1
|
Cheng C, Lu D, Sun H, Zhang K, Yin L, Luan G, Liu Y, Ma H, Lu X. Structural insight into the functional regulation of Elongation factor Tu by reactive oxygen species in Synechococcus elongatus PCC 7942. Int J Biol Macromol 2024; 277:133632. [PMID: 38971279 DOI: 10.1016/j.ijbiomac.2024.133632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
In cyanobacteria, Elongation factor Tu (EF-Tu) plays a crucial role in the repair of photosystem II (PSII), which is highly susceptible to oxidative stress induced by light exposure and regulated by reactive oxygen species (ROS). However, the specific molecular mechanism governing the functional regulation of EF-Tu by ROS remains unclear. Previous research has shown that a mutated EF-Tu, where C82 is substituted with a Ser residue, can alleviate photoinhibition, highlighting the important role of C82 in EF-Tu photosensitivity. In this study, we elucidated how ROS deactivate EF-Tu by examining the crystal structures of EF-Tu in both wild-type and mutated form (C82S) individually at resolutions of 1.7 Å and 2.0 Å in Synechococcus elongatus PCC 7942 complexed with GDP. Specifically, the GDP-bound form of EF-Tu adopts an open conformation with C82 located internally, making it resistant to oxidation. Coordinated conformational changes in switches I and II create a tunnel that positions C82 for ROS interaction, revealing the vulnerability of the closed conformation of EF-Tu to oxidation. An analysis of these two structures reveals that the precise spatial arrangement of C82 plays a crucial role in modulating EF-Tu's response to ROS, serving as a regulatory element that governs photosynthetic biosynthesis.
Collapse
Affiliation(s)
- Chen Cheng
- School of Chemical Engineering, Marine and Life Sciences, Dalian University of Technology, Panjin 124221, China; Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Rd 189, Qingdao 266101, China
| | - Di Lu
- School of Chemical Engineering, Marine and Life Sciences, Dalian University of Technology, Panjin 124221, China; Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Rd 189, Qingdao 266101, China
| | - Huili Sun
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Rd 189, Qingdao 266101, China; Shandong Energy Institute, Songling Rd 189, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Songling Rd 189, Qingdao 266101, China
| | - Keke Zhang
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Rd 189, Qingdao 266101, China; Shandong Energy Institute, Songling Rd 189, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Songling Rd 189, Qingdao 266101, China
| | - Lei Yin
- School of Chemical Engineering, Marine and Life Sciences, Dalian University of Technology, Panjin 124221, China
| | - Guodong Luan
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Rd 189, Qingdao 266101, China; Shandong Energy Institute, Songling Rd 189, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Songling Rd 189, Qingdao 266101, China
| | - YaJun Liu
- School of Chemical Engineering, Marine and Life Sciences, Dalian University of Technology, Panjin 124221, China.
| | - Honglei Ma
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Rd 189, Qingdao 266101, China; Shandong Energy Institute, Songling Rd 189, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Songling Rd 189, Qingdao 266101, China.
| | - Xuefeng Lu
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Rd 189, Qingdao 266101, China; Shandong Energy Institute, Songling Rd 189, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Songling Rd 189, Qingdao 266101, China
| |
Collapse
|
2
|
Tanoz I, Timsit Y. Protein Fold Usages in Ribosomes: Another Glance to the Past. Int J Mol Sci 2024; 25:8806. [PMID: 39201491 PMCID: PMC11354259 DOI: 10.3390/ijms25168806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 09/02/2024] Open
Abstract
The analysis of protein fold usage, similar to codon usage, offers profound insights into the evolution of biological systems and the origins of modern proteomes. While previous studies have examined fold distribution in modern genomes, our study focuses on the comparative distribution and usage of protein folds in ribosomes across bacteria, archaea, and eukaryotes. We identify the prevalence of certain 'super-ribosome folds,' such as the OB fold in bacteria and the SH3 domain in archaea and eukaryotes. The observed protein fold distribution in the ribosomes announces the future power-law distribution where only a few folds are highly prevalent, and most are rare. Additionally, we highlight the presence of three copies of proto-Rossmann folds in ribosomes across all kingdoms, showing its ancient and fundamental role in ribosomal structure and function. Our study also explores early mechanisms of molecular convergence, where different protein folds bind equivalent ribosomal RNA structures in ribosomes across different kingdoms. This comparative analysis enhances our understanding of ribosomal evolution, particularly the distinct evolutionary paths of the large and small subunits, and underscores the complex interplay between RNA and protein components in the transition from the RNA world to modern cellular life. Transcending the concept of folds also makes it possible to group a large number of ribosomal proteins into five categories of urfolds or metafolds, which could attest to their ancestral character and common origins. This work also demonstrates that the gradual acquisition of extensions by simple but ordered folds constitutes an inexorable evolutionary mechanism. This observation supports the idea that simple but structured ribosomal proteins preceded the development of their disordered extensions.
