relationships of the amino acid sequences of beta-solenoids with their structures and functions-in particular, the repetitive character of the coil sequences and conformations that recur in tracts of tandem repeats. We have proposed the term beta-arc for the distinctive turns found in beta-solenoids and beta-arch for the corresponding strand-turn-strand motifs. The evolutionary mechanisms underlying these proteins are also discussed. This analysis has direct implications for sequence-based detection, structural prediction, and de novo design of other beta-solenoid proteins. The abundance of virulence factors, toxins and allergens among beta-solenoids, as well as commonalities of beta-solenoids with amyloid fibrils, imply that this class of folds may have a broader role in human diseases than was previously recognized. Thus, identification of genes with putative beta-solenoid domains promises to be a fertile direction in the search for viable targets in the development of new antibiotics and vaccines.
Collapse
Affiliation(s)
- Andrey V Kajava
- Centre de Recherches de Biochimie Macromoléculaire, CNRS FRE-2593, 1919 Route de Mende, 34293 Montpellier Cedex 5, France
| | | |
Collapse
|
37
|
Sterner R, Höcker B. Catalytic Versatility, Stability, and Evolution of the (βα)8-Barrel Enzyme Fold. Chem Rev 2005; 105:4038-55. [PMID: 16277370 DOI: 10.1021/cr030191z] [Citation(s) in RCA: 166] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Reinhard Sterner
- Institut für Biophysik und physikalische Biochemie, Universität Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany.
| | | |
Collapse
|
38
|
Ciustea M, Gutierrez JA, Abbatiello SE, Eyler JR, Richards NGJ. Efficient expression, purification, and characterization of C-terminally tagged, recombinant human asparagine synthetase. Arch Biochem Biophys 2005; 440:18-27. [PMID: 16023613 DOI: 10.1016/j.abb.2005.05.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2005] [Revised: 05/13/2005] [Accepted: 05/13/2005] [Indexed: 11/17/2022]
Abstract
Several lines of evidence suggest that up-regulation of asparagine synthetase (AS) in human T-cells results in metabolic changes that underpin the appearance of asparaginase-resistant forms of acute lymphoblastic leukemia (ALL). Inhibitors of human AS therefore have potential as agents for treating leukemia and tools for investigating the cellular basis of AS expression and drug-resistance. A critical problem in developing and characterizing potent inhibitors has been a lack of routine access to sufficient quantities of purified, reproducibly active human AS. We now report an efficient protocol for preparing multi-milligram quantities of C-terminally tagged, wild type human AS in a baculovirus-based expression system. The recombinant enzyme is correctly processed and exhibits high catalytic activity. Not only do these studies offer the possibility for investigating the kinetic behavior of biochemically interesting mammalian AS mutants, but such ready access to large amounts of enzyme also represents a major step in the development and characterization of inhibitors that might have clinical utility in treating asparaginase-resistant ALL.
Collapse
Affiliation(s)
- Mihai Ciustea
- Department of Chemistry, University of Florida, Gainesville, FL 32611-7200, USA
| | | | | | | | | |
Collapse
|
39
|
Agnelli P, Dossena L, Colombi P, Mulazzi S, Morandi P, Tedeschi G, Negri A, Curti B, Vanoni MA. The unexpected structural role of glutamate synthase [4Fe-4S](+1,+2) clusters as demonstrated by site-directed mutagenesis of conserved C residues at the N-terminus of the enzyme beta subunit. Arch Biochem Biophys 2005; 436:355-66. [PMID: 15797248 DOI: 10.1016/j.abb.2005.02.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2005] [Revised: 02/02/2005] [Indexed: 12/19/2022]
Abstract
Azospirillum brasilense glutamate synthase (GltS) is a complex iron-sulfur flavoprotein whose catalytically active alphabeta protomer (alpha subunit, 162kDa; beta subunit, 52.3 kDa) contains one FAD, one FMN, one [3Fe-4S](0,+1), and two [4Fe-4S](+1,+2) clusters. The structure of the alpha subunit has been determined providing information on the mechanism of ammonia transfer from L-glutamine to 2-oxoglutarate through a 30 A-long intramolecular tunnel. On the contrary, details of the electron transfer pathway from NADPH to the postulated 2-iminoglutarate intermediate through the enzyme flavin co-factors and [Fe-S] clusters are largely indirect. To identify the location and role of each one of the GltS [4Fe-4S] clusters, we individually substituted the four cysteinyl residues forming the first of two conserved C-rich regions at the N-terminus of GltS beta subunit with alanyl residues. The engineered genes encoding the beta subunit variants (and derivatives carrying C-terminal His6-tags) were co-expressed with the wild-type alpha subunit gene. In all cases the C/A substitutions prevented alpha and beta subunits association to yield the GltS alphabeta protomer. This result is consistent with the fact that these residues are responsible for the formation of glutamate synthase [4Fe-4S](+1,+2) clusters within the N-terminal region of the beta subunit, and that these clusters are implicated not only in electron transfer between the GltS flavins, but also in alphabeta heterodimer formation by structuring an N-terminal [Fe-S] beta subunit interface subdomain, as suggested by the three-dimensional structure of dihydropyrimidine dehydrogenase, an enzyme containing an N-terminal beta subunit-like domain.
