1
|
Abstract
Translocation of transfer RNA (tRNA) and messenger RNA (mRNA) through the ribosome is catalyzed by the GTPase elongation factor G (EF-G) in bacteria. Although guanosine-5'-triphosphate (GTP) hydrolysis accelerates translocation and is required for dissociation of EF-G, its fundamental role remains unclear. Here, we used ensemble Förster resonance energy transfer (FRET) to monitor how inhibition of GTP hydrolysis impacts the structural dynamics of the ribosome. We used FRET pairs S12-S19 and S11-S13, which unambiguously report on rotation of the 30S head domain, and the S6-L9 pair, which measures intersubunit rotation. Our results show that, in addition to slowing reverse intersubunit rotation, as shown previously, blocking GTP hydrolysis slows forward head rotation. Surprisingly, blocking GTP hydrolysis completely abolishes reverse head rotation. We find that the S13-L33 FRET pair, which has been used in previous studies to monitor head rotation, appears to report almost exclusively on intersubunit rotation. Furthermore, we find that the signal from quenching of 3'-terminal pyrene-labeled mRNA, which is used extensively to follow mRNA translocation, correlates most closely with reverse intersubunit rotation. To account for our finding that blocking GTP hydrolysis abolishes a rotational event that occurs after the movements of mRNA and tRNAs are essentially complete, we propose that the primary role of GTP hydrolysis is to create an irreversible step in a mechanism that prevents release of EF-G until both the tRNAs and mRNA have moved by one full codon, ensuring productive translocation and maintenance of the translational reading frame.
Collapse
|
2
|
Katava M, Kalimeri M, Stirnemann G, Sterpone F. Stability and Function at High Temperature. What Makes a Thermophilic GTPase Different from Its Mesophilic Homologue. J Phys Chem B 2016; 120:2721-30. [DOI: 10.1021/acs.jpcb.6b00306] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Marina Katava
- CNRS (UPR9080),
Institut de Biologie Physico-Chimique, Université de Paris
Sorbonne Cité et Paris Science et Lettres, Univ. Paris Diderot,
Laboratoire de Biochimie Théorique, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | - Maria Kalimeri
- Department
of Physics, Tampere University of Technology, Tampere, Finland
| | - Guillaume Stirnemann
- CNRS (UPR9080),
Institut de Biologie Physico-Chimique, Université de Paris
Sorbonne Cité et Paris Science et Lettres, Univ. Paris Diderot,
Laboratoire de Biochimie Théorique, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | - Fabio Sterpone
- CNRS (UPR9080),
Institut de Biologie Physico-Chimique, Université de Paris
Sorbonne Cité et Paris Science et Lettres, Univ. Paris Diderot,
Laboratoire de Biochimie Théorique, 13 rue Pierre et Marie Curie, 75005, Paris, France
| |
Collapse
|
3
|
Wang D, Luo B, Shan W, Hao M, Sun X, Ge R. The effects of EF-Ts and bismuth on EF-Tu in Helicobacter pylori: implications for an elegant timing for the introduction of EF-Ts in the elongation and EF-Tu as a potential drug target. Metallomics 2014; 5:888-95. [PMID: 23765120 DOI: 10.1039/c3mt20265h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Helicobacter pylori is a common human pathogen responsible for various gastric diseases. Bismuth can effectively inhibit the growth of this bacterium and is commonly recommended for the treatment of the related diseases. Translation elongation factors EF-Tu and EF-Ts are two important components of the protein translation system. EF-Ts has inhibitory effects on the GTPase activity of EF-Tu and enhances GDP release, a hint that careful timing for the introduction of EF-Ts in the elongation should be accomplished to prevent the complete inhibition of the elongation process. Bismuth inhibits the chaperone activity of EF-Tu, and has opposite effects on the elongation activity: inhibitory effects on the intrinsic GTPase activity and stimulation of GDP release. The present work deepens our understanding of the bacterial elongation process as mediated by EF-Tu and EF-Ts and extends our knowledge about the inhibitory effects of bismuth-based drugs against Helicobacter pylori.
Collapse
Affiliation(s)
- Dongxian Wang
- Key Laboratory of Gene Engineering of the Ministry of Education and State Key Laboratory of Biocontrol, College of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | | | | | | | | | | |
Collapse
|
4
|
SHARMA AJEETK, CHOWDHURY DEBASHISH. TEMPLATE-DIRECTED BIOPOLYMERIZATION: TAPE-COPYING TURING MACHINES. ACTA ACUST UNITED AC 2013. [DOI: 10.1142/s1793048012300083] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
DNA, RNA and proteins are among the most important macromolecules in a living cell. These molecules are polymerized by molecular machines. These natural nano-machines polymerize such macromolecules, adding one monomer at a time, using another linear polymer as the corresponding template. The machine utilizes input chemical energy to move along the template which also serves as a track for the movements of the machine. In the Alan Turing year 2012, it is worth pointing out that these machines are "tape-copying Turing machines". We review the operational mechanisms of the polymerizer machines and their collective behavior from the perspective of statistical physics, emphasizing their common features in spite of the crucial differences in their biological functions. We also draw the attention of the physics community to another class of modular machines that carry out a different type of template-directed polymerization. We hope this review will inspire new kinetic models for these modular machines.
Collapse
Affiliation(s)
- AJEET K. SHARMA
- Department of Physics, Indian Institute of Technology, Kanpur 208016, India
| | | |
Collapse
|
5
|
Interaction of Mycobacterium tuberculosis elongation factor Tu with GTP is regulated by phosphorylation. J Bacteriol 2011; 193:5347-58. [PMID: 21803988 DOI: 10.1128/jb.05469-11] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
During protein synthesis, translation elongation factor Tu (Ef-Tu) is responsible for the selection and binding of the cognate aminoacyl-tRNA to the acceptor site on the ribosome. The activity of Ef-Tu is dependent on its interaction with GTP. Posttranslational modifications, such as phosphorylation, are known to regulate the activity of Ef-Tu in several prokaryotes. Although a study of the Mycobacterium tuberculosis phosphoproteome showed Ef-Tu to be phosphorylated, the role of phosphorylation in the regulation of Ef-Tu has not been studied. In this report, we show that phosphorylation of M. tuberculosis Ef-Tu (MtbEf-Tu) by PknB reduced its interaction with GTP, suggesting a concomitant reduction in the level of protein synthesis. Overexpression of PknB in Mycobacterium smegmatis indeed reduced the level of protein synthesis. MtbEf-Tu was found to be phosphorylated by PknB on multiple sites, including Thr118, which is required for optimal activity of the protein. We found that kirromycin, an Ef-Tu-specific antibiotic, had a significant effect on the nucleotide binding of unphosphorylated MtbEf-Tu but not on the phosphorylated protein. Our results show that the modulation of the MtbEf-Tu-GTP interaction by phosphorylation can have an impact on cellular protein synthesis and growth. These results also suggest that phosphorylation can change the sensitivity of the protein to the specific inhibitors. Thus, the efficacy of an inhibitor can also depend on the posttranslational modification(s) of the target and should be considered during the development of the molecule.
