1
|
RPA-1 from Leishmania amazonensis (LaRPA-1) structurally differs from other eukaryote RPA-1 and interacts with telomeric DNA via its N-terminal OB-fold domain. FEBS Lett 2014; 588:4740-8. [PMID: 25451229 DOI: 10.1016/j.febslet.2014.11.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/25/2014] [Accepted: 11/06/2014] [Indexed: 12/18/2022]
Abstract
Replication protein A-1 (RPA-1) is a single-stranded DNA-binding protein involved in DNA metabolism. We previously demonstrated the interaction between LaRPA-1 and telomeric DNA. Here, we expressed and purified truncated mutants of LaRPA-1 and used circular dichroism measurements and molecular dynamics simulations to demonstrate that the tertiary structure of LaRPA-1 differs from human and yeast RPA-1. LaRPA-1 interacts with telomeric ssDNA via its N-terminal OB-fold domain, whereas RPA from higher eukaryotes show different binding modes to ssDNA. Our results show that LaRPA-1 is evolutionary distinct from other RPA-1 proteins and can potentially be used for targeting trypanosomatid telomeres.
Collapse
|
2
|
Abstract
Telomeres are the physical ends of eukaryotic linear chromosomes. Telomeres form special structures that cap chromosome ends to prevent degradation by nucleolytic attack and to distinguish chromosome termini from DNA double-strand breaks. With few exceptions, telomeres are composed primarily of repetitive DNA associated with proteins that interact specifically with double- or single-stranded telomeric DNA or with each other, forming highly ordered and dynamic complexes involved in telomere maintenance and length regulation. In proliferative cells and unicellular organisms, telomeric DNA is replicated by the actions of telomerase, a specialized reverse transcriptase. In the absence of telomerase, some cells employ a recombination-based DNA replication pathway known as alternative lengthening of telomeres. However, mammalian somatic cells that naturally lack telomerase activity show telomere shortening with increasing age leading to cell cycle arrest and senescence. In another way, mutations or deletions of telomerase components can lead to inherited genetic disorders, and the depletion of telomeric proteins can elicit the action of distinct kinases-dependent DNA damage response, culminating in chromosomal abnormalities that are incompatible with life. In addition to the intricate network formed by the interrelationships among telomeric proteins, long noncoding RNAs that arise from subtelomeric regions, named telomeric repeat-containing RNA, are also implicated in telomerase regulation and telomere maintenance. The goal for the next years is to increase our knowledge about the mechanisms that regulate telomere homeostasis and the means by which their absence or defect can elicit telomere dysfunction, which generally results in gross genomic instability and genetic diseases.
Collapse
|
3
|
Dargahi D, Baillie D, Pio F. Bioinformatics analysis identify novel OB fold protein coding genes in C. elegans. PLoS One 2013; 8:e62204. [PMID: 23638006 PMCID: PMC3636199 DOI: 10.1371/journal.pone.0062204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 03/20/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The C. elegans genome has been extensively annotated by the WormBase consortium that uses state of the art bioinformatics pipelines, functional genomics and manual curation approaches. As a result, the identification of novel genes in silico in this model organism is becoming more challenging requiring new approaches. The Oligonucleotide-oligosaccharide binding (OB) fold is a highly divergent protein family, in which protein sequences, in spite of having the same fold, share very little sequence identity (5-25%). Therefore, evidence from sequence-based annotation may not be sufficient to identify all the members of this family. In C. elegans, the number of OB-fold proteins reported is remarkably low (n=46) compared to other evolutionary-related eukaryotes, such as yeast S. cerevisiae (n=344) or fruit fly D. melanogaster (n=84). Gene loss during evolution or differences in the level of annotation for this protein family, may explain these discrepancies. METHODOLOGY/PRINCIPAL FINDINGS This study examines the possibility that novel OB-fold coding genes exist in the worm. We developed a bioinformatics approach that uses the most sensitive sequence-sequence, sequence-profile and profile-profile similarity search methods followed by 3D-structure prediction as a filtering step to eliminate false positive candidate sequences. We have predicted 18 coding genes containing the OB-fold that have remarkably partially been characterized in C. elegans. CONCLUSIONS/SIGNIFICANCE This study raises the possibility that the annotation of highly divergent protein fold families can be improved in C. elegans. Similar strategies could be implemented for large scale analysis by the WormBase consortium when novel versions of the genome sequence of C. elegans, or other evolutionary related species are being released. This approach is of general interest to the scientific community since it can be used to annotate any genome.
Collapse
Affiliation(s)
- Daryanaz Dargahi
- Molecular Biology and Biochemistry Department, Simon Fraser University, Burnaby, British Columbia, Canada
| | - David Baillie
- Molecular Biology and Biochemistry Department, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Frederic Pio
- Molecular Biology and Biochemistry Department, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
4
|
Abstract
Telomere DNA-binding proteins protect the ends of chromosomes in eukaryotes. A subset of these proteins are constructed with one or more OB folds and bind with G+T-rich single-stranded DNA found at the extreme termini. The resulting DNA-OB protein complex interacts with other telomere components to coordinate critical telomere functions of DNA protection and DNA synthesis. While the first crystal and NMR structures readily explained protection of telomere ends, the picture of how single-stranded DNA becomes available to serve as primer and template for synthesis of new telomere DNA is only recently coming into focus. New structures of telomere OB fold proteins alongside insights from genetic and biochemical experiments have made significant contributions towards understanding how protein-binding OB proteins collaborate with DNA-binding OB proteins to recruit telomerase and DNA polymerase for telomere homeostasis. This review surveys telomere OB protein structures alongside highly comparable structures derived from replication protein A (RPA) components, with the goal of providing a molecular context for understanding telomere OB protein evolution and mechanism of action in protection and synthesis of telomere DNA.