Collapse
Affiliation(s)
- Paola Agnelli
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Universita degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Zhu J, Burgner JW, Harms E, Belitsky BR, Smith JL. A new arrangement of (beta/alpha)8 barrels in the synthase subunit of PLP synthase. J Biol Chem 2005; 280:27914-23. [PMID: 15911615 DOI: 10.1074/jbc.m503642200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pyridoxal 5'-phosphate (PLP, vitamin B6), a cofactor in many enzymatic reactions, has two distinct biosynthetic routes, which do not coexist in any organism. Two proteins, known as PdxS and PdxT, together form a PLP synthase in plants, fungi, archaea, and some eubacteria. PLP synthase is a heteromeric glutamine amidotransferase in which PdxT produces ammonia from glutamine and PdxS combines ammonia with five- and three-carbon phosphosugars to form PLP. In the 2.2-A crystal structure, PdxS is a cylindrical dodecamer of subunits having the classic (beta/alpha)8 barrel fold. PdxS subunits form two hexameric rings with the active sites positioned on the inside. The hexamer and dodecamer forms coexist in solution. A novel phosphate-binding site is suggested by bound sulfate. The sulfate and another bound molecule, methyl pentanediol, were used to model the substrate ribulose 5-phosphate, and to propose catalytic roles for residues in the active site. The distribution of conserved surfaces in the PdxS dodecamer was used to predict a docking site for the glutaminase partner, PdxT.
Collapse
Affiliation(s)
- Jianghai Zhu
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | | | |
Collapse
|
41
|
Vanoni MA, Curti B. Structure--function studies on the iron-sulfur flavoenzyme glutamate synthase: an unexpectedly complex self-regulated enzyme. Arch Biochem Biophys 2005; 433:193-211. [PMID: 15581577 DOI: 10.1016/j.abb.2004.08.033] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2004] [Revised: 08/31/2004] [Indexed: 11/24/2022]
Abstract
Glutamate synthase (GltS) is, with glutamine synthetase, the key enzyme of ammonia assimilation in bacteria, microorganisms and plants. GltS isoforms result from the assembly and co-evolution of conserved functional domains. They share a common mechanism of reductive glutamine-dependent glutamate synthesis from 2-oxoglutarate, which takes place within the alpha subunit ( approximately 150 kDa) of the NADPH-dependent bacterial enzyme and the corresponding polypeptides of other GltS forms, and involves: (i) an Ntn-type amidotransferase domain and (ii) a flavin mononucleotide-containing (beta/alpha)(8) barrel synthase domain connected by (iii) a approximately 30 A-long intramolecular ammonia tunnel. The synthase domain harbors the [3Fe/4S](0,+1) cluster of the enzyme, which participates in the electron transfer process from the physiological reductant: reduced ferredoxin in the plant-type enzyme or NAD(P)H in the bacterial and the non-photosynthetic eukaryotic form. The NAD(P)H-dependent GltS requires a tightly bound flavin adenine dinucleotide-dependent reductase (beta subunit, approximately 50 kDa), also determining the presence of two low-potential [4Fe-4S](+1,+2) clusters. Structural, functional and computational data available on GltS and related enzymes show how the enzyme may control and coordinate the reactions taking place at the glutaminase and synthase sites by sensing substrate binding and cofactor redox state.
