1
|
Seif EJM, Junior PIS. In silico bioprospecting of receptors for Oligoventin: An antimicrobial peptide isolated from spider eggs of Phoneutria nigriventer. Colloids Surf B Biointerfaces 2025; 248:114472. [PMID: 39732068 DOI: 10.1016/j.colsurfb.2024.114472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/18/2024] [Accepted: 12/21/2024] [Indexed: 12/30/2024]
Abstract
BACKGROUND Irresponsible and wholesale use of antimicrobial agents is the principal cause of the emergence of strains of resistant microorganisms to traditional drugs. Oligoventin is a neutral peptide isolated from spider eggs of Phoneutria nigriventer, with antimicrobial activity against Gram-positive, Gram-negative, and yeast organisms. However, the molecular target and pathways of antimicrobial activity are still unknown. Thus, the aim of the present study is to prospect receptors associated with the antimicrobial activity of Oligoventin using in silico tools. METHODS The PharmMapper and PDB server was used to prospect targets originating from microorganisms. Additionally, the PatchDock server was utilized to perform molecular docking between Oligoventin and the targets. Subsequently, the I-TASSER server was adopted to predict the ligand site. Finally, the docking results and predicted sites were compared with literature sites of each target. RESULTS Over 100 potential receptors for oligoventin have been identified. Among these, enoyl-ACP reductase (Idpdb1LXC) and thymidylate synthase ThyX (Idpdb 1O28) from bacteria and N-acetylglucosamine phosphate mutase (Idpdb 2DKD) showed superior interaction with oligoventin, exhibiting colocalization between docked residues and cofactor/active sites. These enzymes play a crucial role in fatty acid and DNA biosynthesis in prokaryotes and in cell wall synthesis in yeast. CONCLUSION Therefore, in silico results suggest that Oligoventin can impair fatty acid DNA, cell wall synthesis, thereby reducing microbial proliferation and causing microorganism death.
Collapse
Affiliation(s)
- Elias Jorge Muniz Seif
- Postgraduate Program of Molecular Biology, Biophysics and Biochemistry Department, Federal University of São Paulo, São Paulo, SP CEP 04021-001, Brazil; Laboratory of Applied Toxicology, Center of Toxins, Immune-Response and Cell Signaling - CeT-ICS/CEPID, Butantan Institute São Paulo, São Paulo, SP CEP 05503-900, Brazil.
| | - Pedro Ismael Silva Junior
- Laboratory of Applied Toxicology, Center of Toxins, Immune-Response and Cell Signaling - CeT-ICS/CEPID, Butantan Institute São Paulo, São Paulo, SP CEP 05503-900, Brazil; Postgraduate Program Interunits in Biotechnology, USP/IPT/IBU, São Paulo, SP, Brazil.
| |
Collapse
|
2
|
Pecqueur L, Lombard M, Hamdane D. Structural Plasticity of Flavin-Dependent Thymidylate Synthase Controlled by the Enzyme Redox State. Biomolecules 2025; 15:318. [PMID: 40149854 PMCID: PMC11940539 DOI: 10.3390/biom15030318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/13/2025] [Accepted: 02/19/2025] [Indexed: 03/29/2025] Open
Abstract
2'-Deoxythymidine-5'-monophosphate, dTMP, is an essential precursor of thymine, one of the four canonical bases of DNA. In almost all living organisms, dTMP is synthesized de novo by a reductive methylation reaction of 2'-deoxyuridine-5'-monophosphate (dUMP) catalyzed by the thymidylate synthase, where the carbon used for the methylation is derived from methylenetetrahydrofolate (CH2THF). Many microbes, including human pathogens, utilize the flavin-dependent thymidylate synthase encoded by the thyX gene to generate dTMP. The mechanism of action relies on the reduced coenzyme FADH-, which acts both as a mediator, facilitating methylene transfer from CH2THF to dUMP, and as a reducing agent. Here, we present for the first-time crystallographic structures of ThyX from Thermotoga maritima in the reduced state alone and in complex with dUMP. ThyX flavin reduction appears to order the active site, favoring a flavin conformation that drastically deviates from that observed in the oxidized enzyme. The structures show that FADH- potentially controls access to the folate site and the conformation of two active site loops, affecting the degree of accessibility of substrate pockets to the solvent. Our results provide the molecular basis for the sequential enzyme mechanism implemented by ThyX during dTMP biosynthesis.
Collapse
|
3
|
Tanweer S, Sharma T, Grover A, Agarwal M, Grover S. Mycobacterium tuberculosis Essential Gene Thymidylate Synthase Is Involved in Immune Modulation and Survival inside the Host. ACS OMEGA 2024; 9:33743-33750. [PMID: 39130601 PMCID: PMC11308015 DOI: 10.1021/acsomega.4c02919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 08/13/2024]
Abstract
A Mycobacterium tuberculosis essential gene, ThyX (Rv2754c), plays a key role in intermediate metabolism and respiration by catalyzing the formation of dTMP and tetrahydrofolate from dUMP and methylenetetrahydrofolate. ThyX is present in the M.tb complex and in M. smegmatis a nonpathogenic strain of Mycobacteria. In this study, we identified a novel function of ThyX, an enzyme with immune-modulating properties. We have shown that ThyX can activate the macrophages in the host toward M1 response. Overexpression of ThyX stimulates the production of nitrite oxide (NO) and induces apoptosis in macrophages; indeed both responses help the host to control growth of M.tb. ThyX was also discovered to play a role in the recombinant bacterium's ability to survive when it was subjected to oxidative and hypoxic stress by macrophages. These findings demonstrate the protein's functional importance in M.tb. Indeed these findings represent ThyX as a potential candidate for future research and show this as a therapeutic target.
Collapse
Affiliation(s)
- Sana Tanweer
- Department
of Molecular Medicine, Jamia Hamdard, New Delhi-110065, India
| | - Tarina Sharma
- New
Jersey Medical School, Rutgers, The State
University of New Jersey, Newark, New Jersey 07103, United States
| | - Abhinav Grover
- School
of Biotechnology, Jawaharlal University, New Delhi-110069, India
| | - Meetu Agarwal
- Department
of Molecular Medicine, Jamia Hamdard, New Delhi-110065, India
| | - Sonam Grover
- Department
of Molecular Medicine, Jamia Hamdard, New Delhi-110065, India
| |
Collapse
|
4
|
Tanweer S, Jamal S, Mehra S, Saqib N, Ahmad F, Faizan, Grover A, Grover S. Multifaceted role of drugs: a potential weapon to outsmart Mycobacterium tuberculosis resistance by targeting its essential ThyX. J Biomol Struct Dyn 2022; 40:8508-8517. [PMID: 33860725 DOI: 10.1080/07391102.2021.1913230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 03/31/2021] [Indexed: 10/21/2022]
Abstract
Tuberculosis (TB) is one of the prominent cause of deaths across the world and multidrug-resistant and extensively drug-resistant TB continues to pose challenges for clinicians and public health centers. The risk of death is extremely high in individuals who have compromised immune systems, HIV infection, or diabetes. Research institutes and pharmaceutical companies have been working on repurposing existing drugs as effective therapeutic options against TB. The identification of suitable drugs with multi-target affinity profiles is a widely accepted way to combat the development of resistance. Flavin-dependent thymidylate synthase (FDTS), known as ThyX, is in the class of methyltransferases and is a possible target in the discovery of novel anti-TB drugs. In this study, we aimed to repurpose existing drugs approved by Food and Drug Administration (FDA) that could be used in the treatment of TB. An integrated screening was performed based on computational procedures: high-throughput molecular docking techniques, followed by molecular dynamics simulations of the target enzyme, ThyX. After performing in silico screening using a library of 3,967 FDA-approved drugs, the two highest-scoring drugs, Carglumic acid and Mesalazine, were selected as potential candidates that could be repurposed to treat TB.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sana Tanweer
- JH-Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - Salma Jamal
- JH-Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - Seema Mehra
- JH-Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - Najumu Saqib
- JH-Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - Faraz Ahmad
- JH-Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - Faizan
- JH-Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - Abhinav Grover
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Sonam Grover
- JH-Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India
| |
Collapse
|
5
|
Alexandrova LA, Khandazhinskaya AL, Matyugina ES, Makarov DA, Kochetkov SN. Analogues of Pyrimidine Nucleosides as Mycobacteria Growth Inhibitors. Microorganisms 2022; 10:microorganisms10071299. [PMID: 35889017 PMCID: PMC9322969 DOI: 10.3390/microorganisms10071299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 01/25/2023] Open
Abstract
Tuberculosis (TB) is the oldest human infection disease. Mortality from TB significantly decreased in the 20th century, because of vaccination and the widespread use of antibiotics. However, about a third of the world’s population is currently infected with Mycobacterium tuberculosis (Mtb) and the death rate from TB is about 1.4–2 million people per year. In the second half of the 20th century, new extensively multidrug-resistant strains of Mtb were identified, which are steadily increasing among TB patients. Therefore, there is an urgent need to develop new anti-TB drugs, which remains one of the priorities of pharmacology and medicinal chemistry. The antimycobacterial activity of nucleoside derivatives and analogues was revealed not so long ago, and a lot of studies on their antibacterial properties have been published. Despite the fact that there are no clinically used drugs based on nucleoside analogues, some progress has been made in this area. This review summarizes current research in the field of the design and study of inhibitors of mycobacteria, primarily Mtb.
Collapse
|
6
|
Dozova N, Lacombat F, Lombard M, Hamdane D, Plaza P. Ultrafast dynamics of fully reduced flavin in catalytic structures of thymidylate synthase ThyX. Phys Chem Chem Phys 2021; 23:22692-22702. [PMID: 34605505 DOI: 10.1039/d1cp03379d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Thymidylate is a vital DNA precursor synthesized by thymidylate synthases. ThyX is a flavin-dependent thymidylate synthase found in several human pathogens and absent in humans, which makes it a potential target for antimicrobial drugs. This enzyme methylates the 2'-deoxyuridine 5'-monophosphate (dUMP) to 2'-deoxythymidine 5'-monophosphate (dTMP) using a reduced flavin adenine dinucleotide (FADH-) as prosthetic group and (6R)-N5,N10-methylene-5,6,7,8-tetrahydrofolate (CH2THF) as a methylene donor. Recently, it was shown that ThyX-catalyzed reaction is a complex process wherein FADH- promotes both methylene transfer and reduction of the transferred methylene into a methyl group. Here, we studied the dynamic and photophysics of FADH- bound to ThyX, in several substrate-binding states (no substrate, in the presence of dUMP or folate or both) by femtosecond transient absorption spectroscopy. This methodology provides valuable information about the ground-state configuration of the isoalloxazine moiety of FADH- and the rigidity of its local environment, through spectra shape and excited-state lifetime parameters. In the absence of substrate, the environment of FADH- in ThyX is only mildly more constrained than that of free FADH- in solution. The addition of dUMP however narrows the distribution of ground-state configurations and increases the constraints on the butterfly bending motion in the excited state. Folate binding results in the selection of new ground-state configurations, presumably located at a greater distance from the conical intersection where excited-state decay occurs. When both substrates are present, the ground-state configuration appears on the contrary rather limited to a geometry close to the conical intersection, which explains the relatively fast excited-state decay (100 ps on the average), even if the environment of the isoalloxazine is densely packed. Hence, although the environment of the flavin is dramatically constrained, FADH- retains a dynamic necessary to shuttle carbon from folate to dUMP. Our study demonstrates the high sensitivity of FADH- photophysics to the constraints exerted by its immediate surroundings.