Collapse
|
6
|
Lamberti A, Martucci NM, Ruggiero I, Arcari P, Masullo M. Interaction Between the Antibiotic Tetracycline and the Elongation Factor 1α from the Archaeon Sulfolobus solfataricus. Chem Biol Drug Des 2011; 78:260-8. [DOI: 10.1111/j.1747-0285.2011.01142.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Kulczycka K, Długosz M, Trylska J. Molecular dynamics of ribosomal elongation factors G and Tu. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2011; 40:289-303. [PMID: 21152913 PMCID: PMC3045518 DOI: 10.1007/s00249-010-0647-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 11/09/2010] [Accepted: 11/16/2010] [Indexed: 11/04/2022]
Abstract
Translation on the ribosome is controlled by external factors. During polypeptide lengthening, elongation factors EF-Tu and EF-G consecutively interact with the bacterial ribosome. EF-Tu binds and delivers an aminoacyl-tRNA to the ribosomal A site and EF-G helps translocate the tRNAs between their binding sites after the peptide bond is formed. These processes occur at the expense of GTP. EF-Tu:tRNA and EF-G are of similar shape, share a common binding site, and undergo large conformational changes on interaction with the ribosome. To characterize the internal motion of these two elongation factors, we used 25 ns long all-atom molecular dynamics simulations. We observed enhanced mobility of EF-G domains III, IV, and V and of tRNA in the EF-Tu:tRNA complex. EF-Tu:GDP complex acquired a configuration different from that found in the crystal structure of EF-Tu with a GTP analogue, showing conformational changes in the switch I and II regions. The calculated electrostatic properties of elongation factors showed no global similarity even though matching electrostatic surface patches were found around the domain I that contacts the ribosome, and in the GDP/GTP binding region.
Collapse
Affiliation(s)
- Katarzyna Kulczycka
- Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw, Pawinskiego 5A, 02-106 Warsaw, Poland
- College of Inter-Faculty Individual Studies in Mathematics and Natural Science, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Maciej Długosz
- Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw, Pawinskiego 5A, 02-106 Warsaw, Poland
| | - Joanna Trylska
- Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw, Pawinskiego 5A, 02-106 Warsaw, Poland
| |
Collapse
|
8
|
Berisio R, Ruggiero A, Vitagliano L. Elongation Factors EFIA and EF-Tu: Their Role in Translation and Beyond. Isr J Chem 2010. [DOI: 10.1002/ijch.201000005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
9
|
Simonović M, Steitz TA. A structural view on the mechanism of the ribosome-catalyzed peptide bond formation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2009; 1789:612-23. [PMID: 19595805 DOI: 10.1016/j.bbagrm.2009.06.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Revised: 06/23/2009] [Accepted: 06/25/2009] [Indexed: 10/20/2022]
Abstract
The ribosome is a large ribonucleoprotein particle that translates genetic information encoded in mRNA into specific proteins. Its highly conserved active site, the peptidyl-transferase center (PTC), is located on the large (50S) ribosomal subunit and is comprised solely of rRNA, which makes the ribosome the only natural ribozyme with polymerase activity. The last decade witnessed a rapid accumulation of atomic-resolution structural data on both ribosomal subunits as well as on the entire ribosome. This has allowed studies on the mechanism of peptide bond formation at a level of detail that surpasses that for the classical protein enzymes. A current understanding of the mechanism of the ribosome-catalyzed peptide bond formation is the focus of this review. Implications on the mechanism of peptide release are discussed as well.
Collapse
Affiliation(s)
- Miljan Simonović
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, MBRB 1170, 900 S Ashland Ave., Chicago, IL 60607, USA
| | | |
Collapse
|
10
|
Garai A, Chowdhury D, Chowdhury D, Ramakrishnan TV. Stochastic kinetics of ribosomes: single motor properties and collective behavior. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009; 80:011908. [PMID: 19658730 DOI: 10.1103/physreve.80.011908] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 06/04/2009] [Indexed: 05/28/2023]
Abstract
Syntheses of protein molecules in a cell are carried out by ribosomes. A ribosome can be regarded as a molecular motor which utilizes the input chemical energy to move on a messenger RNA (mRNA) track that also serves as a template for the polymerization of the corresponding protein. The forward movement, however, is characterized by an alternating sequence of translocation and pause. Using a quantitative model, which captures the mechanochemical cycle of an individual ribosome, we derive an exact analytical expression for the distribution of its dwell times at the successive positions on the mRNA track. Inverse of the average dwell time satisfies a "Michaelis-Menten-type" equation and is consistent with the general formula for the average velocity of a molecular motor with an unbranched mechanochemical cycle. Extending this formula appropriately, we also derive the exact force-velocity relation for a ribosome. Often many ribosomes simultaneously move on the same mRNA track, while each synthesizes a copy of the same protein. We extend the model of a single ribosome by incorporating steric exclusion of different individuals on the same track. We draw the phase diagram of this model of ribosome traffic in three-dimensional spaces spanned by experimentally controllable parameters. We suggest new experimental tests of our theoretical predictions.
Collapse
Affiliation(s)
- Ashok Garai
- Department of Physics, Indian Institute of Technology, Kanpur 208016, India
| | | | | | | |
Collapse
|
11
|
Ruggiero I, Cantiello P, Lamberti A, Sorrentino A, Martucci NM, Ruggiero A, Arcone R, Vitagliano L, Arcari P, Masullo M. Biochemical characterisation of the D60A mutant of the elongation factor 1alpha from the archaeon Sulfolobus solfataricus. Biochimie 2009; 91:835-42. [PMID: 19375481 DOI: 10.1016/j.biochi.2009.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Accepted: 04/02/2009] [Indexed: 11/28/2022]
Abstract
The D60A mutant of the elongation factor (EF) 1alpha from Sulfolobus solfataricus (Ss), was obtained as heterologous expressed protein and characterised. This substitution was carried out in order to analyse the involvement of this evolutionally conserved amino acid position in the interaction between the elongation factor and guanosine nucleotides and in the coordination of magnesium ions. The expression system used produced a folded protein able to catalyse, although to a slightly lower extent with respect to the wild-type enzyme, protein synthesis in vitro and NaCl-dependent intrinsic GTPase activity. The affinity for guanosine nucleotides was almost identical to that exhibited by wild-type SsEF-1alpha; vice versa, the GDP exchange rate was one order of magnitude faster on the mutated elongation factor, a property partially restored when the exchange reaction was analysed in the presence of the magnesium ions chelating agent EDTA. Finally, the D60A substitution only a little affected the high thermal stability of the elongation factor. From a structural point of view, the analysis of the data reported confirmed that this conserved carboxyl group belongs to a protein region differentiating the GDP binding mode among elongation factors from different organisms.
Collapse
Affiliation(s)
- Immacolata Ruggiero
- Dipartimento di Biochimica e Biotecnologie Mediche, Università di Napoli Federico II, Via S. Pansini 5, I-80131 Napoli, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Deryusheva EI, Galzitskaya OV, Serdyuk IN. Prediction of short loops in intrinsically disordered proteins. Mol Biol 2008. [DOI: 10.1134/s0026893308060174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
rRNA suppressor of a eukaryotic translation initiation factor 5B/initiation factor 2 mutant reveals a binding site for translational GTPases on the small ribosomal subunit. Mol Cell Biol 2008; 29:808-21. [PMID: 19029250 DOI: 10.1128/mcb.00896-08] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The translational GTPases promote initiation, elongation, and termination of protein synthesis by interacting with the ribosome. Mutations that impair GTP hydrolysis by eukaryotic translation initiation factor 5B/initiation factor 2 (eIF5B/IF2) impair yeast cell growth due to failure to dissociate from the ribosome following subunit joining. A mutation in helix h5 of the 18S rRNA in the 40S ribosomal subunit and intragenic mutations in domain II of eIF5B suppress the toxic effects associated with expression of the eIF5B-H480I GTPase-deficient mutant in yeast by lowering the ribosome binding affinity of eIF5B. Hydroxyl radical mapping experiments reveal that the domain II suppressors interface with the body of the 40S subunit in the vicinity of helix h5. As the helix h5 mutation also impairs elongation factor function, the rRNA and eIF5B suppressor mutations provide in vivo evidence supporting a functionally important docking of domain II of the translational GTPases on the body of the small ribosomal subunit.