Collapse
Affiliation(s)
- Maria A Vanoni
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Universita' degli Studi di Milano, Via Celoria 26, 20131 Milan, Italy.
| | | |
Collapse
|
42
|
Vanoni MA, Dossena L, van den Heuvel RHH, Curti B. Structure-function studies on the complex iron-sulfur flavoprotein glutamate synthase: the key enzyme of ammonia assimilation. PHOTOSYNTHESIS RESEARCH 2005; 83:219-38. [PMID: 16143853 DOI: 10.1007/s11120-004-2438-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2004] [Accepted: 06/16/2004] [Indexed: 05/04/2023]
Abstract
Glutamate synthases are complex iron-sulfur flavoproteins that participate in the essential ammonia assimilation pathway in microorganisms and plants. The recent determination of the 3-dimensional structures of the alpha subunit of the NADPH-dependent glutamate synthase form and of the ferredoxin-dependent enzyme of Synechocystis sp. PCC 6803 provides a framework for the interpretation of the functional properties of these enzymes, and highlights protein segments most likely involved in control and coordination of the partial catalytic activities of glutamate synthases, which take place at sites distant from each other in space. In this review, we focus on the current knowledge on structure-function relationships in glutamate synthases, and we discuss open questions on the mechanisms of control of the enzyme reaction and of electron transfer among the enzyme flavin cofactors and iron-sulfur clusters.
Collapse
Affiliation(s)
- Maria A Vanoni
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Via Celoria 26, Milan 20131, Italy.
| | | | | | | |
Collapse
|
43
|
Suzuki A, Knaff DB. Glutamate synthase: structural, mechanistic and regulatory properties, and role in the amino acid metabolism. PHOTOSYNTHESIS RESEARCH 2005; 83:191-217. [PMID: 16143852 DOI: 10.1007/s11120-004-3478-0] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2004] [Accepted: 09/20/2004] [Indexed: 05/03/2023]
Abstract
Ammonium ion assimilation constitutes a central metabolic pathway in many organisms, and glutamate synthase, in concert with glutamine synthetase (GS, EC 6.3.1.2), plays the primary role of ammonium ion incorporation into glutamine and glutamate. Glutamate synthase occurs in three forms that can be distinguished based on whether they use NADPH (NADPH-GOGAT, EC 1.4.1.13), NADH (NADH-GOGAT, EC 1.4.1.14) or reduced ferredoxin (Fd-GOGAT, EC 1.4.7.1) as the electron donor for the (two-electron) conversion of L-glutamine plus 2-oxoglutarate to L-glutamate. The distribution of these three forms of glutamate synthase in different tissues is quite specific to the organism in question. Gene structures have been determined for Fd-, NADH- and NADPH-dependent glutamate synthases from different organisms, as shown by searches in nucleic acid sequence data banks. Fd-glutamate synthase contains two electron-carrying prosthetic groups, the redox properties of which are discussed. A description of the ferredoxin binding by Fd-glutamate synthase is also presented. In plants, including nitrogen-fixing legumes, Fd-glutamate synthase and NADH-glutamate synthase supply glutamate during the nitrogen assimilation and translocation. The biological functions of Fd-glutamate synthase and NADH-glutamate synthase, which show a highly tissue-specific distribution pattern, are tightly related to the regulation by the light and metabolite sensing systems. Analysis of mutants and transgenic studies have provided insights into the primary individual functions of Fd-glutamate synthase and NADH-glutamate synthase. These studies also provided evidence that glutamate dehydrogenase (NADH-GDH, EC 1.4.1.2) does not represent a significant alternate route for glutamate formation in plants. Taken together, biochemical analysis and genetic and molecular data imply that Fd-glutamate synthase incorporates photorespiratory and non-photorespiratory ammonium and provides nitrogen for transport to maintain nitrogen status in plants. Fd-glutamate synthase also plays a role that is redundant, in several important aspects, to that played by NADH-glutamate synthase in ammonium assimilation and nitrogen transport.
Collapse
Affiliation(s)
- Akira Suzuki
- Unité de Nutrition Azotée des Plantes, Institut National de la Recherche Agronomique, Route de Saint-Cyr, 78026 Versailles cedex, France.