Collapse
Affiliation(s)
- Martin P Horvath
- Department of Biology, University of Utah, Salt Lake City, Utah 84112-0840, USA.
| |
Collapse
|
5
|
Altschuler SE, Dickey TH, Wuttke DS. Schizosaccharomyces pombe protection of telomeres 1 utilizes alternate binding modes to accommodate different telomeric sequences. Biochemistry 2011; 50:7503-13. [PMID: 21815629 DOI: 10.1021/bi200826a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The ends of eukaryotic chromosomes consist of long tracts of repetitive GT-rich DNA with variable sequence homogeneity between and within organisms. Telomeres terminate in a conserved 3'-ssDNA overhang that, regardless of sequence variability, is specifically and tightly bound by proteins of the telomere-end protection family. The high affinity ssDNA-binding activity of S. pombe Pot1 protein (SpPot1) is conferred by a DNA-binding domain consisting of two subdomains, Pot1pN and Pot1pC. Previous work has shown that Pot1pN binds a single repeat of the core telomere sequence (GGTTAC) with exquisite specificity, while Pot1pC binds an extended sequence of nine nucleotides (GGTTACGGT) with modest specificity requirements. We find that full-length SpPot1 binds the composite 15mer, (GGTTAC)(2)GGT, and a shorter two-repeat 12mer, (GGTTAC)(2), with equally high affinity (<3 pM), but with substantially different kinetic and thermodynamic properties. The binding mode of the SpPot1/15mer complex is more stable than that of the 12mer complex, with a 2-fold longer half-life and increased tolerance to nucleotide and amino acid substitutions. Our data suggest that SpPot1 protection of heterogeneous telomeres is mediated through 5'-sequence recognition and the use of alternate binding modes to maintain high affinity interaction with the G-strand, while simultaneously discriminating against the complementary strand.
Collapse
Affiliation(s)
- Sarah E Altschuler
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215, United States
| | | | | |
Collapse
|
6
|
Abstract
The genomes of prokaryotes and eukaryotic organelles are usually circular as are most plasmids and viral genomes. In contrast, the nuclear genomes of eukaryotes are organized on linear chromosomes, which require mechanisms to protect and replicate DNA ends. Eukaryotes navigate these problems with the advent of telomeres, protective nucleoprotein complexes at the ends of linear chromosomes, and telomerase, the enzyme that maintains the DNA in these structures. Mammalian telomeres contain a specific protein complex, shelterin, that functions to protect chromosome ends from all aspects of the DNA damage response and regulates telomere maintenance by telomerase. Recent experiments, discussed here, have revealed how shelterin represses the ATM and ATR kinase signaling pathways and hides chromosome ends from nonhomologous end joining and homology-directed repair.
Collapse
Affiliation(s)
- Wilhelm Palm
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, NY 10021, USA
| | | |
Collapse
|
7
|
Zappulla DC, Roberts JN, Goodrich KJ, Cech TR, Wuttke DS. Inhibition of yeast telomerase action by the telomeric ssDNA-binding protein, Cdc13p. Nucleic Acids Res 2009; 37:354-67. [PMID: 19043074 PMCID: PMC2632905 DOI: 10.1093/nar/gkn830] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 09/16/2008] [Accepted: 10/14/2008] [Indexed: 01/07/2023] Open
Abstract
Appropriate control of the chromosome end-replicating enzyme telomerase is crucial for maintaining telomere length and genomic stability. The essential telomeric DNA-binding protein Cdc13p both positively and negatively regulates telomere length in budding yeast. Here we test the effect of purified Cdc13p on telomerase action in vitro. We show that the full-length protein and its DNA-binding domain (DBD) inhibit primer extension by telomerase. This inhibition occurs by competitive blocking of telomerase access to DNA. To further understand the requirements for productive telomerase 3'-end access when Cdc13p or the DBD is bound to a telomerase substrate, we constrained protein binding at various distances from the 3'-end on two sets of increasingly longer oligonucleotides. We find that Cdc13p inhibits the action of telomerase through three distinct biochemical modes, including inhibiting telomerase even when a significant tail is available, representing a novel 'action at a distance' inhibitory activity. Thus, while yeast Cdc13p exhibits the same general activity as human POT1, providing an off switch for telomerase when bound near the 3'-end, there are significant mechanistic differences in the ways telomere end-binding proteins inhibit telomerase action.
Collapse
Affiliation(s)
- David C. Zappulla
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA
| | - Jennifer N. Roberts
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA
| | - Karen J. Goodrich
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA
| | - Thomas R. Cech
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA
| | - Deborah S. Wuttke
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|
8
|
Rhodin Edsö J, Tati R, Cohn M. Highly sequence-specific binding is retained within the DNA-binding domain of the Saccharomyces castellii Cdc13 telomere-binding protein. FEMS Yeast Res 2008; 8:1289-302. [PMID: 18759744 DOI: 10.1111/j.1567-1364.2008.00431.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The essential protein Cdc13p binds the single-stranded telomeric 3' overhangs in Saccharomyces cerevisiae and takes part in the regulation of telomere length. The DNA-binding domain (DBD) of Cdc13p is structurally established by an oligonucleotide/oligosaccharide-binding (OB)-fold domain. The sequence homolog in Saccharomyces castellii (scasCDC13) was characterized previously, and the full-length protein was found to bind telomeric DNA specifically. Here, the DBD of scasCdc13p was defined to the central part (402-658) of the protein. The region necessary for forming the scasCdc13p-DBD is larger than the minimal DBD of S. cerevisiae Cdc13p. Deletion of this extended DBD region from the full-length protein completely abolished the DNA binding, indicating the importance of the extended region for the correct formation of a binding-competent DBD. The scasCdc13p-DBD bound the same 8-mer minimal binding site as the full-length protein, but an extension of the target site in the 3' end increased the stability of the DNA-protein complex. Significantly, scasCdc13p-DBD showed a retained high sequence specific binding, where the four nucleotides of most importance for the sequence specificity are highly conserved in eukaryotic telomeric repeats. Thus, the unique single-stranded DNA-binding properties of the full-length protein are entirely retained within the isolated scasCdc13p-DBD.