Collapse
Affiliation(s)
- Nadia Dozova
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France.
| | - Fabien Lacombat
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France.
| | - Murielle Lombard
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège de France, Sorbonne Université, 75005 Paris, France.
| | - Djemel Hamdane
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège de France, Sorbonne Université, 75005 Paris, France.
| | - Pascal Plaza
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France.
| |
Collapse
|
7
|
Bou-Nader C, Stull FW, Pecqueur L, Simon P, Guérineau V, Royant A, Fontecave M, Lombard M, Palfey BA, Hamdane D. An enzymatic activation of formaldehyde for nucleotide methylation. Nat Commun 2021; 12:4542. [PMID: 34315871 PMCID: PMC8316439 DOI: 10.1038/s41467-021-24756-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 07/05/2021] [Indexed: 11/09/2022] Open
Abstract
Folate enzyme cofactors and their derivatives have the unique ability to provide a single carbon unit at different oxidation levels for the de novo synthesis of amino-acids, purines, or thymidylate, an essential DNA nucleotide. How these cofactors mediate methylene transfer is not fully settled yet, particularly with regard to how the methylene is transferred to the methylene acceptor. Here, we uncovered that the bacterial thymidylate synthase ThyX, which relies on both folate and flavin for activity, can also use a formaldehyde-shunt to directly synthesize thymidylate. Combining biochemical, spectroscopic and anaerobic crystallographic analyses, we showed that formaldehyde reacts with the reduced flavin coenzyme to form a carbinolamine intermediate used by ThyX for dUMP methylation. The crystallographic structure of this intermediate reveals how ThyX activates formaldehyde and uses it, with the assistance of active site residues, to methylate dUMP. Our results reveal that carbinolamine species promote methylene transfer and suggest that the use of a CH2O-shunt may be relevant in several other important folate-dependent reactions.
Collapse
Affiliation(s)
- Charles Bou-Nader
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, Université Pierre et Marie Curie, Paris, France.,Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 20892, USA
| | - Frederick W Stull
- Programs in Chemical Biology and the Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Ludovic Pecqueur
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, Université Pierre et Marie Curie, Paris, France
| | - Philippe Simon
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, Université Pierre et Marie Curie, Paris, France
| | - Vincent Guérineau
- CNRS, Institut de Chimie des Substances Naturelles UPR 2301, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Antoine Royant
- CEA, CNRS, Institut de Biologie Structurale (IBS), Université Grenoble Alpes, Grenoble, France.,European Synchrotron Radiation Facility, Grenoble, France
| | - Marc Fontecave
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, Université Pierre et Marie Curie, Paris, France
| | - Murielle Lombard
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, Université Pierre et Marie Curie, Paris, France
| | - Bruce A Palfey
- Programs in Chemical Biology and the Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Djemel Hamdane
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, Université Pierre et Marie Curie, Paris, France.
| |
Collapse
|
8
|
Myllykallio H, Becker HF, Aleksandrov A. Mechanism of Naphthoquinone Selectivity of Thymidylate Synthase ThyX. Biophys J 2020; 119:2508-2516. [PMID: 33217379 DOI: 10.1016/j.bpj.2020.10.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/23/2020] [Accepted: 10/30/2020] [Indexed: 10/23/2022] Open
Abstract
Naphthoquinones (NQs) are natural and synthetic compounds with a wide range of biological activities commonly attributed to their redox activity and/or chemical reactivity. However, genetic and biochemical experiments have recently demonstrated that 2-hydroxy-NQs (2-OH-NQs) act as highly specific noncovalent inhibitors of the essential bacterial thymidylate synthase ThyX in a cellular context. We used biochemical experiments and molecular dynamics simulations to elucidate the selective inhibition mechanism of NQ inhibitors of ThyX from Mycobacterium tuberculosis (Mtb). Free energy simulations rationalized how ThyX recognizes the natural substrate dUMP in the N3-ionized form using an arginine, Arg199, in Mtb. The results further demonstrated that 2-OH-NQ, similar to dUMP, binds to ThyX in the ionized form, and the strong and selective binding of 2-OH-NQ to ThyX is also explained by electrostatic interactions with Arg199. The stronger binding of the close analog 5F-dUMP to ThyX and its inhibitory properties compared with dUMP were explained by the stronger acidity of the uracil N3 atom. Our results, therefore, revealed that the ionization of 2-OH-NQs drives their biological activities by mimicking the interactions with the natural substrate. Our observations encourage the rational design of optimized ThyX inhibitors that ultimately may serve as antibiotics.
Collapse
Affiliation(s)
- Hannu Myllykallio
- Laboratoire d'Optique et Biosciences (CNRS UMR7645, INSERM U1182), Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France.
| | - Hubert F Becker
- Laboratoire d'Optique et Biosciences (CNRS UMR7645, INSERM U1182), Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France; Faculté des Sciences et Ingénierie, Sorbonne Université, Paris, France
| | - Alexey Aleksandrov
- Laboratoire d'Optique et Biosciences (CNRS UMR7645, INSERM U1182), Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France.
| |
Collapse
|
9
|
McCutcheon JG, Lin A, Dennis JJ. Isolation and Characterization of the Novel Bacteriophage AXL3 against Stenotrophomonas maltophilia. Int J Mol Sci 2020; 21:E6338. [PMID: 32882851 PMCID: PMC7504290 DOI: 10.3390/ijms21176338] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/27/2020] [Accepted: 08/29/2020] [Indexed: 12/26/2022] Open
Abstract
The rapid increase in the number of worldwide human infections caused by the extremely antibiotic resistant bacterial pathogen Stenotrophomonas maltophilia is cause for concern. An alternative treatment solution in the post-antibiotic era is phage therapy, the use of bacteriophages to selectively kill bacterial pathogens. In this study, the novel bacteriophage AXL3 (vB_SmaS-AXL_3) was isolated from soil and characterized. Host range analysis using a panel of 29 clinical S. maltophilia isolates shows successful infection of five isolates and electron microscopy indicates that AXL3 is a member of the Siphoviridae family. Complete genome sequencing and analysis reveals a 47.5 kb genome predicted to encode 65 proteins. Functionality testing suggests AXL3 is a virulent phage and results show that AXL3 uses the type IV pilus, a virulence factor on the cell surface, as its receptor across its host range. This research identifies a novel virulent phage and characterization suggests that AXL3 is a promising phage therapy candidate, with future research examining modification through genetic engineering to broaden its host range.
Collapse
Affiliation(s)
| | | | - Jonathan J. Dennis
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada; (J.G.M.); (A.L.)
| |
Collapse
|
10
|
Gaurav K, Adhikary T, Satpati P. dUMP/F-dUMP Binding to Thymidylate Synthase: Human Versus Mycobacterium tuberculosis. ACS OMEGA 2020; 5:17182-17192. [PMID: 32715203 PMCID: PMC7376888 DOI: 10.1021/acsomega.0c01224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
Thymidylate synthase is an enzyme that catalyzes deoxythymidine monophosphate (dTMP) synthesis from substrate deoxyuridine monophosphate (dUMP). Thymidylate synthase of Mycobacterium tuberculosis (MtbThyX) is structurally distinct from its human analogue human thymidylate synthase (hThyA), thus drawing attention as an attractive drug target for combating tuberculosis. Fluorodeoxyuridylate (F-dUMP) is a successful inhibitor of both MtbThyX and hThyA, thus limited by poor selectivity. Understanding the dynamics and energetics associated with substrate/inhibitor binding to thymidylate synthase in atomic details remains a fundamental unsolved problem, which is necessary for a new selective inhibitor design. Structural studies of MtbThyX and hThyA bound substrate/inhibitor complexes not only revealed the extensive specific interaction network between protein and ligands but also opened up the possibility of directly computing the energetics of the substrate versus inhibitor recognition. Using experimentally determined structures as a template, we report extensive computer simulations (∼4.5 μs) that allow us to quantitatively estimate ligand selectivity (dUMP vs F-dUMP) by MtbThyX and hThyA. We show that MtbThyX prefers deprotonated dUMP (enolate form) as the substrate, whereas hThyA binds to the keto form of dUMP. Computed energetics clearly show that MtbThyX is less selective between dUMP and F-dUMP, favoring the latter, relative to hThyA. The simulations reveal the role of tyrosine at position 135 (Y135) of hThyA in amplifying the selectivity. The protonation state of the pyrimidine base of the ligand (i.e., keto or enolate) seems to have no role in MtbThyX ligand selectivity. A molecular gate (consists of Y108, K165, H203, and a water molecule) restricts water accessibility and offers a desolvated dry ligand-binding pocket for MtbThyX. The ligand-binding pocket of hThyA is relatively wet and exposed to bulk water.
Collapse
|
11
|
Ogawa A, Sampei GI, Kawai G. Crystal structure of the flavin-dependent thymidylate synthase Thy1 from Thermus thermophilus with an extra C-terminal domain. ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS 2019; 75:450-454. [PMID: 31204692 DOI: 10.1107/s2053230x19007192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/17/2019] [Indexed: 11/10/2022]
Abstract
The thymidylate synthases ThyA and Thy1 are enzymes that catalyse the formation of thymidine monophosphate from 2'-deoxyuridine monophosphate. Thy1 (or ThyX) requires flavin for catalytic reactions, while ThyA does not. In the present study, the crystal structure of the flavin-dependent thymidylate synthase Thy1 from Thermus thermophilus HB8 (TtThy1, TTHA1096) was determined in complex with FAD and phosphate at 2.5 Å resolution. TtThy1 is a tetrameric molecule like other Thy1 proteins, to which four FAD molecules are bound. In the crystal of TtThy1, two phosphate ions were bound to each dUMP-binding site. The characteristic feature of TtThy1 is the existence of an extra C-terminal domain (CTD) consisting of three α-helices and a β-strand. The function of the CTD is unknown and database analysis showed that this CTD is only shared by part of the Deinococcus-Thermus phylum.