Collapse
Affiliation(s)
- Inzhu Tanoz
- Aix-Marseille Université, Université de Toulon, IRD, CNRS, Mediterranean Institute of Oceanography (MIO), UM 110, 13288 Marseille, France;
| | - Youri Timsit
- Aix-Marseille Université, Université de Toulon, IRD, CNRS, Mediterranean Institute of Oceanography (MIO), UM 110, 13288 Marseille, France;
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 3 Rue Michel-Ange, 75016 Paris, France
| |
Collapse
|
3
|
Jurėnas D, Rey M, Byrne D, Chamot-Rooke J, Terradot L, Cascales E. Salmonella antibacterial Rhs polymorphic toxin inhibits translation through ADP-ribosylation of EF-Tu P-loop. Nucleic Acids Res 2022; 50:13114-13127. [PMID: 36484105 PMCID: PMC9825190 DOI: 10.1093/nar/gkac1162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 11/11/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
Rearrangement hot spot (Rhs) proteins are members of the broad family of polymorphic toxins. Polymorphic toxins are modular proteins composed of an N-terminal region that specifies their mode of secretion into the medium or into the target cell, a central delivery module, and a C-terminal domain that has toxic activity. Here, we structurally and functionally characterize the C-terminal toxic domain of the antibacterial Rhsmain protein, TreTu, which is delivered by the type VI secretion system of Salmonella enterica Typhimurium. We show that this domain adopts an ADP-ribosyltransferase fold and inhibits protein synthesis by transferring an ADP-ribose group from NAD+ to the elongation factor Tu (EF-Tu). This modification is specifically placed on the side chain of the conserved D21 residue located on the P-loop of the EF-Tu G-domain. Finally, we demonstrate that the TriTu immunity protein neutralizes TreTu activity by acting like a lid that closes the catalytic site and traps the NAD+.
Collapse
Affiliation(s)
- Dukas Jurėnas
- Correspondence may also be addressed to Dukas Jurėnas.
| | - Martial Rey
- Mass Spectrometry for Biology Unit, Université Paris Cité, Institut Pasteur, CNRS, UAR 2024, 75015 Paris, France
| | - Deborah Byrne
- Protein Expression Facility, Institut de Microbiologie de la Méditerranée (IMM), Aix-Marseille Université, CNRS, 13009 Marseille, France
| | - Julia Chamot-Rooke
- Mass Spectrometry for Biology Unit, Université Paris Cité, Institut Pasteur, CNRS, UAR 2024, 75015 Paris, France
| | - Laurent Terradot
- Laboratory of Molecular Microbiology and Structural Biochemistry, Institut de Biologie et Chimie des Protéines, Centre National de la Recherche Scientifique, Université de Lyon, UMR 5086, 69367 Lyon, France
| | - Eric Cascales
- To whom correspondence should be addressed. Tel: +33 491164462; Fax: +33 491712124;
| |
Collapse
|
4
|
Kumar N, Garg P. Probing the Molecular Basis of Cofactor Affinity and Conformational Dynamics of Mycobacterium tuberculosis Elongation Factor Tu: An Integrated Approach Employing Steered Molecular Dynamics and Umbrella Sampling Simulations. J Phys Chem B 2022; 126:1447-1461. [PMID: 35167282 DOI: 10.1021/acs.jpcb.1c09438] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The emergence of multidrug-resistant and extensively drug-resistant tuberculosis strains is the reason that the infectious tuberculosis pathogen is still the most common cause of death. The quest for new antitubercular drugs that can fit into multidrug regimens, function swiftly, and overcome the ever-increasing prevalence of drug resistance continues. The crucial role of MtbEF-Tu in translation and trans-translation processes makes it an excellent target for antitubercular drug design. In this study, the primary sequence of MtbEF-Tu was used to model the three-dimensional structures of MtbEF-Tu in the presence of GDP ("off" state) and GTP ("on" state). The binding free energy computed using both the molecular mechanics/Poisson-Boltzmann surface area and umbrella sampling approaches shows that GDP binds to MtbEF-Tu with an ∼2-fold affinity compared to GTP. The steered molecular dynamics (SMD) and umbrella sampling simulation also shows that the dissociation of GDP from MtbEF-Tu in the presence of Mg2+ is a thermodynamically intensive process, while in the absence of Mg2+, the destabilized GDP dissociates very easily from the MtbEF-Tu. Naturally, the dissociation of Mg2+ from the MtbEF-Tu is facilitated by the nucleotide exchange factor EF-Ts, and this prior release of magnesium makes the dissociation process of destabilized GDP easy, similar to that observed in the umbrella sampling and SMD study. The MD simulations of MtbEF-Tu's "on" state conformation in the presence of GTP reveal that the secondary structure of switch-I and Mg2+ coordination network remains similar to its template despite the absence of identity in the conserved region of switch-I. On the other hand, the secondary structure in the conserved region of the switch-I of MtbEF-Tu unwinds from a helix to a loop in the presence of GDP. The major conformational changes observed in switch-I and the movement of Thr64 away from Mg2+ mainly reflect essential conformational changes to make the shift of MtbEF-Tu's "on" state to the "off" state in the presence of GDP. These obtained structural and functional insights into MtbEF-Tu are pivotal for a better understanding of structural-functional linkages of MtbEF-Tu, and these findings may serve as a basis for the design and development of MtbEF-Tu-specific inhibitors.