| | | |
Collapse
|
44
|
Amaro R, Luthey-Schulten Z. Molecular dynamics simulations of substrate channeling through an α–β barrel protein. Chem Phys 2004. [DOI: 10.1016/j.chemphys.2004.05.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
45
|
Coiro VM, Di Nola A, Vanoni MA, Aschi M, Coda A, Curti B, Roccatano D. Molecular dynamics simulation of the interaction between the complex iron-sulfur flavoprotein glutamate synthase and its substrates. Protein Sci 2004; 13:2979-91. [PMID: 15498940 PMCID: PMC2286594 DOI: 10.1110/ps.04863104] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2004] [Revised: 08/04/2004] [Accepted: 08/04/2004] [Indexed: 10/26/2022]
Abstract
Glutamate synthase (GltS) is a complex iron-sulfur flavoprotein that catalyzes the reductive transfer of L-glutamine amide group to the C2 carbon of 2-oxoglutarate yielding two molecules of L-glutamate. Molecular dynamics calculations in explicit solvent were carried out to gain insight into the conformational flexibility of GltS and into the role played by the enzyme substrates in regulating the catalytic cycle. We have modelled the free (unliganded) form of Azospirillum brasilense GltS alpha subunit and the structure of the reduced enzyme in complex with the L-glutamine and 2-oxoglutarate substrates starting from the crystallographically determined coordinates of the GltS alpha subunit in complex with L-methionine sulphone and 2-oxoglutarate. The present 4-ns molecular dynamics calculations reveal that the GltS glutaminase site may exist in a catalytically inactive conformation unable to bind glutamine, and in a catalytically competent conformation, which is stabilized by the glutamine substrate. Substrates binding also induce (1) closure of the loop formed by residues 263-271 with partial shielding of the glutaminase site from solvent, and (2) widening of the ammonia tunnel entrance at the glutaminase end to allow for ammonia diffusion toward the synthase site. The Q-loop of glutamate synthase, which acts as an active site lid in other amidotransferases, seems to maintain an open conformation. Finally, binding of L-methionine sulfone, a glutamine analog that mimics the tetrahedral transient species occurring during its hydrolysis, causes a coordinated rigid-body motion of segments of the glutaminase domain that results in the inactive conformation observed in the crystal structure of GltS alpha subunit.
Collapse
Affiliation(s)
- Vincenza M Coiro
- Department of Chemistry, University of Rome La Sapienza, Piazzale Aldo Moro 5, Rome 00185, Italy.
| | | | | | | | | | | | | |
Collapse
|
46
|
Conti P, Roda G, Stabile H, Vanoni MA, Curti B, De Amici M. Synthesis and biological evaluation of new amino acids structurally related to the antitumor agent acivicin. ACTA ACUST UNITED AC 2004; 58:683-90. [PMID: 13679161 DOI: 10.1016/s0014-827x(03)00107-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A set of racemic conformationally constrained analogues of the antitumor antibiotic acivicin (+)-1 has been prepared through a strategy based on 1,3-dipolar cycloaddition of bromonitrile oxide to suitable dipolarophiles. The bromo analogue (2) of acivicin was also synthesized and tested as a reference compound, together with its stereoisomer 3. The antitumor properties of novel amino acids 4-7 were evaluated in vitro against human tumor cell lines. Their efficacy to inhibit glutamate synthase (GltS) from Azospirillum brasilense was also assayed. None of the studied compounds, but 2, showed significant activity.
Collapse
Affiliation(s)
- Paola Conti
- Istituto di Chimica Farmaceutica, Università di Milano, viale Abruzzi 42, Milano 20131, Italy.
| | | | | | | | | | | |
Collapse
|
47
|
Abstract
Flavoproteins are ubiquitous redox proteins that are involved in many biological processes. In the majority of flavoproteins, the flavin cofactor is tightly but noncovalently bound. Reversible dissociation of flavoproteins into apoprotein and flavin prosthetic group yields valuable insights in flavoprotein folding, function and mechanism. Replacement of the natural cofactor with artificial flavins has proved to be especially useful for the determination of the solvent accessibility, polarity, reaction stereochemistry and dynamic behaviour of flavoprotein active sites. In this review we summarize the advances made in the field of flavoprotein deflavination and reconstitution. Several sophisticated chromatographic procedures to either deflavinate or reconstitute the flavoprotein on a large scale are discussed. In a subset of flavoproteins, the flavin cofactor is covalently attached to the polypeptide chain. Studies from riboflavin-deficient expression systems and site-directed mutagenesis suggest that the flavinylation reaction is a post-translational, rather than a cotranslational, process. These genetic approaches have also provided insight into the mechanism of covalent flavinylation and the rationale for this atypical protein modification.