Collapse
Affiliation(s)
- Aoba Ogawa
- Department of Life and Environmental Sciences, Faculty of Engineering, Chiba Institute of Technology, Narashino, Chiba 275-0016, Japan
| | - Gen Ichi Sampei
- Department of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan
| | - Gota Kawai
- Department of Life and Environmental Sciences, Faculty of Engineering, Chiba Institute of Technology, Narashino, Chiba 275-0016, Japan
| |
Collapse
|
12
|
Modranka J, Li J, Parchina A, Vanmeert M, Dumbre S, Salman M, Myllykallio H, Becker HF, Vanhoutte R, Margamuljana L, Nguyen H, Abu El-Asrar R, Rozenski J, Herdewijn P, De Jonghe S, Lescrinier E. Synthesis and Structure-Activity Relationship Studies of Benzo[b][1,4]oxazin-3(4H)-one Analogues as Inhibitors of Mycobacterial Thymidylate Synthase X. ChemMedChem 2019; 14:645-662. [PMID: 30702807 DOI: 10.1002/cmdc.201800739] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/21/2019] [Indexed: 12/19/2022]
Abstract
Since the discovery of a flavin-dependent thymidylate synthase (ThyX or FDTS) that is absent in humans but crucial for DNA biosynthesis in a diverse group of pathogens, the enzyme has been pursued for the development of new antibacterial agents against Mycobacterium tuberculosis, the causative agent of the widespread infectious disease tuberculosis (TB). In response to a growing need for more effective anti-TB drugs, we have built upon our previous screening efforts and report herein an optimization campaign of a novel series of inhibitors with a unique inhibition profile. The inhibitors display competitive inhibition toward the methylene tetrahydrofolate cofactor of ThyX, enabling us to generate a model of the compounds bound to their target, thus offering insight into their structure-activity relationships.
Collapse
Affiliation(s)
- Jakub Modranka
- Medicinal Chemistry, Rega Institute for Medical Science, KU Leuven, Herestraat 49, PO Box 1030, 3000, Leuven, Belgium
| | - Jiahong Li
- Medicinal Chemistry, Rega Institute for Medical Science, KU Leuven, Herestraat 49, PO Box 1030, 3000, Leuven, Belgium
| | - Anastasia Parchina
- Medicinal Chemistry, Rega Institute for Medical Science, KU Leuven, Herestraat 49, PO Box 1030, 3000, Leuven, Belgium
| | - Michiel Vanmeert
- Medicinal Chemistry, Rega Institute for Medical Science, KU Leuven, Herestraat 49, PO Box 1030, 3000, Leuven, Belgium
| | - Shrinivas Dumbre
- Medicinal Chemistry, Rega Institute for Medical Science, KU Leuven, Herestraat 49, PO Box 1030, 3000, Leuven, Belgium
| | - Mayla Salman
- Laboratory of Optics and Biosciences, INSERM U 696-CNRS UMR 7645, Ecole Polytechnique, Route de Saclay, 91128, Palaiseau Cedex, France
| | - Hannu Myllykallio
- Laboratory of Optics and Biosciences, INSERM U 696-CNRS UMR 7645, Ecole Polytechnique, Route de Saclay, 91128, Palaiseau Cedex, France
| | - Hubert F Becker
- Laboratory of Optics and Biosciences, INSERM U 696-CNRS UMR 7645, Ecole Polytechnique, Route de Saclay, 91128, Palaiseau Cedex, France.,Faculté des Sciences et Ingénierie, Sorbonne Université, 4 place Jussieu, 75005, Paris, France
| | - Roeland Vanhoutte
- Present affiliation: Laboratory of Chemical Biology, KU Leuven, O&N I, Herestraat 49, PO Box 802, 3000, Leuven, Belgium
| | - Lia Margamuljana
- Medicinal Chemistry, Rega Institute for Medical Science, KU Leuven, Herestraat 49, PO Box 1030, 3000, Leuven, Belgium
| | - Hoai Nguyen
- Medicinal Chemistry, Rega Institute for Medical Science, KU Leuven, Herestraat 49, PO Box 1030, 3000, Leuven, Belgium
| | - Rania Abu El-Asrar
- Medicinal Chemistry, Rega Institute for Medical Science, KU Leuven, Herestraat 49, PO Box 1030, 3000, Leuven, Belgium
| | - Jef Rozenski
- Medicinal Chemistry, Rega Institute for Medical Science, KU Leuven, Herestraat 49, PO Box 1030, 3000, Leuven, Belgium
| | - Piet Herdewijn
- Medicinal Chemistry, Rega Institute for Medical Science, KU Leuven, Herestraat 49, PO Box 1030, 3000, Leuven, Belgium
| | - Steven De Jonghe
- Medicinal Chemistry, Rega Institute for Medical Science, KU Leuven, Herestraat 49, PO Box 1030, 3000, Leuven, Belgium.,Present affiliation: Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Herestraat 49, PO Box 1043, 3000, Leuven, Belgium
| | - Eveline Lescrinier
- Medicinal Chemistry, Rega Institute for Medical Science, KU Leuven, Herestraat 49, PO Box 1030, 3000, Leuven, Belgium
| |
Collapse
|
13
|
Ma QS, Yao Y, Zheng YC, Feng S, Chang J, Yu B, Liu HM. Ligand-based design, synthesis and biological evaluation of xanthine derivatives as LSD1/KDM1A inhibitors. Eur J Med Chem 2019; 162:555-567. [DOI: 10.1016/j.ejmech.2018.11.035] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/28/2018] [Accepted: 11/15/2018] [Indexed: 12/28/2022]
|
14
|
Methionine Sulfoxide Reductases of Archaea. Antioxidants (Basel) 2018; 7:antiox7100124. [PMID: 30241308 PMCID: PMC6211008 DOI: 10.3390/antiox7100124] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/05/2018] [Accepted: 09/11/2018] [Indexed: 01/04/2023] Open
Abstract
Methionine sulfoxide reductases are found in all domains of life and are important in reversing the oxidative damage of the free and protein forms of methionine, a sulfur containing amino acid particularly sensitive to reactive oxygen species (ROS). Archaea are microbes of a domain of life distinct from bacteria and eukaryotes. Archaea are well known for their ability to withstand harsh environmental conditions that range from habitats of high ROS, such as hypersaline lakes of intense ultraviolet (UV) radiation and desiccation, to hydrothermal vents of low concentrations of dissolved oxygen at high temperature. Recent evidence reveals the methionine sulfoxide reductases of archaea function not only in the reduction of methionine sulfoxide but also in the ubiquitin-like modification of protein targets during oxidative stress, an association that appears evolutionarily conserved in eukaryotes. Here is reviewed methionine sulfoxide reductases and their distribution and function in archaea.
Collapse
|
15
|
New Insight into the Octamer of TYMS Stabilized by Intermolecular Cys43-Disulfide. Int J Mol Sci 2018; 19:ijms19051393. [PMID: 29735940 PMCID: PMC5983622 DOI: 10.3390/ijms19051393] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 04/25/2018] [Accepted: 05/01/2018] [Indexed: 01/04/2023] Open
Abstract
Thymidylate synthase (TYMS) is an essential enzyme for the de novo synthesis of deoxythymidine monophosphate (dTMP) and has been a primary target for cancer chemotherapy. Although the physical structure of TYMS and the molecular mechanisms of TYMS catalyzing the conversion of deoxyuridine monophosphate (dUMP) to dTMP have been the subject of thorough studies, its oligomeric structure remains unclear. Here, we show that human TYMS not only exists in dimer form but also as an octamer by intermolecular Cys43-disulfide formation. We optimized the expression conditions of recombinant human TYMS using the Escherichia coli system. Using high-performance liquid chromatography⁻tandem mass spectrometry (HPLC⁻MS/MS), we have shown that purified TYMS has catalytic activity for producing dTMP. In the absence of reductant β-mercaptoethanol, SDS-PAGE and size exclusion chromatography (SEC) showed that the size of the TYMS protein is about 35 kDa, 70 kDa, and 280 kDa. When the Cys43 was mutated to Gly, the band of ~280 kDa and the peak of the octamer disappeared. Therefore, TYMS was determined to form an octamer, depending on the presence of Cys43-disulfide. By measuring steady-state parameters for the monomer, dimer, and octamer, we found the kcat of the octamer was increased slightly more than the monomer. On the basis of these findings, we suggest that the octamer in the active state might have a potential influence on the design of new drug targets.
Collapse
|
16
|
Karunaratne K, Luedtke N, Quinn DM, Kohen A. Flavin-dependent thymidylate synthase: N5 of flavin as a Methylene carrier. Arch Biochem Biophys 2017; 632:11-19. [PMID: 28821425 DOI: 10.1016/j.abb.2017.08.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/09/2017] [Accepted: 08/12/2017] [Indexed: 10/19/2022]
Abstract
Thymidylate is synthesized de novo in all living organisms for replication of genomes. The chemical transformation is reductive methylation of deoxyuridylate at C5 to form deoxythymidylate. All eukaryotes including humans complete this well-understood transformation with thymidylate synthase utilizing 6R-N5-N10-methylene-5,6,7,8-tetrahydrofolate as both a source of methylene and a reducing hydride. In 2002, flavin-dependent thymidylate synthase was discovered as a new pathway for de novo thymidylate synthesis. The flavin-dependent catalytic mechanism is different than thymidylate synthase because it requires flavin as a reducing agent and methylene transporter. This catalytic mechanism is not well-understood, but since it is known to be very different from thymidylate synthase, there is potential for mechanism-based inhibitors that can selectively inhibit the flavin-dependent enzyme to target many human pathogens with low host toxicity.
Collapse
Affiliation(s)
| | - Nicholas Luedtke
- Department of Chemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Daniel M Quinn
- Department of Chemistry, University of Iowa, Iowa City, IA 52242, USA.
| | - Amnon Kohen
- Department of Chemistry, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
17
|
Discovery of a new Mycobacterium tuberculosis thymidylate synthase X inhibitor with a unique inhibition profile. Biochem Pharmacol 2017; 135:69-78. [PMID: 28359706 DOI: 10.1016/j.bcp.2017.03.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 03/24/2017] [Indexed: 01/24/2023]
Abstract
Tuberculosis (TB), mainly caused by Mycobacterium tuberculosis (Mtb), is an infection that is responsible for roughly 1.5 million deaths per year. The situation is further complicated by the wide-spread resistance to the existing first- and second-line drugs. As a result of this, it is urgent to develop new drugs to combat the resistant bacteria as well as have lower side effects, which can promote adherence to the treatment regimens. Targeting the de novo synthesis of thymidylate (dTMP) is an important pathway to develop drugs for TB. Although Mtb carries genes for two families of thymidylate synthases (TS), ThyA and ThyX, only ThyX is essential for its normal growth. Both enzymes catalyze the conversion of uridylate (dUMP) to dTMP but employ a different catalytic approach and have different structures. Also, ThyA is the only TS found in humans. This is the rationale for identifying selective inhibitors against ThyX. We exploited the NADPH oxidation to NADP+ step, catalyzed by ThyX, to develop a spectrophotometric biochemical assay. Success of the assay was demonstrated by its effectiveness (average Z'=0.77) and identification of selective ThyX inhibitors. The most potent compound is a tight-binding inhibitor with an IC50 of 710nM. Its mechanism of inhibition is analyzed in relation to the latest findings of ThyX mechanism and substrate and cofactor binding order.
Collapse
|
18
|
Luciani R, Saxena P, Surade S, Santucci M, Venturelli A, Borsari C, Marverti G, Ponterini G, Ferrari S, Blundell TL, Costi MP. Virtual Screening and X-ray Crystallography Identify Non-Substrate Analog Inhibitors of Flavin-Dependent Thymidylate Synthase. J Med Chem 2016; 59:9269-9275. [PMID: 27589670 DOI: 10.1021/acs.jmedchem.6b00977] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Thymidylate synthase X (ThyX) represents an attractive target for tuberculosis drug discovery. Herein, we selected 16 compounds through a virtual screening approach. We solved the first X-ray crystal structure of Thermatoga maritima (Tm) ThyX in complex with a nonsubstrate analog inhibitor. Given the active site similarities between Mycobacterium tuberculosis ThyX (Mtb-ThyX) and Tm-ThyX, our crystal structure paves the way for a structure-based design of novel antimycobacterial compounds. The 1H-imidazo[4,5-d]pyridazine was identified as scaffold for the development of Mtb-ThyX inhibitors.