Collapse
Affiliation(s)
- Navneet Kumar
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar 160062, Punjab, India
| | - Prabha Garg
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar 160062, Punjab, India
| |
Collapse
|
5
|
Paleskava A, Kaiumov MY, Kirillov SV, Konevega AL. Peculiarities in Activation of Hydrolytic Activity of Elongation Factors. BIOCHEMISTRY (MOSCOW) 2021; 85:1422-1433. [PMID: 33280582 DOI: 10.1134/s0006297920110103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Translational GTPases (trGTPases) belong to the family of G proteins and play key roles at all stages of protein biosynthesis on the ribosome. Unidirectional and cyclic functioning of G proteins is ensured by their ability to switch between the active and inactive states due to GTP hydrolysis accelerated by the auxiliary GTPase-activating proteins. Although trGTPases interact with the ribosomes in different conformational states, they bind to the same conserved region, which, unlike in classical GTPase-activating proteins, is represented by ribosomal RNA. The resulting catalytic sites have almost identical structure in all elongation factors suggesting a common mechanism of GTP hydrolysis. However, fine details of the activated state formation and significantly different rates of GTP hydrolysis indicate the existence of distinctive features upon GTP hydrolysis catalyzed by the different factors. Here, we present a contemporary view on the mechanism of GTPase activation and GTP hydrolysis by the elongation factors EF-Tu, EF-G, and SelB based on the analysis of structural, biochemical, and bioinformatics data.
Collapse
Affiliation(s)
- A Paleskava
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of NRC "Kurchatov Institute", Gatchina, Leningrad Region, 188300, Russia
| | - M Yu Kaiumov
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of NRC "Kurchatov Institute", Gatchina, Leningrad Region, 188300, Russia
| | - S V Kirillov
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of NRC "Kurchatov Institute", Gatchina, Leningrad Region, 188300, Russia
| | - A L Konevega
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of NRC "Kurchatov Institute", Gatchina, Leningrad Region, 188300, Russia.
| |
Collapse
|
6
|
Loveland AB, Demo G, Korostelev AA. Cryo-EM of elongating ribosome with EF-Tu•GTP elucidates tRNA proofreading. Nature 2020; 584:640-645. [PMID: 32612237 PMCID: PMC7483604 DOI: 10.1038/s41586-020-2447-x] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 04/10/2020] [Indexed: 11/13/2022]
Abstract
Ribosomes accurately decode mRNA by proofreading each aminoacyl-tRNA delivered by elongation factor EF-Tu1. Understanding the molecular mechanism of proofreading requires visualizing GTP-catalyzed elongation, which has remained a challenge2–4. Here, time-resolved cryo-EM revealed 33 states following aminoacyl-tRNA delivery by EF-Tu•GTP. Instead of locking cognate tRNA upon initial recognition, the ribosomal decoding center (DC) dynamically monitors codon-anticodon interactions before and after GTP hydrolysis. GTP hydrolysis allows EF-Tu’s GTPase domain to extend away, releasing EF-Tu from tRNA. Then, the 30S subunit locks cognate tRNA in the DC, and rotates, enabling the tRNA to bypass 50S protrusions during accommodation into the peptidyl transferase center. By contrast, the DC fails to lock near-cognate tRNA, allowing dissociation of near-cognate tRNA during both initial selection (before GTP hydrolysis) and proofreading (after GTP hydrolysis). These findings reveal structural similarity between initial selection5,6 and the previously unseen proofreading, which together govern efficient rejection of incorrect tRNA.