Collapse
Affiliation(s)
- Jenny Rhodin Edsö
- Department of Cell and Organism Biology, Lund University, Lund, Sweden
| | | | | |
Collapse
|
9
|
Abstract
The mammalian protein POT1 binds to telomeric single-stranded DNA (ssDNA), protecting chromosome ends from being detected as sites of DNA damage. POT1 is composed of an N-terminal ssDNA-binding domain and a C-terminal protein interaction domain. With regard to the latter, POT1 heterodimerizes with the protein TPP1 to foster binding to telomeric ssDNA in vitro and binds the telomeric double-stranded-DNA-binding protein TRF2. We sought to determine which of these functions-ssDNA, TPP1, or TRF2 binding-was required to protect chromosome ends from being detected as DNA damage. Using separation-of-function POT1 mutants deficient in one of these three activities, we found that binding to TRF2 is dispensable for protecting telomeres but fosters robust loading of POT1 onto telomeric chromatin. Furthermore, we found that the telomeric ssDNA-binding activity and binding to TPP1 are required in cis for POT1 to protect telomeres. Mechanistically, binding of POT1 to telomeric ssDNA and association with TPP1 inhibit the localization of RPA, which can function as a DNA damage sensor, to telomeres.
Collapse
|
10
|
Theobald DL, Wuttke DS. Accurate structural correlations from maximum likelihood superpositions. PLoS Comput Biol 2008; 4:e43. [PMID: 18282091 PMCID: PMC2242818 DOI: 10.1371/journal.pcbi.0040043] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Accepted: 01/11/2008] [Indexed: 11/19/2022] Open
Abstract
The cores of globular proteins are densely packed, resulting in complicated networks of structural interactions. These interactions in turn give rise to dynamic structural correlations over a wide range of time scales. Accurate analysis of these complex correlations is crucial for understanding biomolecular mechanisms and for relating structure to function. Here we report a highly accurate technique for inferring the major modes of structural correlation in macromolecules using likelihood-based statistical analysis of sets of structures. This method is generally applicable to any ensemble of related molecules, including families of nuclear magnetic resonance (NMR) models, different crystal forms of a protein, and structural alignments of homologous proteins, as well as molecular dynamics trajectories. Dominant modes of structural correlation are determined using principal components analysis (PCA) of the maximum likelihood estimate of the correlation matrix. The correlations we identify are inherently independent of the statistical uncertainty and dynamic heterogeneity associated with the structural coordinates. We additionally present an easily interpretable method (“PCA plots”) for displaying these positional correlations by color-coding them onto a macromolecular structure. Maximum likelihood PCA of structural superpositions, and the structural PCA plots that illustrate the results, will facilitate the accurate determination of dynamic structural correlations analyzed in diverse fields of structural biology. Biological macromolecules comprise extensive networks of interconnected atoms. These complex coupled networks result in correlated structural dynamics, where atoms and residues move and evolve together as concerted conformational changes. The availability of a wealth of macromolecular structures necessitates the use of robust strategies for analyzing the correlated modes of motion found in molecular ensembles. Current strategies use a combination of least-squares superpositions and statistical analysis of the structural covariance matrix. However, the least-squares treatment implicitly requires that atoms are uncorrelated and that each atom has the same positional uncertainty, two assumptions which are violated in structural ensembles. For example, the atoms in the proteins are connected by chemical bonds, covalent and non-covalent, resulting in strong correlations. Furthermore, different atoms have different variances, because some atoms are known with less precision or have greater mobility. Using maximum likelihood (ML) analysis, we have developed a technique that is markedly more accurate than the classical least-squares approach by accounting for both correlations and heterogeneous variances. The improved ability to accurately analyze the major modes of dynamic structural correlations will benefit a diverse range of biological disciplines, including nuclear magnetic resonance (NMR) spectroscopy, crystallography, molecular dynamics, and molecular evolution.
Collapse
Affiliation(s)
- Douglas L Theobald
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts, USA.
| | | |
Collapse
|
11
|
Guo X, Deng Y, Lin Y, Cosme-Blanco W, Chan S, He H, Yuan G, Brown EJ, Chang S. Dysfunctional telomeres activate an ATM-ATR-dependent DNA damage response to suppress tumorigenesis. EMBO J 2007; 26:4709-19. [PMID: 17948054 DOI: 10.1038/sj.emboj.7601893] [Citation(s) in RCA: 189] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Accepted: 09/19/2007] [Indexed: 12/21/2022] Open
Abstract
The POT1 (protection of telomeres) protein binds the single-stranded G-rich overhang and is essential for both telomere end protection and telomere length regulation. Telomeric binding of POT1 is enhanced by its interaction with TPP1. In this study, we demonstrate that mouse Tpp1 confers telomere end protection by recruiting Pot1a and Pot1b to telomeres. Knockdown of Tpp1 elicits a p53-dependent growth arrest and an ATM-dependent DNA damage response at telomeres. In contrast to depletion of Trf2, which activates ATM, removal of Pot1a and Pot1b from telomeres initiates an ATR-dependent DNA damage response (DDR). Finally, we show that telomere dysfunction as a result of Tpp1 depletion promotes chromosomal instability and tumorigenesis in the absence of an ATM-dependent DDR. Our results uncover a novel ATR-dependent DDR at telomeres that is normally shielded by POT1 binding to the single-stranded G-overhang. In addition, our results suggest that loss of ATM can cooperate with dysfunctional telomeres to promote cellular transformation and tumor formation in vivo.