Collapse
Affiliation(s)
- Rosaria Luciani
- Department of Life Sciences, University of Modena and Reggio Emilia , Via Campi, 103, 41125 Modena, Italy
| | - Puneet Saxena
- Department of Life Sciences, University of Modena and Reggio Emilia , Via Campi, 103, 41125 Modena, Italy
| | - Sachin Surade
- Department of Biochemistry, University of Cambridge , 80 Tennis Court Road, Cambridge, CB2 1GA, United Kingdom
| | - Matteo Santucci
- Department of Life Sciences, University of Modena and Reggio Emilia , Via Campi, 103, 41125 Modena, Italy
| | - Alberto Venturelli
- Department of Life Sciences, University of Modena and Reggio Emilia , Via Campi, 103, 41125 Modena, Italy.,Tydock Pharma srl , Strada Gherbella 294/B, 41126 Modena, Italy
| | - Chiara Borsari
- Department of Life Sciences, University of Modena and Reggio Emilia , Via Campi, 103, 41125 Modena, Italy
| | - Gaetano Marverti
- Department of Biomedical Sciences, Metabolic and Neural Sciences, University of Modena and Reggio Emilia , Via Campi, 287, 41125 Modena, Italy
| | - Glauco Ponterini
- Department of Life Sciences, University of Modena and Reggio Emilia , Via Campi, 103, 41125 Modena, Italy
| | - Stefania Ferrari
- Department of Life Sciences, University of Modena and Reggio Emilia , Via Campi, 103, 41125 Modena, Italy
| | - Tom L Blundell
- Department of Biochemistry, University of Cambridge , 80 Tennis Court Road, Cambridge, CB2 1GA, United Kingdom
| | - Maria Paola Costi
- Department of Life Sciences, University of Modena and Reggio Emilia , Via Campi, 103, 41125 Modena, Italy
| |
Collapse
|
19
|
An unusual UMP C-5 methylase in nucleoside antibiotic polyoxin biosynthesis. Protein Cell 2016; 7:673-83. [PMID: 27412636 PMCID: PMC5003785 DOI: 10.1007/s13238-016-0289-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 06/14/2016] [Indexed: 11/04/2022] Open
Abstract
Polyoxin is a group of structurally-related peptidyl nucleoside antibiotics bearing C-5 modifications on the nucleoside skeleton. Although the structural diversity and bioactivity preference of polyoxin are, to some extent, affected by such modifications, the biosynthetic logic for their occurence remains obscure. Here we report the identification of PolB in polyoxin pathway as an unusual UMP C-5 methylase with thymidylate synthase activity which is responsible for the C-5 methylation of the nucleoside skeleton. To probe its molecular mechanism, we determined the crystal structures of PolB alone and in complexes with 5-Br UMP and 5-Br dUMP at 2.15 Å, 1.76 Å and 2.28 Å resolutions, respectively. Loop 1 (residues 117–131), Loop 2 (residues 192–201) and the substrate recognition peptide (residues 94–102) of PolB exhibit considerable conformational flexibility and adopt distinct structures upon binding to different substrate analogs. Consistent with the structural findings, a PolB homolog that harbors an identical function from Streptomyces viridochromogenes DSM 40736 was identified. The discovery of UMP C5-methylase opens the way to rational pathway engineering for polyoxin component optimization, and will also enrich the toolbox for natural nucleotide chemistry.
Collapse
|
20
|
Krumova S, Todinova S, Tileva M, Bouzhir-Sima L, Vos MH, Liebl U, Taneva SG. Thermal stability and binding energetics of thymidylate synthase ThyX. Int J Biol Macromol 2016; 91:560-7. [PMID: 27268384 DOI: 10.1016/j.ijbiomac.2016.05.083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/20/2016] [Accepted: 05/23/2016] [Indexed: 10/21/2022]
Abstract
The bacterial thymidylate synthase ThyX is a multisubstrate flavoenzyme that takes part in the de novo synthesis of thymidylate in a variety of microorganisms. Herein we study the effect of FAD and dUMP binding on the thermal stability of wild type (WT) ThyX from the mesophilic Paramecium bursaria chlorella virus-1 (PBCV-1) and from the thermophilic bacterium Thermotoga maritima (TmThyX), and from two variants of TmThyX, Y91F and S88W, using differential scanning calorimetry. The energetics underlying these processes was characterized by isothermal titration calorimetry. The PBCV-1 protein is significantly less stable against the thermal challenge than the TmThyX WT. FAD exerted stabilizing effect greater for PBCV-1 than for TmThyX and for both mutants, whereas binding of dUMP to FAD-loaded proteins stabilized further only TmThyX. Different thermodynamic signatures describe the FAD binding to the WT ThyX proteins. While TmThyX binds FAD with a low μM binding affinity in a process characterized by a favorable entropy change, the assembly of PBCV-1 with FAD is governed by a large enthalpy change opposed by an unfavorable entropy change resulting in a relatively strong nM binding. An enthalpy-driven formation of a high affinity ternary ThyX/FAD/dUMP complex was observed only for TmThyX.
Collapse
Affiliation(s)
- Sashka Krumova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, 1113 Sofia, Bulgaria
| | - Svetla Todinova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, 1113 Sofia, Bulgaria
| | - Milena Tileva
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, 1113 Sofia, Bulgaria
| | | | - Marten H Vos
- LOB, Ecole Polytechnique, CNRS, INSERM, 91128 Palaiseau Cedex, France
| | - Ursula Liebl
- LOB, Ecole Polytechnique, CNRS, INSERM, 91128 Palaiseau Cedex, France
| | - Stefka G Taneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, 1113 Sofia, Bulgaria.
| |
Collapse
|
21
|
Stull FW, Bernard SM, Sapra A, Smith JL, Zuiderweg ERP, Palfey BA. Deprotonations in the Reaction of Flavin-Dependent Thymidylate Synthase. Biochemistry 2016; 55:3261-9. [PMID: 27214228 DOI: 10.1021/acs.biochem.6b00510] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Many microorganisms use flavin-dependent thymidylate synthase (FDTS) to synthesize the essential nucleotide 2'-deoxythymidine 5'-monophosphate (dTMP) from 2'-deoxyuridine 5'-monophosphate (dUMP), 5,10-methylenetetrahydrofolate (CH2THF), and NADPH. FDTSs have a structure that is unrelated to the thymidylate synthase used by humans and a very different mechanism. Here we report nuclear magnetic resonance evidence that FDTS ionizes N3 of dUMP using an active-site arginine. The ionized form of dUMP is largely responsible for the changes in the flavin absorbance spectrum of FDTS upon dUMP binding. dUMP analogues also suggest that the phosphate of dUMP acts as the base that removes the proton from C5 of the dUMP-methylene intermediate in the FDTS-catalyzed reaction. These findings establish additional differences between the mechanisms of FDTS and human thymidylate synthase.
Collapse
Affiliation(s)
- Frederick W Stull
- Program in Chemical Biology, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Steffen M Bernard
- Program in Chemical Biology, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Aparna Sapra
- Department of Biological Chemistry, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Janet L Smith
- Program in Chemical Biology, University of Michigan , Ann Arbor, Michigan 48109, United States.,Department of Biological Chemistry, University of Michigan , Ann Arbor, Michigan 48109, United States.,Life Sciences Institute, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Erik R P Zuiderweg
- Department of Biological Chemistry, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Bruce A Palfey
- Program in Chemical Biology, University of Michigan , Ann Arbor, Michigan 48109, United States.,Department of Biological Chemistry, University of Michigan , Ann Arbor, Michigan 48109, United States
| |
Collapse
|
22
|
Nyíri K, Vértessy BG. Perturbation of genome integrity to fight pathogenic microorganisms. Biochim Biophys Acta Gen Subj 2016; 1861:3593-3612. [PMID: 27217086 DOI: 10.1016/j.bbagen.2016.05.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/05/2016] [Accepted: 05/18/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND Resistance against antibiotics is unfortunately still a major biomedical challenge for a wide range of pathogens responsible for potentially fatal diseases. SCOPE OF REVIEW In this study, we aim at providing a critical assessment of the recent advances in design and use of drugs targeting genome integrity by perturbation of thymidylate biosynthesis. MAJOR CONCLUSION We find that research efforts from several independent laboratories resulted in chemically highly distinct classes of inhibitors of key enzymes within the routes of thymidylate biosynthesis. The present article covers numerous studies describing perturbation of this metabolic pathway in some of the most challenging pathogens like Mycobacterium tuberculosis, Plasmodium falciparum, and Staphylococcus aureus. GENERAL SIGNIFICANCE Our comparative analysis allows a thorough summary of the current approaches to target thymidylate biosynthesis enzymes and also include an outlook suggesting novel ways of inhibitory strategies. This article is part of a Special Issue entitled "Science for Life" Guest Editor: Dr. Austen Angell, Dr. Salvatore Magazù and Dr. Federica Migliardo.
Collapse
Affiliation(s)
- Kinga Nyíri
- Dept. Biotechnology, Budapest University of Technology and Economics, 4 Szent Gellért tér, Budapest HU 1111, Hungary; Institute of Enzymology, RCNS, Hungarian Academy of Sciences, 2 Magyar tudósok körútja, Budapest HU 1117, Hungary.
| | - Beáta G Vértessy
- Dept. Biotechnology, Budapest University of Technology and Economics, 4 Szent Gellért tér, Budapest HU 1111, Hungary; Institute of Enzymology, RCNS, Hungarian Academy of Sciences, 2 Magyar tudósok körútja, Budapest HU 1117, Hungary.
| |
Collapse
|
23
|
Skouloubris S, Djaout K, Lamarre I, Lambry JC, Anger K, Briffotaux J, Liebl U, de Reuse H, Myllykallio H. Targeting of Helicobacter pylori thymidylate synthase ThyX by non-mitotoxic hydroxy-naphthoquinones. Open Biol 2016; 5:150015. [PMID: 26040760 PMCID: PMC4632503 DOI: 10.1098/rsob.150015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
ThyX is an essential thymidylate synthase that is mechanistically and structurally unrelated to the functionally analogous human enzyme, thus providing means for selective inhibition of bacterial growth. To identify novel compounds with anti-bacterial activity against the human pathogenic bacterium Helicobacter pylori, based on our earlier biochemical and structural analyses, we designed a series of eighteen 2-hydroxy-1,4-naphthoquinones (2-OH-1,4-NQs) that target HpThyX. Our lead-like molecules markedly inhibited the NADPH oxidation and 2′-deoxythymidine-5′-monophosphate-forming activities of HpThyX enzyme in vitro, with inhibitory constants in the low nanomolar range. The identification of non-cytotoxic and non-mitotoxic 2-OH-1,4-NQ inhibitors permitted testing their in vivo efficacy in a mouse model for H. pylori infections. Despite the widely assumed toxicity of naphthoquinones (NQs), we identified tight-binding ThyX inhibitors that were tolerated in mice and can be associated with a modest effect in reducing the number of colonizing bacteria. Our results thus provide proof-of-concept that targeting ThyX enzymes is a highly feasible strategy for the development of therapies against H. pylori and a high number of other ThyX-dependent pathogenic bacteria. We also demonstrate that chemical reactivity of NQs does not prevent their exploitation as anti-microbial compounds, particularly when mitotoxicity screening is used to prioritize these compounds for further experimentation.