Collapse
|
14
|
Serdyuk IN, Galzitskaya OV. Disordered regions in elongation factors EF1A in the three superkingdoms of life. Mol Biol 2007. [DOI: 10.1134/s002689330706012x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Spiegel PC, Ermolenko DN, Noller HF. Elongation factor G stabilizes the hybrid-state conformation of the 70S ribosome. RNA (NEW YORK, N.Y.) 2007; 13:1473-82. [PMID: 17630323 PMCID: PMC1950763 DOI: 10.1261/rna.601507] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Following peptide bond formation, transfer RNAs (tRNAs) and messenger RNA (mRNA) are translocated through the ribosome, a process catalyzed by elongation factor EF-G. Here, we have used a combination of chemical footprinting, peptidyl transferase activity assays, and mRNA toeprinting to monitor the effects of EF-G on the positions of tRNA and mRNA relative to the A, P, and E sites of the ribosome in the presence of GTP, GDP, GDPNP, and fusidic acid. Chemical footprinting experiments show that binding of EF-G in the presence of the non-hydrolyzable GTP analog GDPNP or GDP.fusidic acid induces movement of a deacylated tRNA from the classical P/P state to the hybrid P/E state. Furthermore, stabilization of the hybrid P/E state by EF-G compromises P-site codon-anticodon interaction, causing frame-shifting. A deacylated tRNA bound to the P site and a peptidyl-tRNA in the A site are completely translocated to the E and P sites, respectively, in the presence of EF-G with GTP or GDPNP but not with EF-G.GDP. Unexpectedly, translocation with EF-G.GTP leads to dissociation of deacylated tRNA from the E site, while tRNA remains bound in the presence of EF-G.GDPNP, suggesting that dissociation of tRNA from the E site is promoted by GTP hydrolysis and/or EF-G release. Our results show that binding of EF-G in the presence of GDPNP or GDP.fusidic acid stabilizes the ribosomal intermediate hybrid state, but that complete translocation is supported only by EF-G.GTP or EF-G.GDPNP.
Collapse
Affiliation(s)
- P Clint Spiegel
- Center for Molecular Biology of RNA, Department of Molecular, Cell and Developmental Biology, University of California-Santa Cruz 95064, USA
| | | | | |
Collapse
|
16
|
Suzuki H, Ueda T, Taguchi H, Takeuchi N. Chaperone properties of mammalian mitochondrial translation elongation factor Tu. J Biol Chem 2006; 282:4076-84. [PMID: 17130126 DOI: 10.1074/jbc.m608187200] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The main function of the prokaryotic translation elongation factor Tu (EF-Tu) and its eukaryotic counterpart eEF1A is to deliver aminoacyl-tRNA to the A-site on the ribosome. In addition to this primary function, it has been reported that EF-Tu from various sources has chaperone activity. At present, little information is available about the chaperone activity of mitochondrial EF-Tu. In the present study, we have examined the chaperone function of mammalian mitochondrial EF-Tu (EF-Tumt). We demonstrate that recombinant EF-Tumt prevents thermal aggregation of proteins and enhances protein refolding in vitro and that this EF-Tumt chaperone activity proceeds in a GTP-independent manner. We also demonstrate that, under heat stress, the newly synthesized peptides from the mitochondrial ribosome specifically co-immunoprecipitate with EF-Tumt and are destabilized in EF-Tumt-overexpressing cells. We show that most of the EF-Tumt localizes on the mitochondrial inner membrane where most mitochondrial ribosomes are found. We discuss the possible role of EF-Tumt chaperone activity in protein quality control in mitochondria, with regard to the recently reported in vivo chaperone function of eEF1A.
Collapse
Affiliation(s)
- Hiroaki Suzuki
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Building FSB-401, 5-1-5, Kashiwa, Chiba Prefecture 277-8562, Japan
| | | | | | | |
Collapse
|
17
|
Masullo M, Cantiello P, Arcari P. Archaeal elongation factor 1alpha from Sulfolobus solfataricus interacts with the eubacterial antibiotic GE2270A. Extremophiles 2004; 8:499-505. [PMID: 15290325 DOI: 10.1007/s00792-004-0410-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2004] [Accepted: 06/14/2004] [Indexed: 10/26/2022]
Abstract
The thiazolyl-peptide antibiotic GE2270A, an inhibitor of the elongation factor Tu from Escherichia coli (EcEF-Tu), was used to study the effects produced in the biochemical properties of the archaeal functional analogue elongation factor 1alpha from Sulfolobus solfataricus (SsEF-1alpha). GE2270A did not substantially affect the poly(U)-directed-polyPhe incorporation catalyzed by SsEF-1alpha and the formation of the ternary complex SsEF-1alpha.GTP.Phe-tRNAPhe. On the other hand, the antibiotic was able to increase the GDP/GTP exchange rate of SsEF-1alpha; nevertheless, this improvement was not associated with an increase in the catalytic activity of the enzyme. In fact, GE2270A inhibited both the intrinsic GTPase of SsEF-1alpha (GTPaseNa) and that stimulated by ribosomes. Interestingly, GTPaseNa of both intact and C-terminal-deleted SsEF-1alpha resulted in a greater sensitivity to the antibiotic with respect to SsEF-1alpha lacking both the M- and C-terminal domains. This result suggested that, similar to what is found for EcEF-Tu, the M domain of SsEF-1alpha is the region of the enzyme most responsible for the interaction with GE2270A. The different behavior observed in the inhibition of protein synthesis with respect to EcEF-Tu can be ascribed to the different adaptive structural changes that have occurred in SsEF-1alpha during evolution.
Collapse
Affiliation(s)
- Mariorosario Masullo
- Dipartimento di Scienze Farmacobiologiche, Università degli Studi di Catanzaro Magna Graecia, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | | | | |
Collapse
|
18
|
Equilibria and kinetics for pH-dependent axial ligation of ethylester and methylester(aquo)cobaloximes with aromatic and aliphatic N-donor ligands and a molecular mechanistic study of the Co-C bond. J CHEM SCI 2004. [DOI: 10.1007/bf02708217] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Reddy DS, Satyanarayana S. Equilibrium and kinetic studies on ligand substitution reactions of chloromethyl(aquo)cobaloxime with aromatic and aliphatic N-donor ligands. J CHEM SCI 2003. [DOI: 10.1007/bf02704257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
20
|
Murase K, Morrison KL, Tam PY, Stafford RL, Jurnak F, Weiss GA. EF-Tu binding peptides identified, dissected, and affinity optimized by phage display. CHEMISTRY & BIOLOGY 2003; 10:161-8. [PMID: 12618188 DOI: 10.1016/s1074-5521(03)00025-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The highly abundant GTP binding protein elongation factor Tu (EF-Tu) fulfills multiple roles in bacterial protein biosynthesis. Phage-displayed peptides with high affinity for EF-Tu were selected from a library of approximately 4.7 x 10(11) different peptides. The lack of sequence homology among the identified EF-Tu ligands demonstrates promiscuous peptide binding by EF-Tu. Homolog shotgun scanning of an EF-Tu ligand was used to dissect peptide molecular recognition by EF-Tu. All homolog shotgun scanning selectants bound to EF-Tu with higher affinity than the starting ligand. Thus, homolog shotgun scanning can simultaneously optimize binding affinity and rapidly provide detailed structure activity relationships for multiple side chains of a polypeptide ligand. The reported peptide ligands do not compete for binding to EF-Tu with various antibiotic EF-Tu inhibitors, and could identify an EF-Tu peptide binding site distinct from the antibiotic inhibitory sites.