Collapse
Affiliation(s)
- Xiaolan Guo
- Department of Cancer Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Martín V, Du LL, Rozenzhak S, Russell P. Protection of telomeres by a conserved Stn1-Ten1 complex. Proc Natl Acad Sci U S A 2007; 104:14038-43. [PMID: 17715303 PMCID: PMC1955774 DOI: 10.1073/pnas.0705497104] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Telomeres are specialized chromatin structures that protect chromosome ends. Critical among telomere proteins are those that bind the telomeric single-strand DNA (ssDNA) overhangs. These proteins are thought to differ among eukaryotes. Three interacting proteins (Cdc13, Stn1, and Ten1) associate with the telomeric overhang in budding yeast, a single protein known as Pot1 (protection of telomeres-1) performs this function in fission yeast, and a two-subunit complex consisting of POT1 and TPP1 associates with telomeric ssDNA in humans. Cdc13 and Pot1 have related oligonucleotide/oligosaccharide-binding fold (OB-fold) domains that bind the telomeric ssDNA overhang. Here we show that Schizosaccharomyces pombe has Stn1- and Ten1-like proteins that are essential for chromosome end protection. Stn1 orthologs exist in all species that have Pot1, whereas Ten1-like proteins can be found in all fungi. Fission yeast Stn1 and Ten1 localize at telomeres in a manner that correlates with the length of the ssDNA overhang, suggesting that they specifically associate with the telomeric ssDNA. Unlike in budding yeast, in which Cdc13, Stn1, and Ten1 all interact, fission yeast Stn1 and Ten1 associate with each other, but not with Pot1. Our findings suggest that two separate protein complexes are required for chromosome end protection in fission yeast. Structural profiling studies detect OB-fold domains in Stn1 and Ten1 orthologs, indicating that protection of telomeres by multiple proteins with OB-fold domains is conserved in eukaryotic evolution.
Collapse
Affiliation(s)
| | - Li-Lin Du
- Departments of *Molecular Biology and
| | | | - Paul Russell
- Departments of *Molecular Biology and
- Cell Biology, The Scripps Research Institute, La Jolla, CA 92037
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
13
|
Mou TC, Shen M, Abdalla S, Delamora D, Bochkareva E, Bochkarev A, Gray DM. Effects of ssDNA sequences on non-sequence-specific protein binding. Chirality 2007; 18:370-82. [PMID: 16575881 DOI: 10.1002/chir.20262] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The circular dichroism (CD) spectra of single-stranded DNAs (ssDNAs) are significantly perturbed by the binding of single-stranded DNA binding proteins such as the Ff bacteriophage gene 5 protein (g5p) and the A domain of the 70 kDa subunit of human replication protein A (RPA70-A). These two proteins have similar OB-fold secondary structures, although their CD spectra at wavelengths below 250 nm differ greatly. The spectrum of g5p is dominated by a tyrosyl L(a) band at 229 nm, while that of RPA70-A is dominated by its beta secondary structure. Despite differences in their inherent spectral properties, these two proteins similarly perturb the spectra of bound nucleic acid oligomers. CD spectra of free, non-protein-bound ssDNAs are dependent on interactions of the nearest-neighboring nucleotides in the sequence. The CD spectra (per mol of nucleotide) of simple repetitive sequences 48 nucleotides in length and containing simple combinations of A and C are related by nearest-neighbor equations. For example, 3 x Deltaepsilon[d(AAC)(16)] = 3 x Deltaepsilon[d(ACC)(16)] + Deltaepsilon[d(A)(48)] - Deltaepsilon[d(C)(48)]. Moreover, nearest-neighbor equations relate the spectra of ssDNAs when they are bound by g5p, indicating that each type of perturbed nearest neighbor has a similar average structure within the binding site of the protein.
Collapse
Affiliation(s)
- Tung-Chung Mou
- Department of Biochemistry, The University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
COMPASS is a method for homology detection and local alignment construction based on the comparison of multiple sequence alignments (MSAs). The method derives numerical profiles from given MSAs, constructs local profile-profile alignments and analytically estimates E-values for the detected similarities. Until now, COMPASS was only available for download and local installation. Here, we present a new web server featuring the latest version of COMPASS, which provides (i) increased sensitivity and selectivity of homology detection; (ii) longer, more complete alignments; and (iii) faster computational speed. After submission of the query MSA or single sequence, the server performs searches versus a user-specified database. The server includes detailed and intuitive control of the search parameters. A flexible output format, structured similarly to BLAST and PSI-BLAST, provides an easy way to read and analyze the detected profile similarities. Brief help sections are available for all input parameters and output options, along with detailed documentation. To illustrate the value of this tool for protein structure-functional prediction, we present two examples of detecting distant homologs for uncharacterized protein families. Available at http://prodata.swmed.edu/compass.
Collapse
Affiliation(s)
- Ruslan I Sadreyev
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-9050, USA.
| | | | | | | |
Collapse
|
15
|
Suzuki T, McKenzie M, Ott E, Ilkun O, Horvath MP. DNA binding affinity and sequence permutation preference of the telomere protein from Euplotes crassus. Biochemistry 2006; 45:8628-38. [PMID: 16834337 PMCID: PMC2621274 DOI: 10.1021/bi060388w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Telomere end binding proteins from diverse organisms use various forms of an ancient protein structure to recognize and bind with single-strand DNA found at the ends of telomeres. To further understand the biochemistry and evolution of these proteins, we have characterized the DNA binding properties of the telomere end binding protein from Euplotes crassus (EcTEBP). EcTEBP and its predicted amino-terminal DNA-binding domain, EcTEBP-N, were expressed in Escherichia coli and purified. Each protein formed stoichiometric (1:1) complexes with single-strand DNA oligos derived from the precisely defined d(TTTTGGGGTTTTGG) sequence found at DNA termini in Euplotes. Dissociation constants for DNA x EcTEBP and DNA x EcTEBP-N complexes were comparable: K(D-DNA) = 38 +/- 2 nM for the full-length protein and K(D-DNA) = 60 +/- 4 nM for the N-terminal domain, indicating that the N-terminal domain retains a high affinity for DNA even in the absence of potentially stabilizing moieties located in the C-terminal domain. Rate constants for DNA association and DNA dissociation corroborated a slightly improved DNA binding performance for the full-length protein (ka = 45 +/- 4 microM(-1) s(-1), kd = 0.10 +/- 0.02 s(-1)) relative to that of the N-terminal domain (ka = 18 +/- 1 microM(-1) s(-1), kd = 0.15 +/- 0.01 s(-1)). Equilibrium dissociation constants measured for sequence permutations of the telomere repeat spanned the range of 55-1400 nM, with EcTEBP and EcTEBP-N binding most tightly to d(TTGGGGTTTTGG), the sequence corresponding to that of mature DNA termini. Additionally, competition experiments showed that EcTEBP recognizes and binds the telomere-derived 14-nucleotide DNA in preference to shorter 5'-truncation variants. Compared with the results for multisubunit complexes assembled with telomere single-strand DNA from Oxytricha nova, our results highlight the relative simplicity of the E. crassus system where a telomere end binding protein has biochemical properties indicating one protein subunit caps the single-strand DNA.