Collapse
Affiliation(s)
- Stéphane Skouloubris
- Laboratoire d'Optique et Biosciences, CNRS UMR7645, INSERM U1182, Ecole Polytechnique, Palaiseau 91128, France Department of Biology, Université Paris-Sud, Orsay 91405, France
| | - Kamel Djaout
- Laboratoire d'Optique et Biosciences, CNRS UMR7645, INSERM U1182, Ecole Polytechnique, Palaiseau 91128, France
| | - Isabelle Lamarre
- Laboratoire d'Optique et Biosciences, CNRS UMR7645, INSERM U1182, Ecole Polytechnique, Palaiseau 91128, France
| | - Jean-Christophe Lambry
- Laboratoire d'Optique et Biosciences, CNRS UMR7645, INSERM U1182, Ecole Polytechnique, Palaiseau 91128, France
| | - Karine Anger
- Department of Microbiology, Institut Pasteur, Unité Pathogenèse de Helicobacter, 28 rue du Dr. Roux, Paris 75724, France
| | - Julien Briffotaux
- Laboratoire d'Optique et Biosciences, CNRS UMR7645, INSERM U1182, Ecole Polytechnique, Palaiseau 91128, France
| | - Ursula Liebl
- Laboratoire d'Optique et Biosciences, CNRS UMR7645, INSERM U1182, Ecole Polytechnique, Palaiseau 91128, France
| | - Hilde de Reuse
- Department of Microbiology, Institut Pasteur, Unité Pathogenèse de Helicobacter, 28 rue du Dr. Roux, Paris 75724, France
| | - Hannu Myllykallio
- Laboratoire d'Optique et Biosciences, CNRS UMR7645, INSERM U1182, Ecole Polytechnique, Palaiseau 91128, France
| |
Collapse
|
24
|
Mishanina TV, Yu L, Karunaratne K, Mondal D, Corcoran JM, Choi MA, Kohen A. An unprecedented mechanism of nucleotide methylation in organisms containing thyX. Science 2016; 351:507-10. [PMID: 26823429 DOI: 10.1126/science.aad0300] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
In several human pathogens, thyX-encoded flavin-dependent thymidylate synthase (FDTS) catalyzes the last step in the biosynthesis of thymidylate, one of the four DNA nucleotides. ThyX is absent in humans, rendering FDTS an attractive antibiotic target; however, the lack of mechanistic understanding prohibits mechanism-based drug design. Here, we report trapping and characterization of two consecutive intermediates, which together with previous crystal structures indicate that the enzyme's reduced flavin relays a methylene from the folate carrier to the nucleotide acceptor. Furthermore, these results corroborate an unprecedented activation of the nucleotide that involves no covalent modification but only electrostatic polarization by the enzyme's active site. These findings indicate a mechanism that is very different from thymidylate biosynthesis in humans, underscoring the promise of FDTS as an antibiotic target.
Collapse
Affiliation(s)
| | - Liping Yu
- Nuclear Magnetic Resonance (NMR) Core Facility and Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | | - Dibyendu Mondal
- Department of Chemistry, University of Iowa, Iowa City, IA 52242, USA
| | - John M Corcoran
- Department of Chemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Michael A Choi
- Department of Chemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Amnon Kohen
- Department of Chemistry, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
25
|
Abstract
Purine and pyrimidine nucleoside and nucleotide analogs have been extensively studied as anticancer and antiviral agents. In addition to this, they have recently shown great potential against Mycobacterium Tuberculosis, the causative agent of TB. TB ranks as the tenth most common cause of death in the world. The current treatment for TB infection is limited by side effects and cost of the drugs and most importantly by the development of resistance to the therapy. Therefore the development of novel drugs, capable of overcoming the drawbacks of the existing treatments, has become the focus of many research programs. In parallel to that, a tremendous effort has been made to elucidate the unique metabolism of this pathogen with the aim to identify new possible targets. This review presents the state of the art in nucleoside and nucleotide analogs in the treatment of TB. In particular, we report on the inhibitory activity of this class of compounds, both in enzymatic and whole-cell assays, providing a brief insight to which reported target these novel compounds are hitting.
Collapse
|
26
|
Hew K, Dahlroth SL, Veerappan S, Pan LX, Cornvik T, Nordlund P. Structure of the Varicella Zoster Virus Thymidylate Synthase Establishes Functional and Structural Similarities as the Human Enzyme and Potentiates Itself as a Target of Brivudine. PLoS One 2015; 10:e0143947. [PMID: 26630264 PMCID: PMC4668047 DOI: 10.1371/journal.pone.0143947] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 11/11/2015] [Indexed: 12/19/2022] Open
Abstract
Varicella zoster virus (VZV) is a highly infectious human herpesvirus that is the causative agent for chicken pox and shingles. VZV encodes a functional thymidylate synthase (TS), which is the sole enzyme that produces dTMP from dUMP de novo. To study substrate binding, the complex structure of TSVZV with dUMP was determined to a resolution of 2.9 Å. In the absence of a folate co-substrate, dUMP binds in the conserved TS active site and is coordinated similarly as in the human encoded TS (TSHS) in an open conformation. The interactions between TSVZV with dUMP and a cofactor analog, raltitrexed, were also studied using differential scanning fluorimetry (DSF), suggesting that TSVZV binds dUMP and raltitrexed in a sequential binding mode like other TS. The DSF also revealed interactions between TSVZV and in vitro phosphorylated brivudine (BVDUP), a highly potent anti-herpesvirus drug against VZV infections. The binding of BVDUP to TSVZV was further confirmed by the complex structure of TSVZV and BVDUP solved at a resolution of 2.9 Å. BVDUP binds similarly as dUMP in the TSHS but it induces a closed conformation of the active site. The structure supports that the 5-bromovinyl substituent on BVDUP is likely to inhibit TSVZV by preventing the transfer of a methylene group from its cofactor and the subsequent formation of dTMP. The interactions between TSVZV and BVDUP are consistent with that TSVZV is indeed a target of brivudine in vivo. The work also provided the structural basis for rational design of more specific TSVZV inhibitors.
Collapse
Affiliation(s)
- Kelly Hew
- Division of Structural Biology and Biochemistry, Nanyang Technological University, School of Biological Sciences, Singapore, Singapore
| | - Sue-Li Dahlroth
- Division of Structural Biology and Biochemistry, Nanyang Technological University, School of Biological Sciences, Singapore, Singapore
| | - Saranya Veerappan
- Division of Structural Biology and Biochemistry, Nanyang Technological University, School of Biological Sciences, Singapore, Singapore
| | - Lucy Xin Pan
- Division of Structural Biology and Biochemistry, Nanyang Technological University, School of Biological Sciences, Singapore, Singapore
| | - Tobias Cornvik
- Division of Structural Biology and Biochemistry, Nanyang Technological University, School of Biological Sciences, Singapore, Singapore
| | - Pär Nordlund
- Division of Structural Biology and Biochemistry, Nanyang Technological University, School of Biological Sciences, Singapore, Singapore
- Division of Biophysics, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
- * E-mail:
| |
Collapse
|
27
|
Shibayama Y, Dabbs ER. Phage as a source of antibacterial genes: Multiple inhibitory products encoded by Rhodococcus phage YF1. BACTERIOPHAGE 2014; 1:195-197. [PMID: 23050212 PMCID: PMC3448104 DOI: 10.4161/bact.1.4.17746] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Bacteriophage-encoded proteins which inhibit or modify cellular components may contribute to antibacterial drug discovery by allowing the identification of novel targets. Given their abundance and diversity, phages may have various strategies in host inhibition and therefore may possess a variety of such proteins. Using Rhodococcus equi and phage YF1, we show that a single phage possesses numerous genes that inhibit the host when introduced into the host on a plasmid. These genes mostly encode proteins of unknown function, confirming the potential that this approach may have in providing new antibacterial targets.
Collapse
Affiliation(s)
- Youtaro Shibayama
- School of Molecular and Cell Biology; University of the Witwatersrand; Johannesburg, South Africa
| | | |
Collapse
|
28
|
Conrad JA, Ortiz-Maldonado M, Hoppe SW, Palfey BA. Detection of intermediates in the oxidative half-reaction of the FAD-dependent thymidylate synthase from Thermotoga maritima: carbon transfer without covalent pyrimidine activation. Biochemistry 2014; 53:5199-207. [PMID: 25068636 PMCID: PMC4139161 DOI: 10.1021/bi500648n] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Thymidylate, a vital DNA precursor, is synthesized by thymidylate synthases (TSs). A second class of TSs, encoded by the thyX gene, is found in bacteria and a few other microbes and is especially widespread in anaerobes. TS encoded by thyX requires a flavin adenine dinucleotide prosthetic group for activity. In the oxidative half-reaction, the reduced flavin is oxidized by 2'-deoxyuridine 5'-monophosphate (dUMP) and (6R)-N5,N10-methylene-5,6,7,8-tetrahydrofolate (CH2THF), synthesizing 2'-deoxythymidine 5'-monophosphate (dTMP). dTMP synthesis is a complex process, requiring the enzyme to promote carbon transfer, probably by increasing the nucleophilicity of dUMP and the electrophilicity of CH2THF, and reduction of the transferred carbon. The mechanism of the oxidative half-reaction was investigated by transient kinetics. Two intermediates were detected, the first by a change in the flavin absorbance spectrum in stopped-flow experiments and the second by the transient disappearance of deoxynucleotide in acid quenching experiments. The effects of substrate analogues and the behavior of mutated enzymes on these reactions lead to the conclusion that activation of dUMP does not occur through a Michael-like addition, the mechanism for the activation analogous with that of the flavin-independent TS. Rather, we propose that the nucleophilicity of dUMP is enhanced by electrostatic polarization upon binding to the active site. This conclusion rationalizes many of our observations, for instance, the markedly slower reactions when two arginine residues that hydrogen bond with the uracil moiety of dUMP were mutated to alanine. The activation of dUMP by polarization is consistent with the majority of the published data on ThyX and provides a testable mechanistic hypothesis.