Collapse
Affiliation(s)
- Marco H Hefti
- Laboratory of Biochemistry, Wageningen University, The Netherlands
| | | | | |
Collapse
|
48
|
Petoukhov MV, Svergun DI, Konarev PV, Ravasio S, van den Heuvel RHH, Curti B, Vanoni MA. Quaternary structure of Azospirillum brasilense NADPH-dependent glutamate synthase in solution as revealed by synchrotron radiation x-ray scattering. J Biol Chem 2003; 278:29933-9. [PMID: 12777402 DOI: 10.1074/jbc.m304147200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Azospirillum brasilense glutamate synthase (GltS) is the prototype of bacterial NADPH-dependent enzymes, a class of complex iron-sulfur flavoproteins essential in ammonia assimilation processes. The catalytically active GltS alpha beta holoenzyme and its isolated alpha and beta subunits (162 and 52 kDa, respectively) were analyzed using synchrotron radiation x-ray solution scattering. The GltS alpha subunit and alpha beta holoenzyme were found to be tetrameric in solution, whereas the beta subunit was a mixture of monomers and dimers. Ab initio low resolution shapes restored from the scattering data suggested that the arrangement of alpha subunits in the (alpha beta)4 holoenzyme is similar to that in the tetrameric alpha 4 complex and that beta subunits occupy the periphery of the holoenzyme. The structure of alpha 4 was further modeled using the available crystallographic coordinates of the monomeric alpha subunit assuming P222 symmetry. To model the entire alpha beta holoenzyme, a putative alpha beta protomer was constructed from the coordinates of the alpha subunit and those of the N-terminal region of porcine dihydropyrimidine dehydrogenase, which is similar to the beta subunit. Rigid body refinement yielded a model of GltS with an arrangement of alpha subunits similar to that in alpha 4, but displaying contacts also between beta subunits belonging to adjacent protomers. The holoenzyme model allows for independent catalytic activity of the alpha beta protomers, which is consistent with the available biochemical evidence.
Collapse
Affiliation(s)
- Maxim V Petoukhov
- European Molecular Biology Laboratory, Hamburg Outstation, Notkestrasse 85, D-22603 Hamburg, Germany
| | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
As a result of recent advances in molecular cloning, protein expression, and X-ray crystallography, it has now become feasible to examine complicated protein structures at high resolution. For those enzymes with multiple catalytic sites, a common theme is beginning to emerge; the existence of molecular tunnels that connect one active site with another. The apparent mechanistic advantages rendered by these molecular conduits include the protection of unstable intermediates and an improvement in catalytic efficiency by blocking the diffusion of intermediates into the bulk solvent. Since the first molecular tunnel within tryptophan synthase was discovered in 1988, tunnels within carbamoyl phosphate synthetase, glutamine phosphoribosylpyrophosphate amidotransferase, asparagine synthetase, glutamate synthase, imidazole glycerol phosphate synthase, glucosamine 6-phosphate synthase, and carbon monoxide dehydrogenase/acetyl-CoA synthase have been identified. The translocation of ammonia, derived from the hydrolysis of glutamine, is the most abundant functional requirement for a protein tunnel identified thus far. Here we describe and summarize our current understanding of molecular tunnels observed in various enzyme systems.
Collapse
Affiliation(s)
- Frank M Raushel
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3012, USA
| | | | | |
Collapse
|
50
|
van den Heuvel RHH, Svergun DI, Petoukhov MV, Coda A, Curti B, Ravasio S, Vanoni MA, Mattevi A. The active conformation of glutamate synthase and its binding to ferredoxin. J Mol Biol 2003; 330:113-28. [PMID: 12818206 DOI: 10.1016/s0022-2836(03)00522-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glutamate synthases (GltS) are crucial enzymes in ammonia assimilation in plants and bacteria, where they catalyze the formation of two molecules of L-glutamate from L-glutamine and 2-oxoglutarate. The plant-type ferredoxin-dependent GltS and the functionally homologous alpha subunit of the bacterial NADPH-dependent GltS are complex four-domain monomeric enzymes of 140-165 kDa belonging to the NH(2)-terminal nucleophile family of amidotransferases. The enzymes function through the channeling of ammonia from the N-terminal amidotransferase domain to the FMN-binding domain. Here, we report the X-ray structure of the Synechocystis ferredoxin-dependent GltS with the substrate 2-oxoglutarate and the covalent inhibitor 5-oxo-L-norleucine bound in their physically distinct active sites solved using a new crystal form. The covalent Cys1-5-oxo-L-norleucine adduct mimics the glutamyl-thioester intermediate formed during L-glutamine hydrolysis. Moreover, we determined a high resolution structure of the GltS:2-oxoglutarate complex. These structures represent the enzyme in the active conformation. By comparing these structures with that of GltS alpha subunit and of related enzymes we propose a mechanism for enzyme self-regulation and ammonia channeling between the active sites. X-ray small-angle scattering experiments were performed on solutions containing GltS and its physiological electron donor ferredoxin (Fd). Using the structure of GltS and the newly determined crystal structure of Synechocystis Fd, the scattering experiments clearly showed that GltS forms an equimolar (1:1) complex with Fd. A fundamental consequence of this result is that two Fd molecules bind consecutively to Fd-GltS to yield the reduced FMN cofactor during catalysis.
Collapse
|