Collapse
Affiliation(s)
- Takahito Suzuki
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, Utah 84112-0840, USA
| | | | | | | | | |
Collapse
|
16
|
Kang H, Beak J, Kim YS, Petrovich R, Collins J, Grissom S, Jetten A. NABP1, a novel RORgamma-regulated gene encoding a single-stranded nucleic-acid-binding protein. Biochem J 2006; 397:89-99. [PMID: 16533169 PMCID: PMC1479751 DOI: 10.1042/bj20051781] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
RORgamma2 (retinoid-related orphan receptor gamma2) plays a critical role in the regulation of thymopoiesis. Microarray analysis was performed in order to uncover differences in gene expression between thymocytes of wild-type and RORgamma-/- mice. This analysis identified a novel gene encoding a 22 kDa protein, referred to as NABP1 (nucleic-acid-binding protein 1). This subsequently led to the identification of an additional protein, closely related to NABP1, designated NABP2. Both proteins contain an OB (oligonucleotide/oligosaccharide binding) motif at their N-terminus. This motif is highly conserved between the two proteins. NABP1 is highly expressed in the thymus of wild-type mice and is greatly suppressed in RORgamma-/- mice. During thymopoiesis, NABP1 mRNA expression is restricted to CD4+CD8+ thymocytes, an expression pattern similar to that observed for RORgamma2. These observations appear to suggest that NABP1 expression is regulated either directly or indirectly by RORgamma2. Confocal microscopic analysis showed that the NABP1 protein localizes to the nucleus. Analysis of nuclear proteins by size-exclusion chromatography indicated that NABP1 is part of a high molecular-mass protein complex. Since the OB-fold is frequently involved in the recognition of nucleic acids, the interaction of NABP1 with various nucleic acids was examined. Our results demonstrate that NABP1 binds single-stranded nucleic acids, but not double-stranded DNA, suggesting that it functions as a single-stranded nucleic acid binding protein.
Collapse
Affiliation(s)
- Hong Soon Kang
- *Cell Biology Section, Laboratory of Respiratory Biology, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, U.S.A
| | - Ju Youn Beak
- *Cell Biology Section, Laboratory of Respiratory Biology, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, U.S.A
| | - Yong-Sik Kim
- *Cell Biology Section, Laboratory of Respiratory Biology, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, U.S.A
| | - Robert M. Petrovich
- †Protein Expression Core Facility, Laboratory of Structural Biology, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, U.S.A
| | - Jennifer B. Collins
- ‡Microarray Group, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, U.S.A
| | - Sherry F. Grissom
- ‡Microarray Group, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, U.S.A
| | - Anton M. Jetten
- *Cell Biology Section, Laboratory of Respiratory Biology, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
17
|
Buczek P, Horvath MP. Thermodynamic characterization of binding Oxytricha nova single strand telomere DNA with the alpha protein N-terminal domain. J Mol Biol 2006; 359:1217-34. [PMID: 16678852 PMCID: PMC2953474 DOI: 10.1016/j.jmb.2006.02.082] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Revised: 02/06/2006] [Accepted: 02/17/2006] [Indexed: 11/26/2022]
Abstract
The Oxytricha nova telemere binding protein alpha subunit binds single strand DNA and participates in a nucleoprotein complex that protects the very ends of chromosomes. To understand how the N-terminal, DNA binding domain of alpha interacts with DNA we measured the stoichiometry, enthalpy (DeltaH), entropy (DeltaS), and dissociation constant (K(D-DNA)) for binding telomere DNA fragments at different temperatures and salt concentrations using native gel electrophoresis and isothermal titration calorimetry (ITC). About 85% of the total free energy of binding corresponded with non-electrostatic interactions for all DNAs. Telomere DNA fragments d(T(2)G(4)), d(T(4)G(4)), d(G(3)T(4)G(4)), and d(G(4)T(4)G(4)) each formed monovalent protein complexes. In the case of d(T(4)G(4)T(4)G(4)), which has two tandemly repeated d(TTTTTGGGG) telomere motifs, two binding sites were observed. The high-affinity "A site" has a dissociation constant, K(D-DNA(A)) = 13(+/-4) nM, while the low-affinity "B site" is characterized by K(D-DNA(B)) = 5600(+/-600) nM at 25 degrees C. Nucleotide substitution variants verified that the A site corresponds principally with the 3'-terminal portion of d(T(4)G(4)T(4)G(4)). The relative contributions of entropy (DeltaS) and enthalpy (DeltaH) for binding reactions were DNA length-dependent as was heat capacity (DeltaCp). These trends with respect to DNA length likely reflect structural transitions in the DNA molecule that are coupled with DNA-protein association. Results presented here are important for understanding early intermediates and subsequent stages in the assembly of the full telomere nucleoprotein complex and how binding events can prepare the telomere DNA for extension by telomerase, a critical event in telomere biology.
Collapse
Affiliation(s)
- Pawel Buczek
- Biology, University of Utah, 257 S 1400 E, Salt Lake City, UT 84112-0840, USA
| | - Martin P. Horvath
- Biology, University of Utah, 257 S 1400 E, Salt Lake City, UT 84112-0840, USA
| |
Collapse
|
18
|
Zubko MK, Lydall D. Linear chromosome maintenance in the absence of essential telomere-capping proteins. Nat Cell Biol 2006; 8:734-40. [PMID: 16767084 DOI: 10.1038/ncb1428] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2006] [Accepted: 04/10/2006] [Indexed: 11/08/2022]
Abstract
Telomeres were defined by their ability to cap chromosome ends. Proteins with high affinity for the structure at chromosome ends, binding the G-rich, 3' single-stranded overhang at telomeres include Pot1 in humans and fission yeast, TEBP in Oxytricha nova and Cdc13 in budding yeast. Cdc13 is considered essential for telomere capping because budding yeast that lack Cdc13 rapidly accumulate excessive single-stranded DNA (ssDNA) at telomeres, arrest cell division and die. Cdc13 has a separate, critical role in telomerase recruitment to telomeres. Here, we show that neither Cdc13 nor its partner Stn1 are necessary for telomere capping if nuclease activities that are active at uncapped telomeres are attenuated. Recombination-dependent and -independent mechanisms permit maintenance of chromosomes without Cdc13. Our results indicate that the structure of the eukaryotic telomere cap is remarkably flexible and that changes in the DNA damage response allow alternative strategies for telomere capping to evolve.