Collapse
Affiliation(s)
- John A Conrad
- Department of Biological Chemistry and ‡Chemical Biology Doctoral Program, University of Michigan Medical School , 1150 West Medical Center Drive, Ann Arbor, Michigan 48109-0606, United States
| | | | | | | |
Collapse
|
29
|
Substrate interaction dynamics and oxygen control in the active site of thymidylate synthase ThyX. Biochem J 2014; 459:37-45. [PMID: 24422556 DOI: 10.1042/bj20131567] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Thymidylate synthase ThyX, required for DNA synthesis in many pathogenic bacteria, is considered a promising antimicrobial target. It binds FAD and three substrates, producing dTMP (2'-deoxythymidine-5'-monophosphate) from dUMP (2'-deoxyuridine-5'-monophosphate). However, ThyX proteins also act as NADPH oxidase by reacting directly with O2. In the present study we investigated the dynamic interplay between the substrates and their role in competing with this wasteful and potentially harmful oxidase reaction in catalytically efficient ThyX from Paramecium bursaria Chlorella virus-1. dUMP binding accelerates the O2-insensitive half-reaction between NADPH and FAD by over four orders of magnitude to ~30 s-1. Thus, although dUMP does not have a direct role in FAD reduction, any turnover with molecular O2 requires its presence. Inversely, NADPH accommodation accelerates dUMP binding ~3-fold and apparently precedes dUMP binding under physiological conditions. In the oxidative half-reaction, excess CH2H4folate (N5,N10-methylene-5,6,7,8-tetrahydrofolate) was found to re-oxidize FADH2 within 1 ms, thus very efficiently competing with FADH2 oxidation by O2 (1.5 s-1 under aerobic conditions). The resulting reaction scheme points out how the interplay between the fast reactions with the native substrates, although not rate-limiting for overall catalysis, avoids NADPH oxidase activity in aerobic micro-organisms, including many pathogens. These observations also explain why ThyX proteins are also present in aerobic micro-organisms.
Collapse
|
30
|
Shmalenyuk ER, Kochetkov SN, Alexandrova LA. Novel inhibitors ofMycobacterium tuberculosisgrowth based on modified pyrimidine nucleosides and their analogues. RUSSIAN CHEMICAL REVIEWS 2013. [DOI: 10.1070/rc2013v082n09abeh004404] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
31
|
Basta T, Boum Y, Briffotaux J, Becker HF, Lamarre-Jouenne I, Lambry JC, Skouloubris S, Liebl U, Graille M, van Tilbeurgh H, Myllykallio H. Mechanistic and structural basis for inhibition of thymidylate synthase ThyX. Open Biol 2013; 2:120120. [PMID: 23155486 PMCID: PMC3498832 DOI: 10.1098/rsob.120120] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 09/11/2012] [Indexed: 11/12/2022] Open
Abstract
Nature has established two mechanistically and structurally unrelated families of thymidylate synthases that produce de novo thymidylate or dTMP, an essential DNA precursor. Representatives of the alternative flavin-dependent thymidylate synthase family, ThyX, are found in a large number of microbial genomes, but are absent in humans. We have exploited the nucleotide binding pocket of ThyX proteins to identify non-substrate-based tight-binding ThyX inhibitors that inhibited growth of genetically modified Escherichia coli cells dependent on thyX in a manner mimicking a genetic knockout of thymidylate synthase. We also solved the crystal structure of a viral ThyX bound to 2-hydroxy-3-(4-methoxybenzyl)-1,4-naphthoquinone at a resolution of 2.6 Å. This inhibitor was found to bind within the conserved active site of the tetrameric ThyX enzyme, at the interface of two monomers, partially overlapping with the dUMP binding pocket. Our studies provide new chemical tools for investigating the ThyX reaction mechanism and establish a novel mechanistic and structural basis for inhibition of thymidylate synthesis. As essential ThyX proteins are found e.g. in Mycobacterium tuberculosis and Helicobacter pylori, our studies have also potential to pave the way towards the development of new anti-microbial compounds.
Collapse
Affiliation(s)
- Tamara Basta
- Laboratoire d'Optique et Biosciences, INSERM U696, CNRS UMR 7645, Ecole Polytechnique, Palaiseau Cedex, Palaiseau 91228, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Laptenok SP, Bouzhir-Sima L, Lambry JC, Myllykallio H, Liebl U, Vos MH. Ultrafast real-time visualization of active site flexibility of flavoenzyme thymidylate synthase ThyX. Proc Natl Acad Sci U S A 2013; 110:8924-9. [PMID: 23671075 PMCID: PMC3670337 DOI: 10.1073/pnas.1218729110] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In many bacteria the flavoenzyme thymidylate synthase ThyX produces the DNA nucleotide deoxythymidine monophosphate from dUMP, using methylenetetrahydrofolate as carbon donor and NADPH as hydride donor. Because all three substrates bind in close proximity to the catalytic flavin adenine dinucleotide group, substantial flexibility of the ThyX active site has been hypothesized. Using femtosecond time-resolved fluorescence spectroscopy, we have studied the conformational heterogeneity and the conformational interconversion dynamics in real time in ThyX from the hyperthermophilic bacterium Thermotoga maritima. The dynamics of electron transfer to excited flavin adenine dinucleotide from a neighboring tyrosine residue are used as a sensitive probe of the functional dynamics of the active site. The fluorescence decay spanned a full three orders of magnitude, demonstrating a very wide range of conformations. In particular, at physiological temperatures, multiple angstrom cofactor-residue displacements occur on the picoseconds timescale. These experimental findings are supported by molecular dynamics simulations. Binding of the dUMP substrate abolishes this flexibility and stabilizes the active site in a configuration where dUMP closely interacts with the flavin cofactor and very efficiently quenches fluorescence itself. Our results indicate a dynamic selected-fit mechanism where binding of the first substrate dUMP at high temperature stabilizes the enzyme in a configuration favorable for interaction with the second substrate NADPH, and more generally have important implications for the role of active site flexibility in enzymes interacting with multiple poly-atom substrates and products. Moreover, our data provide the basis for exploring the effect of inhibitor molecules on the active site dynamics of ThyX and other multisubstrate flavoenzymes.
Collapse
Affiliation(s)
- Sergey P. Laptenok
- Laboratory for Optics and Biosciences, Centre National de la Recherche Scientifique Ecole Polytechnique, 91128 Palaiseau, France; and
- Institut National de la Santé et de la Recherche Médicale U696, 91128 Palaiseau, France
| | - Latifa Bouzhir-Sima
- Laboratory for Optics and Biosciences, Centre National de la Recherche Scientifique Ecole Polytechnique, 91128 Palaiseau, France; and
- Institut National de la Santé et de la Recherche Médicale U696, 91128 Palaiseau, France
| | - Jean-Christophe Lambry
- Laboratory for Optics and Biosciences, Centre National de la Recherche Scientifique Ecole Polytechnique, 91128 Palaiseau, France; and
- Institut National de la Santé et de la Recherche Médicale U696, 91128 Palaiseau, France
| | - Hannu Myllykallio
- Laboratory for Optics and Biosciences, Centre National de la Recherche Scientifique Ecole Polytechnique, 91128 Palaiseau, France; and
- Institut National de la Santé et de la Recherche Médicale U696, 91128 Palaiseau, France
| | - Ursula Liebl
- Laboratory for Optics and Biosciences, Centre National de la Recherche Scientifique Ecole Polytechnique, 91128 Palaiseau, France; and
- Institut National de la Santé et de la Recherche Médicale U696, 91128 Palaiseau, France
| | - Marten H. Vos
- Laboratory for Optics and Biosciences, Centre National de la Recherche Scientifique Ecole Polytechnique, 91128 Palaiseau, France; and
- Institut National de la Santé et de la Recherche Médicale U696, 91128 Palaiseau, France
| |
Collapse
|
33
|
Laptenok SP, Bouzhir-Sima L, Myllykallio H, Liebl U, Vos MH. Configurational fluctuations and flavin-substrate interactions in the flavoenzyme ThyX studied by time- and spectrally resolved fluorescence. EPJ WEB OF CONFERENCES 2013. [DOI: 10.1051/epjconf/20134107011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
34
|
Mathews II. Flavin-Dependent Thymidylate Synthase as a Drug Target for Deadly Microbes: Mutational Study and a Strategy for Inhibitor Design. ACTA ACUST UNITED AC 2013; Suppl 12:004. [PMID: 24563811 DOI: 10.4172/2157-2526.s12-004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The identification of flavin-dependent thymidylate synthase (FDTS) as an essential enzyme and its occurrence in several pathogenic microbes opens opportunities for using FDTS enzyme as an excellent target for new antimicrobial drug discovery. In contrast to the human thymidylate synthase enzyme that utilizes methylene-tetrahydrofolate (CH2H4 folate) for the conversion of dUMP to dTMP, the microbial enzymes utilize an additional non-covalently bound FAD molecule for the hydride transfer from NAD(P)H. The structural and mechanistic differences between the human and microbial enzymes present an attractive opportunity for the design of antimicrobial compounds specific for the pathogens. We have determined the crystal structure of FDTS enzyme in complex with the methyl donor, CH2H4 folate. We describe here the structure of a FDTS mutant and compare it with other FDTS complex structures, including a FDTS-CH2H4 folate complex. We identified a conformational change essential for substrate binding and propose a strategy for the design of FDTS specific inhibitors.
Collapse
Affiliation(s)
- Irimpan I Mathews
- Stanford Synchrotron Radiation Lightsource, Stanford University, Menlo Park, CA 94025, USA
| |
Collapse
|
35
|
Abstract
The DNA nucleotide thymidylate is synthesized by the enzyme thymidylate synthase, which catalyzes the reductive methylation of deoxyuridylate using the cofactor methylene-tetrahydrofolate (CH(2)H(4)folate). Most organisms, including humans, rely on the thyA- or TYMS-encoded classic thymidylate synthase, whereas, certain microorganisms, including all Rickettsia and other pathogens, use an alternative thyX-encoded flavin-dependent thymidylate synthase (FDTS). Although several crystal structures of FDTSs have been reported, the absence of a structure with folates limits understanding of the molecular mechanism and the scope of drug design for these enzymes. Here we present X-ray crystal structures of FDTS with several folate derivatives, which together with mutagenesis, kinetic analysis, and computer modeling shed light on the cofactor binding and function. The unique structural data will likely facilitate further elucidation of FDTSs' mechanism and the design of structure-based inhibitors as potential leads to new antimicrobial drugs.
Collapse
|
36
|
Mishanina TV, Koehn EM, Kohen A. Mechanisms and inhibition of uracil methylating enzymes. Bioorg Chem 2012; 43:37-43. [PMID: 22172597 PMCID: PMC3315608 DOI: 10.1016/j.bioorg.2011.11.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 11/21/2011] [Accepted: 11/21/2011] [Indexed: 10/14/2022]
Abstract
Uracil methylation is essential for survival of organisms and passage of information from generation to generation with high fidelity. Two alternative uridyl methylation enzymes, flavin-dependent thymidylate synthase and folate/FAD-dependent RNA methyltransferase, have joined the long-known classical enzymes, thymidylate synthase and SAM-dependent RNA methyltransferase. These alternative enzymes differ significantly from their classical counterparts in structure, cofactor requirements and chemical mechanism. This review covers the available structural and mechanistic knowledge of the classical and alternative enzymes in biological uracil methylation, and offers a possibility of using inhibitors specifically aiming at microbial thymidylate production as antimicrobial drugs.