Collapse
Affiliation(s)
- Katsuyuki Murase
- Department of Chemistry, 346-D Med Sci I, University of California, Irvine, Irvine, CA 92697, USA
| | | | | | | | | | | |
Collapse
|
21
|
Krab IM, Parmeggiani A. Mechanisms of EF-Tu, a pioneer GTPase. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2003; 71:513-51. [PMID: 12102560 DOI: 10.1016/s0079-6603(02)71050-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
This review considers several aspects of the function of EF-Tu, a protein that has greatly contributed to the advancement of our knowledge of both protein biosynthesis and GTP-binding proteins in general. A number of topics are described with emphasis on the function-structure relationships, in particular of EF-Tu's domains, the nucleotide-binding site, and the magnesium-binding network. Aspects related to the interaction with macromolecular ligands and antibiotics and to folding and GTPase activity are also presented and discussed. Comments and criticism are offered to draw attention to remaining discrepancies and problems.
Collapse
Affiliation(s)
- Ivo M Krab
- Laboratory of Biophysics, Ecole Polytechnique, Palaiseau, France
| | | |
Collapse
|
22
|
Vitagliano L, Masullo M, Sica F, Zagari A, Bocchini V. The crystal structure of Sulfolobus solfataricus elongation factor 1alpha in complex with GDP reveals novel features in nucleotide binding and exchange. EMBO J 2001; 20:5305-11. [PMID: 11574461 PMCID: PMC125647 DOI: 10.1093/emboj/20.19.5305] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The crystal structure of elongation factor 1alpha from the archaeon Sulfolobus solfataricus in complex with GDP (SsEF-1alpha.GDP) at 1.8 A resolution is reported. As already known for the eubacterial elongation factor Tu, the SsEF-1alpha.GDP structure consists of three different structural domains. Surprisingly, the analysis of the GDP-binding site reveals that the nucleotide- protein interactions are not mediated by Mg(2+). Furthermore, the residues that usually co-ordinate Mg(2+) through water molecules in the GTP-binding proteins, though conserved in SsEF-1alpha, are located quite far from the binding site. [(3)H]GDP binding experiments confirm that Mg(2+) has only a marginal effect on the nucleotide exchange reaction of SsEF-1alpha, although essential to GTPase activity elicited by SsEF-1alpha. Finally, structural comparisons of SsEF- 1alpha.GDP with yeast EF-1alpha in complex with the nucleotide exchange factor EF-1beta shows that a dramatic rearrangement of the overall structure of EF-1alpha occurs during the nucleotide exchange.
Collapse
Affiliation(s)
- Luigi Vitagliano
- Centro di Biocristallografia, CNR, via Mezzocannone 6, I-80134 Napoli, Dipartimento di Biochimica e Biotecnologie Mediche Via Pansini 5, I-80131 Napoli and Dipartimento di Chimica, Università degli studi di Napoli ‘Federico II’, Dipartimento di Scienze Farmacobiologiche, Università degli Studi di Catanzaro ‘Magna Graecia’, Catanzaro and CEINGE, Biotecnologie avanzate Scarl, Napoli, Italy Corresponding author e-mail: Deceased June 28, 2001
| | - Mariorosario Masullo
- Centro di Biocristallografia, CNR, via Mezzocannone 6, I-80134 Napoli, Dipartimento di Biochimica e Biotecnologie Mediche Via Pansini 5, I-80131 Napoli and Dipartimento di Chimica, Università degli studi di Napoli ‘Federico II’, Dipartimento di Scienze Farmacobiologiche, Università degli Studi di Catanzaro ‘Magna Graecia’, Catanzaro and CEINGE, Biotecnologie avanzate Scarl, Napoli, Italy Corresponding author e-mail: Deceased June 28, 2001
| | - Filomena Sica
- Centro di Biocristallografia, CNR, via Mezzocannone 6, I-80134 Napoli, Dipartimento di Biochimica e Biotecnologie Mediche Via Pansini 5, I-80131 Napoli and Dipartimento di Chimica, Università degli studi di Napoli ‘Federico II’, Dipartimento di Scienze Farmacobiologiche, Università degli Studi di Catanzaro ‘Magna Graecia’, Catanzaro and CEINGE, Biotecnologie avanzate Scarl, Napoli, Italy Corresponding author e-mail: Deceased June 28, 2001
| | - Adriana Zagari
- Centro di Biocristallografia, CNR, via Mezzocannone 6, I-80134 Napoli, Dipartimento di Biochimica e Biotecnologie Mediche Via Pansini 5, I-80131 Napoli and Dipartimento di Chimica, Università degli studi di Napoli ‘Federico II’, Dipartimento di Scienze Farmacobiologiche, Università degli Studi di Catanzaro ‘Magna Graecia’, Catanzaro and CEINGE, Biotecnologie avanzate Scarl, Napoli, Italy Corresponding author e-mail: Deceased June 28, 2001
| | - Vincenzo Bocchini
- Centro di Biocristallografia, CNR, via Mezzocannone 6, I-80134 Napoli, Dipartimento di Biochimica e Biotecnologie Mediche Via Pansini 5, I-80131 Napoli and Dipartimento di Chimica, Università degli studi di Napoli ‘Federico II’, Dipartimento di Scienze Farmacobiologiche, Università degli Studi di Catanzaro ‘Magna Graecia’, Catanzaro and CEINGE, Biotecnologie avanzate Scarl, Napoli, Italy Corresponding author e-mail: Deceased June 28, 2001
| |
Collapse
|
23
|
Agrawal RK, Linde J, Sengupta J, Nierhaus KH, Frank J. Localization of L11 protein on the ribosome and elucidation of its involvement in EF-G-dependent translocation. J Mol Biol 2001; 311:777-87. [PMID: 11518530 DOI: 10.1006/jmbi.2001.4907] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
L11 protein is located at the base of the L7/L12 stalk of the 50 S subunit of the Escherichia coli ribosome. Because of the flexible nature of the region, recent X-ray crystallographic studies of the 50 S subunit failed to locate the N-terminal domain of the protein. We have determined the position of the complete L11 protein by comparing a three-dimensional cryo-EM reconstruction of the 70 S ribosome, isolated from a mutant lacking ribosomal protein L11, with the three-dimensional map of the wild-type ribosome. Fitting of the X-ray coordinates of L11-23 S RNA complex and EF-G into the cryo-EM maps combined with molecular modeling, reveals that, following EF-G-dependent GTP hydrolysis, domain V of EF-G intrudes into the cleft between the 23 S ribosomal RNA and the N-terminal domain of L11 (where the antibiotic thiostrepton binds), causing the N-terminal domain to move and thereby inducing the formation of the arc-like connection with the G' domain of EF-G. The results provide a new insight into the mechanism of EF-G-dependent translocation.