Collapse
Affiliation(s)
- Mikhajlo K Zubko
- Institute for Ageing and Health, Henry Wellcome Laboratory for Biogerontology Research, University of Newcastle, Newcastle upon Tyne, NE4 6BE, UK
| | | |
Collapse
|
19
|
Petreaca RC, Chiu HC, Eckelhoefer HA, Chuang C, Xu L, Nugent CI. Chromosome end protection plasticity revealed by Stn1p and Ten1p bypass of Cdc13p. Nat Cell Biol 2006; 8:748-55. [PMID: 16767082 DOI: 10.1038/ncb1430] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2006] [Accepted: 05/16/2006] [Indexed: 11/09/2022]
Abstract
Genome stability necessitates a mechanism to protect the termini of linear chromosomes from inappropriate degradation or recombination. In many species this protection depends on 'capping' proteins that bind telomeric DNA. The budding yeast Cdc13p binds single-stranded telomeric sequences, prevents lethal degradation of chromosome ends and regulates telomere extension by telomerase. Two Cdc13-interacting proteins, Stn1p and Ten1p, are also required for viability and telomere length regulation. It has been proposed that Cdc13p DNA binding directs a Cdc13p-Stn1p-Ten1p complex to telomeres to mediate end protection. However, the functional significance of these protein interactions, and their respective roles in maintaining telomere integrity, remain undefined. Here, we show that co-overexpressing TEN1 with a truncated form of STN1 efficiently bypasses the essential role of CDC13. We further show that this truncated Stn1p binds directly to Pol12p, a polymerase alpha-primase regulatory subunit, and that Pol12 activity is required for CDC13 bypass. Thus, Stn1p and Ten1p control a Cdc13p-independent telomere capping mechanism that is coupled to the conventional DNA replication machinery.
Collapse
Affiliation(s)
- Ruben C Petreaca
- Graduate Program in Cell, Molecular and Developmental Biology, 5429 Boyce Hall, University of California Riverside, Riverside, CA 92521, USA
| | | | | | | | | | | |
Collapse
|
20
|
Eldridge AM, Halsey WA, Wuttke DS. Identification of the determinants for the specific recognition of single-strand telomeric DNA by Cdc13. Biochemistry 2006; 45:871-9. [PMID: 16411763 PMCID: PMC3514546 DOI: 10.1021/bi0512703] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The single-strand overhang present at telomeres plays a critical role in mediating both the capping and telomerase regulation functions of telomeres. The telomere end-binding proteins, Cdc13 in Saccharomyces cerevisiae, Pot1 in higher eukaryotes, and TEBP in the ciliated protozoan Oxytricha nova, exhibit sequence-specific binding to their respective single-strand overhangs. S. cerevisiae telomeres are composed of a heterogeneous mixture of GT-rich telomeric sequence, unlike in higher eukaryotes which have a simple repeat that is maintained with high fidelity. In yeast, the telomeric overhang is recognized by the essential protein Cdc13, which coordinates end-capping and telomerase activities at the telomere. The Cdc13 DNA-binding domain (Cdc13-DBD) binds these telomere sequences with high affinity (3 pM) and sequence specificity. To better understand the basis for this remarkable recognition, we have investigated the binding of the Cdc13-DBD to a series of altered DNA substrates. Although an 11-mer of GT-rich sequence is required for full binding affinity, only three of these 11 bases are recognized with high specificity. This specificity differs from that observed in the other known telomere end-binding proteins, but is well suited to the specific role of Cdc13 at yeast telomeres. These studies expand our understanding of telomere recognition by the Cdc13-DBD and of the unique molecular recognition properties of ssDNA binding.
Collapse
Affiliation(s)
| | | | - Deborah S. Wuttke
- To whom all correspondence should be addressed. Phone: 303-492-4576, Fax: 303-492-5894.
| |
Collapse
|
21
|
Theobald DL, Wuttke DS. Divergent evolution within protein superfolds inferred from profile-based phylogenetics. J Mol Biol 2005; 354:722-37. [PMID: 16266719 PMCID: PMC1769326 DOI: 10.1016/j.jmb.2005.08.071] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2005] [Revised: 08/29/2005] [Accepted: 08/30/2005] [Indexed: 11/19/2022]
Abstract
Many dissimilar protein sequences fold into similar structures. A central and persistent challenge facing protein structural analysis is the discrimination between homology and convergence for structurally similar domains that lack significant sequence similarity. Classic examples are the OB-fold and SH3 domains, both small, modular beta-barrel protein superfolds. The similarities among these domains have variously been attributed to common descent or to convergent evolution. Using a sequence profile-based phylogenetic technique, we analyzed all structurally characterized OB-fold, SH3, and PDZ domains with less than 40% mutual sequence identity. An all-against-all, profile-versus-profile analysis of these domains revealed many previously undetectable significant interrelationships. The matrices of scores were used to infer phylogenies based on our derivation of the relationships between sequence similarity E-values and evolutionary distances. The resulting clades of domains correlate remarkably well with biological function, as opposed to structural similarity, indicating that the functionally distinct sub-families within these superfolds are homologous. This method extends phylogenetics into the challenging "twilight zone" of sequence similarity, providing the first objective resolution of deep evolutionary relationships among distant protein families.