Collapse
Affiliation(s)
- Tatiana V. Mishanina
- Department of Chemistry, The University of Iowa, E274 Chemistry Building, Iowa City, IA 52245, USA
| | - Eric M. Koehn
- Department of Chemistry, The University of Iowa, E274 Chemistry Building, Iowa City, IA 52245, USA
| | - Amnon Kohen
- Department of Chemistry, The University of Iowa, E274 Chemistry Building, Iowa City, IA 52245, USA
| |
Collapse
|
37
|
Wang K, Wang Q, Chen J, Chen L, Jiang H, Shen X. Crystal structure and enzymatic characterization of thymidylate synthase X from Helicobacter pylori strain SS1. Protein Sci 2011; 20:1398-410. [PMID: 21633987 PMCID: PMC3189525 DOI: 10.1002/pro.668] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Revised: 05/23/2011] [Accepted: 05/23/2011] [Indexed: 11/09/2022]
Abstract
Thymidylate synthase X (ThyX) catalyzes the methylation of dUMP to form dTMP in bacterial life cycle and is regarded as a promising target for antibiotics discovery. Helicobacter pylori is a human pathogen associated with a number of human diseases. Here, we cloned and purified the ThyX enzyme from H. pylori SS1 strain (HpThyX). The recombinant HpThyX was discovered to exhibit the maximum activity at pH 8.5, and K(m) values of the two substrates dUMP and CH(2) H(4) folate were determined to be 15.3 ± 1.25 μM and 0.35 ± 0.18 mM, respectively. The analyzed crystal structure of HpThyX with the cofactor FAD and the substrate dUMP (at 2.31 Å) revealed that the enzyme was a tetramer bound to four dUMP and four FAD molecules. Different from the catalytic feature of the classical thymidylate synthase (ThyA), N5 atom of the FAD functioned as a nucleophile in the catalytic reaction instead of Ser84 and Ser85 residues. Our current work is expected to help better understand the structural and enzymatic features of HpThyX thus further providing valuable information for anti-H. pylori inhibitor discovery.
Collapse
Affiliation(s)
| | | | - Jing Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of SciencesShanghai 201203, China
| | | | | | - Xu Shen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of SciencesShanghai 201203, China
| |
Collapse
|
38
|
Kögler M, Vanderhoydonck B, De Jonghe S, Rozenski J, Van Belle K, Herman J, Louat T, Parchina A, Sibley C, Lescrinier E, Herdewijn P. Synthesis and evaluation of 5-substituted 2'-deoxyuridine monophosphate analogues as inhibitors of flavin-dependent thymidylate synthase in Mycobacterium tuberculosis. J Med Chem 2011; 54:4847-62. [PMID: 21657202 DOI: 10.1021/jm2004688] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of 5-substituted 2'-deoxyuridine monophosphate analogues has been synthesized and evaluated as potential inhibitors of mycobacterial ThyX, a novel flavin-dependent thymidylate synthase in Mycobacterium tuberculosis. A systematic SAR study led to the identification of compound 5a, displaying an IC(50) value against mycobacterial ThyX of 0.91 μM. This derivative lacks activity against the classical mycobacterial thymidylate synthase ThyA (IC(50) > 50 μM) and represents the first example of a selective mycobacterial FDTS inhibitor.
Collapse
Affiliation(s)
- Martin Kögler
- Katholieke Universiteit Leuven, Rega Institute for Medical Research, Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Berger MA, Decker JH, Mathews II. Diffraction study of protein crystals grown in cryoloops and micromounts. J Appl Crystallogr 2010; 43:1513-1518. [PMID: 22477781 PMCID: PMC3253742 DOI: 10.1107/s0021889810040409] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2010] [Accepted: 10/08/2010] [Indexed: 11/11/2022] Open
Abstract
Protein crystals are usually grown in hanging or sitting drops and generally get transferred to a loop or micromount for cryocooling and data collection. This paper describes a method for growing crystals on cryoloops for easier manipulation of the crystals for data collection. This study also investigates the steps for the automation of this process and describes the design of a new tray for the method. The diffraction patterns and the structures of three proteins grown by both the new method and the conventional hanging-drop method are compared. The new setup is optimized for the automation of the crystal mounting process. Researchers could prepare nanolitre drops under ordinary laboratory conditions by growing the crystals directly in loops or micromounts. As has been pointed out before, higher levels of supersaturation can be obtained in very small volumes, and the new method may help in the exploration of additional crystallization conditions.
Collapse
Affiliation(s)
- Michael A. Berger
- Stanford Synchrotron Radiation Lightsource, Stanford University, 2575 Sand Hill Road, SSRL MS 99, Menlo Park, CA 94025, USA
| | - Johannes H. Decker
- Stanford Synchrotron Radiation Lightsource, Stanford University, 2575 Sand Hill Road, SSRL MS 99, Menlo Park, CA 94025, USA
| | - Irimpan I. Mathews
- Stanford Synchrotron Radiation Lightsource, Stanford University, 2575 Sand Hill Road, SSRL MS 99, Menlo Park, CA 94025, USA
| |
Collapse
|
40
|
Weekes D, Krishna SS, Bakolitsa C, Wilson IA, Godzik A, Wooley J. TOPSAN: a collaborative annotation environment for structural genomics. BMC Bioinformatics 2010; 11:426. [PMID: 20716366 PMCID: PMC2936398 DOI: 10.1186/1471-2105-11-426] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Accepted: 08/17/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Many protein structures determined in high-throughput structural genomics centers, despite their significant novelty and importance, are available only as PDB depositions and are not accompanied by a peer-reviewed manuscript. Because of this they are not accessible by the standard tools of literature searches, remaining underutilized by the broad biological community. RESULTS To address this issue we have developed TOPSAN, The Open Protein Structure Annotation Network, a web-based platform that combines the openness of the wiki model with the quality control of scientific communication. TOPSAN enables research collaborations and scientific dialogue among globally distributed participants, the results of which are reviewed by experts and eventually validated by peer review. The immediate goal of TOPSAN is to harness the combined experience, knowledge, and data from such collaborations in order to enhance the impact of the astonishing number and diversity of structures being determined by structural genomics centers and high-throughput structural biology. CONCLUSIONS TOPSAN combines features of automated annotation databases and formal, peer-reviewed scientific research literature, providing an ideal vehicle to bridge a gap between rapidly accumulating data from high-throughput technologies and a much slower pace for its analysis and integration with other, relevant research.
Collapse
Affiliation(s)
- Dana Weekes
- Joint Center for Structural Genomics, Bioinformatics Core, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
41
|
Biochemical characterization of two thymidylate synthases in Corynebacterium glutamicum NCHU 87078. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:1751-9. [PMID: 20595007 DOI: 10.1016/j.bbapap.2010.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 05/06/2010] [Accepted: 05/17/2010] [Indexed: 11/23/2022]
Abstract
The genome of Corynebacterium glutamicum NCHU 87078 contains two putative thymidylate synthase genes, designated CgthyA and CgthyX. These two genes were expressed in Escherichia coli NovaBlue and the expressed His(6)-tagged enzymes were purified by nickel-chelate chromatography. The purified CgThyA had a specific activity of 414 mU mg(-)(1) protein, whereas thymidylate synthase activity for CgThyX could not be detected in a functional complementation assay using a 10-day incubation period. Gel filtration chromatography and chemical cross-linking experiments showed that CgThyX may exist as a dimer in solution, unlike a typical ThyX protein with homotetrameric structure for catalytic activity. Spectroscopic analysis indicated that purified CgThyX lacked the cofactor FAD. The 2.3A resolution crystal structure of CgThyX-FAD demonstrated a loose tetramer, in which FAD is chelated between the subunits via a manner distinct from that of other flavin-dependent thymidylate synthases. Structure-based mutational studies have identified a non-conserved segment (residues 70-73) of CgThyX protein with crucial role in binding to FAD. Taken together, our biochemical and structural analyses highlight unique features of the C. glutamicum ThyX that distinguish this enzyme from ThyX proteins from other organisms. Our results also suggest that thymidylate synthesis in C. glutamicum requires ThyA but not ThyX.
Collapse
|
42
|
Zhang X, Zhang J, Mao X, Zou Q, Hu Y, Wang DC. Crystallization and preliminary crystallographic studies of a flavin-dependent thymidylate synthase from Helicobacter pylori. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:513-5. [PMID: 20445247 PMCID: PMC2864680 DOI: 10.1107/s174430911000864x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Accepted: 03/06/2010] [Indexed: 05/29/2023]
Abstract
The ThyX enzymes that have recently been identified in various bacteria, including some important human pathogens such as Helicobacter pylori and Mycobacterium tuberculosis, are flavin-dependent thymidylate synthases that function in the place of classic thymidylate synthase enzymes in the biosynthesis of dTMP, which is one of the building blocks of DNA. They are promising targets for the development of novel antibiotics because they utilize catalytic mechanisms that are distinct from those of the classic thymidylate synthases found in most organisms, including humans. In this study, H. pylori ThyX was purified and crystallized in complex with flavin adenine dinucleotide (FAD) and a diffraction data set was collected to 2.5 A resolution. The crystals belonged to space group C2, with unit-cell parameters a = 221.92, b = 49.43, c = 143.02 A, beta = 98.84 degrees .
Collapse
Affiliation(s)
- Xiaoli Zhang
- Department of Clinical Microbiology and Immunology, College of Medical Laboratory Science, Third Military Medical University, Chongqing 400038, People’s Republic of China
| | - Jinyong Zhang
- Department of Clinical Microbiology and Immunology, College of Medical Laboratory Science, Third Military Medical University, Chongqing 400038, People’s Republic of China
| | - Xuhu Mao
- Department of Clinical Microbiology and Immunology, College of Medical Laboratory Science, Third Military Medical University, Chongqing 400038, People’s Republic of China
| | - Quanming Zou
- Department of Clinical Microbiology and Immunology, College of Medical Laboratory Science, Third Military Medical University, Chongqing 400038, People’s Republic of China
| | - Yonglin Hu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, People’s Republic of China
| | - Da-Cheng Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, People’s Republic of China
| |
Collapse
|
43
|
Wehelie R, Eriksson S, Bölske G, Wang L. Thymidylate synthases of Mycoplasma mycoides subsp. mycoides SC and Ureaplasma parvum are flavin-dependent. Vet Microbiol 2010; 145:265-72. [PMID: 20413228 DOI: 10.1016/j.vetmic.2010.03.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 03/25/2010] [Accepted: 03/26/2010] [Indexed: 11/28/2022]
Abstract
Mycoplasma mycoides subsp. mycoides small colony type (M. mycoides subsp. mycoides SC) is the causative agent of contagious bovine pleuropneumonia (CBPP), one of the most serious bacterial diseases in cattle and buffalo. Ureaplasma parvum (U. parvum) colonizes the human urogenital tract, and has been associated with urethritis and premature birth. The de novo synthesis of thymidylate (dTMP) is essential and catalyzed by thymidylate synthase (TS), encoded by either the thyA or the thyX genes. No homologs to either thyA or thyX have been identified in the U. parvum and M. mycoides subsp. mycoides SC genomes. Here we report the identification, partial purification and characterization of M. mycoides subsp. mycoides and U. parvum TS. Our results showed that the M. mycoides subsp. mycoides SC and U. parvum TS apparently are flavin-dependent, having similar enzymatic activities but no sequence homology to other known ThyX proteins. Up to date there are 11 Mollicutes species lacking both thyA and thyX gene. Therefore, the finding described here most likely constitutes a new enzyme family specific for Mollicutes. These M. mycoides subsp. mycoides SC and U. parvum TS enzymes could be ideal targets for future development of agents against Myoplasma infections.