Collapse
Affiliation(s)
- R K Agrawal
- Wadsworth Center, Empire State Plaza, Albany, NY 12201-0509, USA.
| | | | | | | | | |
Collapse
|
24
|
Metzler DE, Metzler CM, Sauke DJ. Ribosomes and the Synthesis of Proteins. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50032-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Bingham R, Ekunwe SI, Falk S, Snyder L, Kleanthous C. The major head protein of bacteriophage T4 binds specifically to elongation factor Tu. J Biol Chem 2000; 275:23219-26. [PMID: 10801848 DOI: 10.1074/jbc.m002546200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Lit protease in Escherichia coli K-12 strains induces cell death in response to bacteriophage T4 infection by cleaving translation elongation factor (EF) Tu and shutting down translation. Suicide of the cell is timed to the appearance late in the maturation of the phage of a short peptide sequence in the major head protein, the Gol peptide, which activates proteolysis. In the present work we demonstrate that the Gol peptide binds specifically to domains II and III of EF-Tu, creating the unique substrate for the Lit protease, which then cleaves domain I, the guanine nucleotide binding domain. The conformation of EF-Tu is important for binding and Lit cleavage, because both are sensitive to the identity of the bound nucleotide, with GDP being preferred over GTP. We propose that association of the T4 coat protein with EF-Tu plays a role in phage head assembly but that this association marks infected cells for suicide when Lit is present. Based on these data and recent observations on human immunodeficiency virus type 1 maturation, we speculate that associations between host translation factors and coat proteins may be integral to viral assembly in both prokaryotes and eukaryotes.
Collapse
Affiliation(s)
- R Bingham
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | | | | | | | | |
Collapse
|
26
|
Gomez-Lorenzo MG, Spahn CM, Agrawal RK, Grassucci RA, Penczek P, Chakraburtty K, Ballesta JP, Lavandera JL, Garcia-Bustos JF, Frank J. Three-dimensional cryo-electron microscopy localization of EF2 in the Saccharomyces cerevisiae 80S ribosome at 17.5 A resolution. EMBO J 2000; 19:2710-8. [PMID: 10835368 PMCID: PMC212750 DOI: 10.1093/emboj/19.11.2710] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2000] [Revised: 03/28/2000] [Accepted: 04/04/2000] [Indexed: 11/14/2022] Open
Abstract
Using a sordarin derivative, an antifungal drug, it was possible to determine the structure of a eukaryotic ribosome small middle dotEF2 complex at 17.5 A resolution by three-dimensional (3D) cryo-electron microscopy. EF2 is directly visible in the 3D map and the overall arrangement of the complex from Saccharomyces cerevisiae corresponds to that previously seen in Escherichia coli. However, pronounced differences were found in two prominent regions. First, in the yeast system the interaction between the elongation factor and the stalk region of the large subunit is much more extensive. Secondly, domain IV of EF2 contains additional mass that appears to interact with the head of the 40S subunit and the region of the main bridge of the 60S subunit. The shape and position of domain IV of EF2 suggest that it might interact directly with P-site-bound tRNA.
Collapse
Affiliation(s)
- M G Gomez-Lorenzo
- Health Research Inc. at Wadsworth Center, State University of New York at Albany, Empire State Plaza, Albany, NY 12201-0509, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Nissen P, Kjeldgaard M, Nyborg J. Macromolecular mimicry. EMBO J 2000; 19:489-95. [PMID: 10675317 PMCID: PMC305586 DOI: 10.1093/emboj/19.4.489] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/1999] [Revised: 12/03/1999] [Accepted: 12/08/1999] [Indexed: 11/14/2022] Open
Abstract
Some proteins have been shown to mimic the overall shape and structure of nucleic acids. For some of the proteins involved in translating the genetic information into proteins on the ribosome particle, there are indications that such observations of macromolecular mimicry even extend to similarity in interaction with and function on the ribosome. A small number of structural results obtained outside the protein biosynthesis machinery could indicate that the concept of macromolecular mimicry between proteins and nucleic acids is more general. The implications for the function and evolution of protein biosynthesis are discussed.
Collapse
Affiliation(s)
- P Nissen
- Institute of Molecular and Structural Biology, University of Aarhus, Gustav Wieds vej 10C, DK-8000 Aarhus C, Denmark
| | | | | |
Collapse
|
28
|
Kraal B, Lippmann C, Kleanthous C. Translational regulation by modifications of the elongation factor Tu. Folia Microbiol (Praha) 1999; 44:131-41. [PMID: 10588048 DOI: 10.1007/bf02816232] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
EF-Tu from E. coli, one of the superfamily of GTPase switch proteins, plays a central role in the fast and accurate delivery of aminoacyl-tRNAs to the translating ribosome. An overview is given about the regulatory effects of methylation, phosphorylation and phage-induced cleavage of EF-Tu on its function. During exponential growth, EF-Tu becomes monomethylated at Lys56 which is converted to Me2Lys upon entering the stationary phase. Lys56 is in the GTPase switch-1 region (residues 49-62), a strongly conserved site involved in interactions with the nucleotide and the 5' end of tRNA. Methylation was found to attenuate GTP hydrolysis and may thus enhance translational accuracy. In vivo 5-10% of EF-Tu is phosphorylated at Thr382 by a ribosome-associated kinase. In EF-Tu-GTP, Thr382 in domain 3 has a strategic position in the interface with domain 1; it is hydrogen-bonded to Glu117 that takes part in the switch-2 mechanism, and is close to the T-stem binding site of the tRNA, in a region known for many kirromycin-resistance mutations. Phosphorylation is enhanced by EF-Ts, but inhibited by kirromycin. In reverse, phosphorylated EF-Tu has an increased affinity for EF-Ts, does not bind kirromycin and can no longer bind aminoacyi tRNA. The in vivo role of this reversible modification is still a matter of speculation. T4 infection of E. coli may trigger a phase-exclusion mechanism by activation of Lit, a host-encoded proteinase. As a result, EF-Tu is cleaved site-specifically between Gly59-Ile60 in the switch-1 region. Translation was found to drop beyond a minimum level. Interestingly, the identical sequence in the related EF-G appeared to remain fully intact. Although the Lit cleavage-mechanism may eventually lead to programmed cell death, the very efficient prevention of phage multiplication may be caused by a novel mechanism of in cis inhibition of late T4 mRNA translation.
Collapse
Affiliation(s)
- B Kraal
- Department of Biochemistry, Leiden University, Netherlands.
| | | | | |
Collapse
|
29
|
Abstract
N-ethylmaleimide-sensitive factor (NSF) is a hexameric ATPase essential for eukaryotic vesicle fusion. Along with SNAP proteins, it disassembles cis-SNARE complexes upon ATP hydrolysis, preparing SNAREs for trans complex formation. We have determined the crystal structure of the N-terminal domain of NSF (N) to 1.9 A resolution. N contains two subdomains which form a groove that is a likely SNAP interaction site. Unexpectedly, both N subdomains are structurally similar to domains in EF-Tu. Based on this similarity, we propose a model for a large conformational change in NSF that drives SNARE complex disassembly.