Collapse
Affiliation(s)
- Douglas L. Theobald
- Department of Chemistry and Biochemistry, UCB 215 University of Colorado Boulder, CO 80309-0215, USA
| | - Deborah S. Wuttke
- Department of Chemistry and Biochemistry, UCB 215 University of Colorado Boulder, CO 80309-0215, USA
| |
Collapse
|
22
|
Wojciechowski M, Fogolari F, Baginski M. Thermodynamic and electrostatic properties of ternary Oxytricha nova TEBP-DNA complex. J Struct Biol 2005; 152:169-84. [PMID: 16314111 DOI: 10.1016/j.jsb.2005.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2005] [Revised: 09/27/2005] [Accepted: 09/29/2005] [Indexed: 11/18/2022]
Abstract
Telomeres constitute the nucleoprotein ends of eukaryotic chromosomes which are essential for their proper function. Telomere end binding protein (TEBP) from Oxytricha nova was among the first telomeric proteins, which were well characterized biologically. TEBP consists of two protein subunits (alpha, beta) and forms a ternary complex with single stranded telomeric DNA containing tandem repeats TTTTGGGG. This work presents the characterization of the thermodynamic and electrostatic properties of this complex by computational chemistry methods (continuum Poisson-Boltzmann and solvent accessible surface calculations). Our calculations give a new insight into molecular properties of studied system. Based on the thermodynamic analysis we provide a rationale for the experimental observation that alpha and ssDNA forms a binary complex and the beta subunit joins alpha:ssDNA complex only after the latter is formed. Calculations of distribution of the molecular electrostatic potential for protein subunits alone and for all possible binary complexes revealed the important role of the "guiding funnel" potential generated by alpha:ssDNA complex. This potential may help the beta subunit to dock to the already formed alpha:DNA intermediate in highly steric and electrostatic favorable manner. Our pK(a) calculations of TEBP are able to explain the experimental mobility shifts of the complex in electrophoretic non-denaturating gels.
Collapse
Affiliation(s)
- M Wojciechowski
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, 11/12 Narutowicza St., 80-952 Gdansk, Poland
| | | | | |
Collapse
|
23
|
Buczek P, Orr RS, Pyper SR, Shum M, Ota EKI, Gerum SE, Horvath MP. Binding linkage in a telomere DNA-protein complex at the ends of Oxytricha nova chromosomes. J Mol Biol 2005; 350:938-52. [PMID: 15967465 PMCID: PMC2939017 DOI: 10.1016/j.jmb.2005.05.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2005] [Revised: 05/07/2005] [Accepted: 05/16/2005] [Indexed: 11/22/2022]
Abstract
Alpha and beta protein subunits of the telomere end binding protein from Oxytricha nova (OnTEBP) combine with telomere single strand DNA to form a protective cap at the ends of chromosomes. We tested how protein-protein interactions seen in the co-crystal structure relate to DNA binding through use of fusion proteins engineered as different combinations of domains and subunits derived from OnTEBP. Joining alpha and beta resulted in a protein that bound single strand telomere DNA with high affinity (K(D-DNA)=1.4 nM). Another fusion protein, constructed without the C-terminal protein-protein interaction domain of alpha, bound DNA with 200-fold diminished affinity (K(D-DNA)=290 nM) even though the DNA-binding domains of alpha and beta were joined through a peptide linker. Adding back the alpha C-terminal domain as a separate protein restored high-affinity DNA binding. The binding behaviors of these fusion proteins and the native protein subunits are consistent with cooperative linkage between protein-association and DNA-binding equilibria. Linking DNA-protein stability to protein-protein contacts at a remote site may provide a trigger point for DNA-protein disassembly during telomere replication when the single strand telomere DNA must exchange between a very stable OnTEBP complex and telomerase.
Collapse
|
24
|
Theobald DL, Wuttke DS. Prediction of Multiple Tandem OB-Fold Domains in Telomere End-Binding Proteins Pot1 and Cdc13. Structure 2004; 12:1877-9. [PMID: 15458635 DOI: 10.1016/j.str.2004.07.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2004] [Revised: 07/21/2004] [Accepted: 07/31/2004] [Indexed: 10/26/2022]
Abstract
The heterodimeric Oxytricha nova telomere end binding protein, the original telomere end binding protein characterized, contains four OB-fold domains used for recognition of single-stranded telomeric DNA. In contrast, only solitary OB-fold domains have been found in the telomere end binding proteins from yeast and higher eukaryotes. Using a sliding-window algorithm coupled with sequence profile-profile analysis, we provide support for the existence of multiple OB-fold domains in two other telomeric ssDNA binding proteins, vertebrate Pot1 and budding yeast Cdc13. This common usage of multiple, tandem OB-fold domains in telomeric end binding proteins extends the known evolutionary conservation of eukaryotic end-protection mechanisms.
Collapse
Affiliation(s)
- Douglas L Theobald
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, CO 80309, USA
| | | |
Collapse
|
25
|
Mitton-Fry RM, Anderson EM, Theobald DL, Glustrom LW, Wuttke DS. Structural basis for telomeric single-stranded DNA recognition by yeast Cdc13. J Mol Biol 2004; 338:241-55. [PMID: 15066429 DOI: 10.1016/j.jmb.2004.01.063] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2003] [Revised: 01/14/2004] [Accepted: 01/30/2004] [Indexed: 10/26/2022]
Abstract
The essential budding yeast telomere-binding protein Cdc13 is required for telomere replication and end protection. Cdc13 specifically binds telomeric, single-stranded DNA (ssDNA) 3' overhangs with high affinity using an OB-fold domain. We have determined the high-resolution solution structure of the Cdc13 DNA-binding domain (DBD) complexed with a cognate telomeric ssDNA. The ssDNA wraps around one entire face of the Cdc13-DBD OB-fold in an extended, irregular conformation. Recognition of the ssDNA bases occurs primarily through aromatic, basic, and hydrophobic amino acid residues, the majority of which are evolutionarily conserved among budding yeast species and contribute significantly to the energetics of binding. Contacting five of 11 ssDNA nucleotides, the large, ordered beta2-beta3 loop is crucial for complex formation and is a unique elaboration on the binding mode commonly observed in OB-fold proteins. The sequence-specific Cdc13-DBD/ssDNA complex presents a complementary counterpoint to the interactions observed in the Oxytricha nova telomere end-binding and Schizosaccharomyces pombe Pot1 complexes. Analysis of the Cdc13-DBD/ssDNA complex indicates that molecular recognition of extended single-stranded nucleic acids may proceed via a folding-type mechanism rather than resulting from specific patterns of hydrogen bonds. The structure reported here provides a foundation for understanding the mechanism by which Cdc13 recognizes GT-rich heterogeneous sequences with both unusually strong affinity and high specificity.