Collapse
Affiliation(s)
- Rahma Wehelie
- Department of Anatomy, Physiology and Biochemistry, Section of Veterinary Medical Biochemistry, Swedish University of Agricultural Sciences, The Biomedical Centre, Uppsala, Sweden
| | | | | | | |
Collapse
|
44
|
Koehn EM, Kohen A. Flavin-dependent thymidylate synthase: a novel pathway towards thymine. Arch Biochem Biophys 2010; 493:96-102. [PMID: 19643076 PMCID: PMC2812616 DOI: 10.1016/j.abb.2009.07.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Revised: 07/21/2009] [Accepted: 07/23/2009] [Indexed: 10/20/2022]
Abstract
For several decades only one chemical pathway was known for the de novo biosynthesis of the essential DNA nucleotide, thymidylate. This reaction catalyzed by thyA or TYMS encoded thymidylate synthases is the last committed step in the biosynthesis of thymidylate and proceeds via the reductive methylation of uridylate. However, many microorganisms have recently been shown to produce a novel, flavin-dependent thymidylate synthase encoded by the thyX gene. Preliminary structural and mechanistic studies have shown substantial differences between these deoxyuridylate-methylating enzymes. Recently, both the chemical and kinetic mechanisms of FDTS have provided further insight into the distinctions between thyA and thyX encoded thymidylate synthases. Since FDTSs are found in several severe human pathogens their unusual mechanism offers a promising future for the development of antibiotic and antiviral drugs with little effect on human thymidylate biosynthesis.
Collapse
Affiliation(s)
- Eric M. Koehn
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, USA
| | - Amnon Kohen
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, USA
| |
Collapse
|
45
|
Atomic structure of a folate/FAD-dependent tRNA T54 methyltransferase. Proc Natl Acad Sci U S A 2009; 106:8180-5. [PMID: 19416846 DOI: 10.1073/pnas.0901330106] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
tRNAs from all 3 phylogenetic domains have a 5-methyluridine at position 54 (T54) in the T-loop. The methyl group is transferred from S-adenosylmethionine by TrmA methyltransferase in most Gram-negative bacteria and some archaea and eukaryotes, whereas it is transferred from 5,10-methylenetetrahydrofolate (MTHF) by TrmFO, a folate/FAD-dependent methyltransferase, in most Gram-positive bacteria and some Gram-negative bacteria. However, the catalytic mechanism remains unclear, because the crystal structure of TrmFO has not been solved. Here, we report the crystal structures of Thermus thermophilus TrmFO in its free form, tetrahydrofolate (THF)-bound form, and glutathione-bound form at 2.1-, 1.6-, and 1.05-A resolutions, respectively. TrmFO consists of an FAD-binding domain and an insertion domain, which both share structural similarity with those of GidA, an enzyme involved in the 5-carboxymethylaminomethylation of U34 of some tRNAs. However, the overall structures of TrmFO and GidA are basically different because of their distinct domain orientations, which are consistent with their respective functional specificities. In the THF complex, the pteridin ring of THF is sandwiched between the flavin ring of FAD and the imidazole ring of a His residue. This structure provides a snapshot of the folate/FAD-dependent methyl transfer, suggesting that the transferring methylene group of MTHF is located close to the redox-active N5 atom of FAD. Furthermore, we established an in vitro system to measure the methylation activity. Our TrmFO-tRNA docking model, in combination with mutational analyses, suggests a catalytic mechanism, in which the methylene of MTHF is directly transferred onto U54, and then the exocyclic methylene of U54 is reduced by FADH(2).
Collapse
|
46
|
Abstract
Flavin-dependent thymidylate synthases (FDTS) catalyze the production of dTMP from dUMP and N(5),N(10)-methylene-5,6,7,8-tetrahydrofolate (CH(2)H(4)folate). In contrast to human and other classical thymidylate synthases, the activity of FDTS depends on a FAD coenzyme, and its catalytic mechanism is very different. Several human pathogens rely on this recently discovered enzyme, making it an attractive target for novel antibiotics. Like many other flavoenzymes, FDTS can function as an oxidase, which catalyzes the reduction of O(2) to H(2)O(2), using reduced NADPH or other reducing agents. In this study, we exploit the oxidase activity of FDTS from Thermatoga maritima to probe the binding and release features of the substrates and products during its synthase activity. Results from steady-state and single-turnover experiments suggest a sequential kinetic mechanism of substrate binding during FDTS oxidase activity. CH(2)H(4)folate competitively inhibits the oxidase activity, which indicates that CH(2)H(4)folate and O(2) compete for the same reduced and dUMP-activated enzymatic complex (FDTS-FADH(2)-NADP(+)-dUMP). These studies imply that the binding of CH(2)H(4)folate precedes NADP(+) release during FDTS activity. The inhibition constant of CH(2)H(4)folate towards the oxidase activity was determined to be rather small (2 microm), which indicates a tight binding of CH(2)H(4)folate to the FDTS-FADH(2)-NADP(+)-dUMP complex.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242 USA
| | | | - Eric M. Koehn
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242 USA
| | - Antonio Manuel
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242 USA
| | - Scott A. Lesley
- The Joint Center for Structural Genomics at The Genomics Institute of Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121 USA
| | - Amnon Kohen
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242 USA
| |
Collapse
|
47
|
Koehn EM, Fleischmann T, Conrad JA, Palfey BA, Lesley SA, Mathews II, Kohen A. An unusual mechanism of thymidylate biosynthesis in organisms containing the thyX gene. Nature 2009; 458:919-23. [PMID: 19370033 PMCID: PMC2759699 DOI: 10.1038/nature07973] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Accepted: 02/26/2009] [Indexed: 11/15/2022]
Abstract
Biosynthesis of the DNA base thymine depends on activity of the enzyme thymidylate synthase to catalyse the methylation of the uracil moiety of 2'-deoxyuridine-5'-monophosphate. All known thymidylate synthases rely on an active site residue of the enzyme to activate 2'-deoxyuridine-5'-monophosphate. This functionality has been demonstrated for classical thymidylate synthases, including human thymidylate synthase, and is instrumental in mechanism-based inhibition of these enzymes. Here we report an example of thymidylate biosynthesis that occurs without an enzymatic nucleophile. This unusual biosynthetic pathway occurs in organisms containing the thyX gene, which codes for a flavin-dependent thymidylate synthase (FDTS), and is present in several human pathogens. Our findings indicate that the putative active site nucleophile is not required for FDTS catalysis, and no alternative nucleophilic residues capable of serving this function can be identified. Instead, our findings suggest that a hydride equivalent (that is, a proton and two electrons) is transferred from the reduced flavin cofactor directly to the uracil ring, followed by an isomerization of the intermediate to form the product, 2'-deoxythymidine-5'-monophosphate. These observations indicate a very different chemical cascade than that of classical thymidylate synthases or any other known biological methylation. The findings and chemical mechanism proposed here, together with available structural data, suggest that selective inhibition of FDTSs, with little effect on human thymine biosynthesis, should be feasible. Because several human pathogens depend on FDTS for DNA biosynthesis, its unique mechanism makes it an attractive target for antibiotic drugs.
Collapse
Affiliation(s)
- Eric M. Koehn
- Department of Chemistry, University of Iowa, Iowa City, IA,
USA
| | | | - John A. Conrad
- Department of Biological Chemistry, University of Michigan
Medical School, Ann Arbor, Michigan, USA
| | - Bruce A. Palfey
- Department of Biological Chemistry, University of Michigan
Medical School, Ann Arbor, Michigan, USA
| | - Scott A. Lesley
- The Joint Center for Structural Genomics at The Genomics
Institute of Novartis Research Foundation, San Diego, California
| | - Irimpan I. Mathews
- Stanford Synchrotron Radiation Laboratory, Stanford
University, Menlo Park, California
| | - Amnon Kohen
- Department of Chemistry, University of Iowa, Iowa City, IA,
USA
| |
Collapse
|
48
|
Identification and characterization of a novel thymidylate synthase from deep-sea thermophilic bacteriophage Geobacillus virus E2. Virus Genes 2008; 37:218-24. [PMID: 18648921 DOI: 10.1007/s11262-008-0258-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Accepted: 06/30/2008] [Indexed: 10/21/2022]
Abstract
Thymidylate synthase (TS) is essential for de novo synthesis of dTMP and is a key enzyme involved in DNA synthesis and transcriptional regulation of organisms. Due to their biologic importance, TSs have been intensively studied. In this investigation, a thermostable TS was identified from a deep-sea thermophilic bacteriophage Geobacillus virus E2 (GVE2). It was demonstrated that GVE2-TS was highly homologous to known TSs and contained five characteristic conserved domains. The temporal analyses by Northern and Western blots revealed that the GVE2-TS was transcribed and expressed early after Geobacillus virus E2 infection, identifying it as a viral early gene. As shown by gel mobility shift assays, the recombinant GVE2-TS protein had the capacity to bind its own mRNA. Our study presented the first report on thymidylate synthase from deep-sea thermophilic bacteriophage.
Collapse
|
49
|
Ferrari S, Losasso V, Costi M. Sequence-Based Identification of Specific Drug Target Regions in the Thymidylate Synthase Enzyme Family. ChemMedChem 2008; 3:392-401. [DOI: 10.1002/cmdc.200700215] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
50
|
Functional analysis of the Mycobacterium tuberculosis FAD-dependent thymidylate synthase, ThyX, reveals new amino acid residues contributing to an extended ThyX motif. J Bacteriol 2008; 190:2056-64. [PMID: 18192395 DOI: 10.1128/jb.01094-07] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A novel FAD-dependent thymidylate synthase, ThyX, is present in a variety of eubacteria and archaea, including the mycobacteria. A short motif found in all thyX genes, RHRX(7-8)S, has been identified. The three-dimensional structure of the Mycobacterium tuberculosis ThyX enzyme has been solved. Building upon this information, we used directed mutagenesis to produce 67 mutants of the M. tuberculosis thyX gene. Each enzyme was assayed to determine its ability to complement the defect in thymidine biosynthesis in a delta thyA strain of Escherichia coli. Enzymes from selected strains were then tested in vitro for their ability to catalyze the oxidation of NADPH and the release of a proton from position 5 of the pyrimidine ring of dUMP. The results defined an extended motif of amino acids essential to enzyme activity in M. tuberculosis (Y44X(24)H69X(25)R95HRX(7)S105XRYX(90)R199 [with the underlined histidine acting as the catalytic residue and the underlined serine as the nucleophile]) and provided insight into the ThyX reaction mechanism. ThyX is found in a variety of bacterial pathogens but is absent in humans, which depend upon an unrelated thymidylate synthase, ThyA. Therefore, ThyX is a potential target for development of antibacterial drugs.
Collapse
|