Collapse
Affiliation(s)
- R C Yu
- Howard Hughes Medical Institute, Yale University, New Haven, Connecticut 06520, USA
| | | | | |
Collapse
|
30
|
Martemyanov KA, Gudkov AT. Domain IV of elongation factor G from Thermus thermophilus is strictly required for translocation. FEBS Lett 1999; 452:155-9. [PMID: 10386581 DOI: 10.1016/s0014-5793(99)00635-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Two truncated variants of elongation factor G from Thermus thermophilus with deletion of its domain IV have been constructed and the mutated genes were expressed in Escherichia coli. The truncated factors were produced in a soluble form and retained a high thermostability. It was demonstrated that mutated factors possessed (1) a reduced affinity to the ribosomes with an uncleavable GTP analog and (2) a specific ribosome-dependent GTPase activity. At the same time, in contrast to the wild-type elongation factor G, they were incapable to promote translocation. The conclusions are drawn that (1) domain IV is not involved in the GTPase activity of elongation factor G, (2) it contributes to the binding of elongation factor G with the ribosome and (3) is strictly required for translocation. These results suggest that domain IV might be directly involved in translocation and GTPase activity of the factor is not directly coupled with translocation.
Collapse
Affiliation(s)
- K A Martemyanov
- Institute of Protein Research, Russian Academy of Sciences, Pushchino
| | | |
Collapse
|
31
|
Clark BF, Thirup S, Kjeldgaard M, Nyborg J. Structural information for explaining the molecular mechanism of protein biosynthesis. FEBS Lett 1999; 452:41-6. [PMID: 10376675 DOI: 10.1016/s0014-5793(99)00562-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Protein biosynthesis is controlled by a number of proteins external to the ribosome. Of these, extensive structural investigations have been performed on elongation factor-Tu and elongation factor-G. This now gives a rather complete structural picture of the functional cycle of elongation factor-Tu and especially of the elongation phase of protein biosynthesis. The discovery that three domains of elongation factor-G are structurally mimicking the amino-acylated tRNA in the ternary complex of elongation factor-Tu has been the basis of much discussion of the functional similarities and functional differences of elongation factor-Tu and elongation factor-G in their interactions with the ribosome. Elongation factor-G:GDP is now thought to leave the ribosome in a state ready for checking the codon-anticodon interaction of the aminoacyl-tRNA contained in the ternary complex of elongation factor-Tu. Elongation factor-G does this by mimicking the shape of the ternary complex. Other translation factors such as the initiation factor-2 and the release factor 1 or 2 are also thought to mimic tRNA. These observations raise questions concerning the possible evolution of G-proteins involved in protein biosynthesis.
Collapse
Affiliation(s)
- B F Clark
- Institute of Molecular and Structural Biology, University of Aarhus, Denmark
| | | | | | | |
Collapse
|
32
|
Rodnina MV, Savelsbergh A, Wintermeyer W. Dynamics of translation on the ribosome: molecular mechanics of translocation. FEMS Microbiol Rev 1999; 23:317-33. [PMID: 10371036 DOI: 10.1111/j.1574-6976.1999.tb00402.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The translocation step of protein elongation entails a large-scale rearrangement of the tRNA-mRNA-ribosome complex. Recent years have seen major advances in unraveling the mechanism of the process on the molecular level. A number of intermediate states have been defined and, in part, characterized structurally. The article reviews the recent evidence that suggests a dynamic role of the ribosome and its ligands during translocation. The focus is on dynamic aspects of tRNA movement and on the role of elongation factor G and GTP hydrolysis in translocation catalysis. The significance of structural changes of the ribosome induced by elongation factor G as well the role of ribosomal RNA are addressed. A functional model of elongation factor G as a motor protein driven by GTP hydrolysis is discussed.
Collapse
Affiliation(s)
- M V Rodnina
- Institute of Molecular Biology, University of Witten/Herdecke, Germany
| | | | | |
Collapse
|
33
|
Abstract
Significant progress is occurring at an accelerated rate in structural studies of ribosomes. A 3D cryoelectron microscopy map of the 70S ribosome from Escherichia coli is available at 15 A resolution and a combination of cryoelectron microscopy with X-ray crystallography has yielded a 9 A resolution map of the 50S subunit from Haloarcula marismortui, an archaebacterium. For eukaryotes, 3D cryomaps of the 80S ribosomes from yeast and from mammals have now been produced at resolutions in the range 20 to 30 A. The most ground-breaking results have been obtained from the 3D mapping of ligands in functional studies of prokaryotic ribosomes. These studies, which directly visualize the protein synthesis machine in action, have brought new excitement to a field that was relatively dormant during the past decade.
Collapse
Affiliation(s)
- R K Agrawal
- Wadsworth Center, Department of Biomedical Sciences, State University of New York at Albany, Empire State Plaza, Albany, NY 12201-0509, USA.
| | | |
Collapse
|
34
|
Affiliation(s)
- I M Krab
- Equipe 2 du Groupe de Biophysique, Ecole Polytechnique, F-91128 Palaiseau, France
| | | |
Collapse
|
35
|
Krásný L, Mesters JR, Tieleman LN, Kraal B, Fucík V, Hilgenfeld R, Jonák J. Structure and expression of elongation factor Tu from Bacillus stearothermophilus. J Mol Biol 1998; 283:371-81. [PMID: 9769211 DOI: 10.1006/jmbi.1998.2102] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The tuf gene coding for elongation factor Tu (EF-Tu) of Bacillus stearothermophilus was cloned and sequenced. This gene maps in the same context as the tufA gene of Escherichia coli str operon. Northern-blot analysis and primer extension experiments revealed that the transcription of the tuf gene is driven from two promoter regions. One of these is responsible for producing a 4.9-kb transcript containing all the genes of B. stearothermophilus str operon and the other, identified adjacent to the stop codon of the fus gene and designated tufp, for producing a 1.3-kb transcript of the tuf gene only. In contrast to the situation in E. coli, the ratio between the transcription products was found to be about 10:1 in favour of the tuf gene transcript. This high transcription activity from the tufp promoter might be accounted for by the presence of an extremely A+T-rich block consisting of 29 nucleotides which immediately precedes the consensus -35 region of the promoter. A very similar tuf gene transcription strategy and the same tufp promoter organization with the identical A/T block were found in Bacillus subtilis. The tuf gene specifies a protein of 395 amino acid residues with a molecular mass of 43,290 Da, including the N-terminal methionine. A computer-generated three-dimensional homology model shows that all the structural elements essential for binding guanine nucleotides and aminoacyl-tRNA are conserved. The presence of serine at position 376 and a low affinity for kirromycin determined by zone-interference gel electrophoresis (Kd approximately 8 microM) and by polyacrylamide gel electrophoresis under non-denaturing conditions are in agreement with the reported resistance of this EF-Tu to the antibiotic. The replacement of the highly conserved Leu211 by Met was identified as a possible cause of pulvomycin resistance.