Collapse
Affiliation(s)
- Rachel M Mitton-Fry
- Department of Chemistry and Biochemistry, University of Colorado, UCB 215, Boulder, CO 80309-0215 USA
| | | | | | | | | |
Collapse
|
26
|
Wei C, Price CM. Cell cycle localization, dimerization, and binding domain architecture of the telomere protein cPot1. Mol Cell Biol 2004; 24:2091-102. [PMID: 14966288 PMCID: PMC350568 DOI: 10.1128/mcb.24.5.2091-2102.2004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pot1 is a single-stranded-DNA-binding protein that recognizes telomeric G-strand DNA. It is essential for telomere capping in Saccharomyces pombe and regulates telomere length in humans. Human Pot1 also interacts with proteins that bind the duplex region of the telomeric tract. Thus, like Cdc13 from S. cerevisiae, Pot 1 may have multiple roles at the telomere. We show here that endogenous chicken Pot1 (cPot1) is present at telomeres during periods of the cell cycle when t loops are thought to be present. Since cPot1 can bind internal loops and directly adjacent DNA-binding sites, it is likely to fully coat and protect both G-strand overhangs and the displaced G strand of a t loop. The minimum binding site of cPot1 is double that of the S. pombe DNA-binding domain. Although cPot can self associate, dimerization is not required for DNA binding and hence does not explain the binding-site duplication. Instead, the DNA-binding domain appears to be extended to contain a second binding motif in addition to the conserved oligonucleotide-oligosaccharide (OB) fold present in other G-strand-binding proteins. This second motif could be another OB fold. Although dimerization is inefficient in vitro, it may be regulated in vivo and could promote association with other telomere proteins and/or telomere compaction.
Collapse
Affiliation(s)
- Chao Wei
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0524, USA
| | | |
Collapse
|
27
|
Abstract
Our understanding of RNA interference has been enhanced by new data concerning RNase III molecules. The role of Dicer has previously been established in RNAi as the originator of 22-mers characteristic of silencing phenomena. Recently, a related RNAse III enzyme, Drosha, has surfaced as another component of the RNAi pathway. In addition to biochemistry, protein structures have proven to be helpful in deciphering the enzymology of RNase III molecules.
Collapse
Affiliation(s)
- Michelle A Carmell
- Cold Spring Harbor Laboratory, Watson School of Biological Sciences, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA
| | | |
Collapse
|
28
|
Song JJ, Liu J, Tolia NH, Schneiderman J, Smith SK, Martienssen RA, Hannon GJ, Joshua-Tor L. The crystal structure of the Argonaute2 PAZ domain reveals an RNA binding motif in RNAi effector complexes. Nat Struct Mol Biol 2003; 10:1026-32. [PMID: 14625589 DOI: 10.1038/nsb1016] [Citation(s) in RCA: 397] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2003] [Accepted: 10/24/2003] [Indexed: 11/08/2022]
Abstract
RISC, the RNA-induced silencing complex, uses short interfering RNAs (siRNAs) or micro RNAs (miRNAs) to select its targets in a sequence-dependent manner. Key RISC components are Argonaute proteins, which contain two characteristic domains, PAZ and PIWI. PAZ is highly conserved and is found only in Argonaute proteins and Dicer. We have solved the crystal structure of the PAZ domain of Drosophila Argonaute2. The PAZ domain contains a variant of the OB fold, a module that often binds single-stranded nucleic acids. PAZ domains show low-affinity nucleic acid binding, probably interacting with the 3' ends of single-stranded regions of RNA. PAZ can bind the characteristic two-base 3' overhangs of siRNAs, indicating that although PAZ may not be a primary nucleic acid binding site in Dicer or RISC, it may contribute to the specific and productive incorporation of siRNAs and miRNAs into the RNAi pathway.
Collapse
Affiliation(s)
- Ji-Joon Song
- Cold Spring Harbor Laboratory, Watson School of Biological Sciences, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Theobald DL, Schultz SC. Nucleotide shuffling and ssDNA recognition in Oxytricha nova telomere end-binding protein complexes. EMBO J 2003; 22:4314-24. [PMID: 12912928 PMCID: PMC175804 DOI: 10.1093/emboj/cdg415] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2003] [Revised: 06/27/2003] [Accepted: 07/02/2003] [Indexed: 12/25/2022] Open
Abstract
Sequence-specific protein recognition of single-stranded nucleic acids is critical for many fundamental cellular processes, such as DNA replication, DNA repair, transcription, translation, recombination, apoptosis and telomere maintenance. To explore the mechanisms of sequence-specific ssDNA recognition, we determined the crystal structures of 10 different non-cognate ssDNAs complexed with the Oxytricha nova telomere end-binding protein (OnTEBP) and evaluated their corresponding binding affinities (PDB ID codes 1PH1-1PH9 and 1PHJ). The thermodynamic and structural effects of these sequence perturbations could not have been predicted based solely upon the cognate structure. OnTEBP accommodates non-cognate nucleotides by both subtle adjustments and surprisingly large structural rearrangements in the ssDNA. In two complexes containing ssDNA intermediates that occur during telomere extension by telomerase, entire nucleotides are expelled from the complex. Concurrently, the sequence register of the ssDNA shifts to re-establish a more cognate-like pattern. This phenomenon, termed nucleotide shuffling, may be of general importance in protein recognition of single-stranded nucleic acids. This set of structural and thermodynamic data highlights a fundamental difference between protein recognition of ssDNA versus dsDNA.
Collapse
Affiliation(s)
- Douglas L Theobald
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, CO 80309-0215, USA.
| | | |
Collapse
|