Collapse
Affiliation(s)
- L Krásný
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Flemingovo n.2, Praha 6, 166 37, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
36
|
Martemyanov KA, Yarunin AS, Liljas A, Gudkov AT. An intact conformation at the tip of elongation factor G domain IV is functionally important. FEBS Lett 1998; 434:205-8. [PMID: 9738479 DOI: 10.1016/s0014-5793(98)00982-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Three variants of Thermus thermophilus EF-G with mutations in the loop at the distal end of its domain IV were obtained. The replacement of His-573 by Ala and double mutation H573A/D576A did not influence the functional activity of EF-G. On the other hand, the insertion of six amino acids into the loop between residues Asp-576 and Ser-577 reduced the translocational activity of EF-G markedly, while its GTPase activity was not affected. It is concluded that the native conformation of the loop is important for the factor-promoted translocation in the ribosome. The functional importance of the entire EF-G domain IV is discussed.
Collapse
Affiliation(s)
- K A Martemyanov
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region
| | | | | | | |
Collapse
|
37
|
Brock S, Szkaradkiewicz K, Sprinzl M. Initiation factors of protein biosynthesis in bacteria and their structural relationship to elongation and termination factors. Mol Microbiol 1998; 29:409-17. [PMID: 9720861 DOI: 10.1046/j.1365-2958.1998.00893.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Initiation of protein biosynthesis in bacteria requires three initiation factors: initiation factor 1, initiation factor 2 and initiation factor 3. The mechanism by which initiation factors form the 70S initiation complex with initiator fMet-tRNA(fMet) interacting with the initiation codon in the ribosomal P site and the second mRNA codon exposed in the A site is not yet understood. Here, we present a model for the function of initiation factors 1 and 2 that is based on the analysis of sequence homologies, biochemical evidence and the present knowledge of the three-dimensional structures of translation factors and ribosomes. The model predicts that initiation factors 1 and 2 interact with the ribosomal A site mimicking the structure of the elongation factor G. We present data that extend the mimicry hypothesis to initiation factors 1 and 2, originally postulated for the aminoacyl-tRNA x elongation factor Tu x GTP ternary complex, elongation factor G and release factors.
Collapse
Affiliation(s)
- S Brock
- Laboratorium für Biochemie, Universität Bayreuth, Germany
| | | | | |
Collapse
|
38
|
Rodnina MV, Wintermeyer W. Form follows function: structure of an elongation factor G-ribosome complex. Proc Natl Acad Sci U S A 1998; 95:7237-9. [PMID: 9636131 PMCID: PMC33864 DOI: 10.1073/pnas.95.13.7237] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- M V Rodnina
- Institute of Molecular Biology, University of Witten/Herdecke, 58448 Witten, Germany
| | | |
Collapse
|
39
|
Georgiou T, Yu YN, Ekunwe S, Buttner MJ, Zuurmond A, Kraal B, Kleanthous C, Snyder L. Specific peptide-activated proteolytic cleavage of Escherichia coli elongation factor Tu. Proc Natl Acad Sci U S A 1998; 95:2891-5. [PMID: 9501186 PMCID: PMC19665 DOI: 10.1073/pnas.95.6.2891] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Phage exclusion is a form of programmed cell death in prokaryotes in which death is triggered by infection with phage, a seemingly altruistic response that limits multiplication of the phage and its spread through the population. One of the best-characterized examples of phage exclusion is the exclusion of T-even phages such as T4 by the e14-encoded Lit protein in many Escherichia coli K-12 strains. In this exclusion system, transcription and translation of a short region of the major head coat protein gene late in phage infection activates proteolysis of translation elongation factor Tu (EF-Tu), blocking translation and multiplication of the phage. The cleavage occurs between Gly-59 and Ile-60 in the nucleotide-binding domain. In the present work, we show that a 29-residue synthetic peptide spanning the activating region of the major head coat protein can activate the cleavage of GDP-bound EF-Tu in a purified system containing only purified EF-Tu and purified Lit protein. Lit behaves as a bona fide enzyme in this system, cleaving EF-Tu to completion when present at substoichiometric amounts. Two mutant peptides with amino acid changes that reduce the activation of cleavage of EF-Tu in vivo were also greatly reduced in their ability to activate EF-Tu cleavage in vitro but were still able to activate cleavage at a high concentration. Elongation factor G, which has the same sequence at the cleavage site and a nucleotide-binding domain similar to EF-Tu, was not cleaved by this system, and neither was heat-inactivated EF-Tu, suggesting that the structural context of the cleavage site may be important for specificity. This system apparently represents an activation mechanism for proteolysis that targets one of nature's most evolutionarily conserved proteins for site-specific cleavage.
Collapse
Affiliation(s)
- T Georgiou
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Affiliation(s)
- K S Wilson
- Center for Molecular Biology of RNA, Sinsheimer Laboratories, University of California, Santa Cruz 95064, USA
| | | |
Collapse
|
41
|
Affiliation(s)
- J P Staley
- Department of Biochemistry and Biophysics, University of California, San Francisco, 94143, USA
| | | |
Collapse
|
42
|
Wilson KS, Noller HF. Mapping the position of translational elongation factor EF-G in the ribosome by directed hydroxyl radical probing. Cell 1998; 92:131-9. [PMID: 9489706 DOI: 10.1016/s0092-8674(00)80905-8] [Citation(s) in RCA: 151] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The interaction of translational elongation factor EF-G with the ribosome in the posttranslocational state has been mapped by directed hydroxyl radical probing. Localized hydroxyl radicals were generated from Fe(II) tethered to 18 different sites on the surface of EF-G bound to the ribosome. Cleavages in ribosomal RNA were mapped, providing proximity relationships between specific sites of EF-G and rRNA elements of the ribosome. Collectively, these data provide a set of constraints by which EF-G can be positioned unambiguously in the ribosome at low resolution. The proximities of different domains of EF-G to well-characterized elements of rRNA have additional implications for the mechanism of protein synthesis.
Collapse
Affiliation(s)
- K S Wilson
- Center for Molecular Biology of RNA, Sinsheimer Laboratories, University of California, Santa Cruz 95064, USA
| | | |
Collapse
|
43
|
Kudlicki W, Coffman A, Kramer G, Hardesty B. Renaturation of rhodanese by translational elongation factor (EF) Tu. Protein refolding by EF-Tu flexing. J Biol Chem 1997; 272:32206-10. [PMID: 9405422 DOI: 10.1074/jbc.272.51.32206] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The translation elongation factor (EF) Tu has chaperone-like capacity to promote renaturation of denatured rhodanese. This renaturation activity is greatly increased under conditions in which the factor can oscillate between the open and closed conformations that are induced by GDP and GTP, respectively. Oscillation occurs during GTP hydrolysis and subsequent replacement of GDP by EF-Ts which is then displaced by GTP. Renaturation of rhodanese and GTP hydrolysis by EF-Tu are greatly enhanced by the guanine nucleotide exchange factor EF-Ts. However, renaturation is reduced under conditions that stabilize EF-Tu in either the open or closed conformation. Both GDP and the nonhydrolyzable analog of GTP, GMP-PCP, inhibit renaturation. Kirromycin and pulvomycin, antibiotics that specifically bind to EF-Tu and inhibit its activity in peptide elongation, also strongly inhibit EF-Tu-mediated renaturation of denatured rhodanese to levels near those observed for spontaneous, unassisted refolding. Kirromycin locks EF-Tu in the open conformation in the presence of either GTP or GDP, whereas pulvomycin locks the factor in the closed conformation. The results lead to the conclusion that flexing of EF-Tu, especially as occurs between its open and closed conformations, is a major factor in its chaperone-like refolding activity.
Collapse
Affiliation(s)
- W Kudlicki
- Molecular Biology Institute and the Department of Chemistry & Biochemistry, The University of Texas, Austin, Texas 78712, USA
| | | | | | | |
Collapse
|
44
|
Rattenborg T, Nautrup Pedersen G, Clark BF, Knudsen CR. Contribution of Arg288 of Escherichia coli elongation factor Tu to translational functionality. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 249:408-14. [PMID: 9370347 DOI: 10.1111/j.1432-1033.1997.00408.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The recently solved structure of the ternary complex formed between GTP-bound elongation factor Tu and aminoacylated tRNA reveals that the elements of aminoacyl-tRNA that interact with elongation factor Tu can be divided into three groups: the T stem; the 3'-end CCA-Phe; and the 5' end. The conserved residues Arg288, Lys89 and Asn90 are involved in the binding of the 5' end. In the active, GTP-bound form of the elongation factor, Arg288 and Asn90 are involved in the formation of a network of hydrogen bonds connecting the switch regions I and II of domain 1 with the rest of the molecule. This network is disrupted upon formation of the ternary complex. Arg288 was replaced by alanine, isoleucine, lysine or glutamic acid, and the resulting mutants have been subjected to an in vitro characterisation with the aim of clarifying the function of Arg288. Unexpectedly, the mutants behaved like the wild-type factor with regard to the association and dissociation of guanine nucleotides, and the intrinsic GTPase activities are unchanged. Furthermore, the mutants were as efficient as the wild-type factor in carrying out protein synthesis in vitro in the presence of an excess of aminoacyl-tRNA. However, the mutants' abilities to bind aminoacyl-tRNA and protect the labile aminoacyl bond were impaired, especially where the charge had been reversed.
Collapse
Affiliation(s)
- T Rattenborg
- Institute of Molecular and Structural Biology, Aarhus University, Denmark
| | | | | | | |
Collapse
|
45
|
Fabrizio P, Laggerbauer B, Lauber J, Lane WS, Lührmann R. An evolutionarily conserved U5 snRNP-specific protein is a GTP-binding factor closely related to the ribosomal translocase EF-2. EMBO J 1997; 16:4092-106. [PMID: 9233818 PMCID: PMC1170032 DOI: 10.1093/emboj/16.13.4092] [Citation(s) in RCA: 170] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The driving forces behind the many RNA conformational changes occurring in the spliceosome are not well understood. Here we characterize an evolutionarily conserved human U5 small nuclear ribonucleoprotein (snRNP) protein (U5-116kD) that is strikingly homologous to the ribosomal elongation factor EF-2 (ribosomal translocase). A 114 kDa protein (Snu114p) homologous to U5-116kD was identified in Saccharomyces cerevisiae and was shown to be essential for yeast cell viability. Genetic depletion of Snu114p results in accumulation of unspliced pre-mRNA, indicating that Snu114p is essential for splicing in vivo. Antibodies specific for U5-116kD inhibit pre-mRNA splicing in a HeLa nuclear extract in vitro. In HeLa cells, U5-116kD is located in the nucleus and colocalizes with snRNP-containing subnuclear structures referred to as speckles. The G domain of U5-116kD/Snu114p contains the consensus sequence elements G1-G5 important for binding and hydrolyzing GTP. Consistent with this, U5-116kD can be cross-linked specifically to GTP by UV irradiation of U5 snRNPs. Moreover, a single amino acid substitution in the G1 sequence motif of Snu114p, expected to abolish GTP-binding activity, is lethal, suggesting that GTP binding and probably GTP hydrolysis is important for the function of U5-116kD/Snu114p. This is to date the first evidence that a G domain-containing protein plays an essential role in the pre-mRNA splicing process.
Collapse
Affiliation(s)
- P Fabrizio
- Institut für Molekularbiologie und Tumorforschung, Philipps-Universität Marburg, Germany
| | | | | | | | | |
Collapse
|
46
|
Abstract
The L7/L12 protein forms a functionally important domain in the ribosome. This domain is involved in interaction with translation factors during protein biosynthesis. The tertiary and quaternary structure of the L7/L12 protein was established as a result of intensive studies in solution and in the ribosome. The conformational changes of L7/L12, the elongation factors Tu and G and other ribosomal proteins were traced by different experimental techniques. These changes occur upon interaction of the ribosome with the elongation factors and depend on GTP hydrolysis in accordance with the functional states of the ribosome.
Collapse
Affiliation(s)
- A T Gudkov
- Institute of Protein Research, Russian Academy of Sciences, Moscow Region.
| |
Collapse
|
47
|
Abstract
Major new results in the 3D cryoimaging of ribosomes have advanced our understanding of ribosomal structure and function. For the first time, 3D difference maps have been used to image tRNA molecules in situ. With this new technology, the stage is set for detailed ligand-binding experiments that explore the binding states of elongation factors and tRNA, and that pinpoint locations of proteins and RNA on the surface of the ribosome.
Collapse
Affiliation(s)
- J Frank
- Wadsworth Center, New York State Department of Health, State University of New York at Albany, PO Box 509, Empire State Plaza, Albany, NY 12201-0509, USA.
| |
Collapse
|
48
|
Abstract
The past year has seen a breakthrough in our structural understanding of how aminoacyl-tRNAs are selected and transported to the ribosomal A-site in order to decode genetic information contained in messenger RNA. All aminoacyl-tRNAs are recognized by the elongation factor EF-Tu in prokaryotes or EF-1alpha in eukaryotes. The recent determination of the structure of the ternary complex of aminoacyl-tRNA, EF-Tu and a GTP analogue shows how the CCA end of all aminoacyl-tRNA structures can be accommodated in a specific binding site on EF-Tu-GTP, and how part of the T-helix can be recognized by EF-Tu in a non-sequence-specific way. Furthermore, the structure of the ternary complex shows striking structural similarity to the structure of another prokaryotic elongation factor, EF-G, the tRNA translocase, in its GDP or empty form. This observation has led to the proposal of a general macromolecular mimicry of RNA and protein, which predicts elements of RNA-like structures will occur in other translation factors, such as initiation factors and release factors, that interact with similar sites on the ribosome.
Collapse
Affiliation(s)
- B F Clark
- Institute of Molecular and Structural Biology, University of Aarhus, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | | |
Collapse
|
49
|
|
50
|
Rodnina MV, Savelsbergh A, Katunin VI, Wintermeyer W. Hydrolysis of GTP by elongation factor G drives tRNA movement on the ribosome. Nature 1997; 385:37-41. [PMID: 8985244 DOI: 10.1038/385037a0] [Citation(s) in RCA: 375] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Elongation factor G (EF-G) is a GTPase that is involved in the translocation of bacterial ribosomes along messenger RNA during protein biosynthesis. In contrast to current models, EF-G-dependent GTP hydrolysis is shown to precede, and greatly accelerate, the rearrangement of the ribosome that leads to translocation. Domain IV of the EF-G structure is crucial for both rapid translocation and subsequent release of the factor from the ribosome. By coupling the free energy of GTP hydrolysis to translocation, EF-G serves as a motor protein to drive the directional movement of transfer and messenger RNAs on the ribosome.
Collapse
Affiliation(s)
- M V Rodnina
- Institute of Molecular Biology, University of Witten/Herdecke, Germany
| | | | | | | |
Collapse
|