Collapse
Affiliation(s)
- Anna B Loveland
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Gabriel Demo
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA.,Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Andrei A Korostelev
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
7
|
Warias M, Grubmüller H, Bock LV. tRNA Dissociation from EF-Tu after GTP Hydrolysis: Primary Steps and Antibiotic Inhibition. Biophys J 2020; 118:151-161. [PMID: 31711607 PMCID: PMC6950810 DOI: 10.1016/j.bpj.2019.10.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 09/25/2019] [Accepted: 10/22/2019] [Indexed: 11/25/2022] Open
Abstract
In each round of ribosomal translation, the translational GTPase elongation factor Tu (EF-Tu) delivers a transfer RNA (tRNA) to the ribosome. After successful decoding, EF-Tu hydrolyzes GTP, which triggers a conformational change that ultimately results in the release of the tRNA from EF-Tu. To identify the primary steps of these conformational changes and how they are prevented by the antibiotic kirromycin, we employed all-atom explicit-solvent molecular dynamics simulations of the full ribosome-EF-Tu complex. Our results suggest that after GTP hydrolysis and Pi release, the loss of interactions between the nucleotide and the switch 1 loop of EF-Tu allows domain D1 of EF-Tu to rotate relative to domains D2 and D3 and leads to an increased flexibility of the switch 1 loop. This rotation induces a closing of the D1-D3 interface and an opening of the D1-D2 interface. We propose that the opening of the D1-D2 interface, which binds the CCA tail of the tRNA, weakens the crucial EF-Tu-tRNA interactions, which lowers tRNA binding affinity, representing the first step of tRNA release. Kirromycin binds within the D1-D3 interface, sterically blocking its closure, but does not prevent hydrolysis. The resulting increased flexibility of switch 1 explains why it is not resolved in kirromycin-bound structures.
Collapse
Affiliation(s)
- Malte Warias
- Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Helmut Grubmüller
- Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Lars V Bock
- Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.
| |
Collapse
|
8
|
Oliveira Bortot L, Bashardanesh Z, van der Spoel D. Making Soup: Preparing and Validating Models of the Bacterial Cytoplasm for Molecular Simulation. J Chem Inf Model 2019; 60:322-331. [DOI: 10.1021/acs.jcim.9b00971] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Leandro Oliveira Bortot
- Laboratory of Biological Physics, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café s/n, 14040-903 Ribeirão Preto-SP, Brazil
| | - Zahedeh Bashardanesh
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Box 596, SE-75124 Uppsala, Sweden
| | - David van der Spoel
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Box 596, SE-75124 Uppsala, Sweden
| |
Collapse
|
9
|
Oliveira AB, Yang H, Whitford PC, Leite VBP. Distinguishing Biomolecular Pathways and Metastable States. J Chem Theory Comput 2019; 15:6482-6490. [DOI: 10.1021/acs.jctc.9b00704] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Antonio B. Oliveira
- Departamento de Física, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista, São José do Rio Preto, São Paulo 15054-000, Brazil
| | - Huan Yang
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, United States
| | - Paul C. Whitford
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, United States
| | - Vitor B. P. Leite
- Departamento de Física, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista, São José do Rio Preto, São Paulo 15054-000, Brazil
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
10
|
Johansen JS, Kavaliauskas D, Pfeil SH, Blaise M, Cooperman BS, Goldman YE, Thirup SS, Knudsen CR. E. coli elongation factor Tu bound to a GTP analogue displays an open conformation equivalent to the GDP-bound form. Nucleic Acids Res 2019; 46:8641-8650. [PMID: 30107565 PMCID: PMC6144822 DOI: 10.1093/nar/gky697] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 08/07/2018] [Indexed: 11/12/2022] Open
Abstract
According to the traditional view, GTPases act as molecular switches, which cycle between distinct ‘on’ and ‘off’ conformations bound to GTP and GDP, respectively. Translation elongation factor EF-Tu is a GTPase essential for prokaryotic protein synthesis. In its GTP-bound form, EF-Tu delivers aminoacylated tRNAs to the ribosome as a ternary complex. GTP hydrolysis is thought to cause the release of EF-Tu from aminoacyl-tRNA and the ribosome due to a dramatic conformational change following Pi release. Here, the crystal structure of Escherichia coli EF-Tu in complex with a non-hydrolysable GTP analogue (GDPNP) has been determined. Remarkably, the overall conformation of EF-Tu·GDPNP displays the classical, open GDP-bound conformation. This is in accordance with an emerging view that the identity of the bound guanine nucleotide is not ‘locking’ the GTPase in a fixed conformation. Using a single-molecule approach, the conformational dynamics of various ligand-bound forms of EF-Tu were probed in solution by fluorescence resonance energy transfer. The results suggest that EF-Tu, free in solution, may sample a wider set of conformations than the structurally well-defined GTP- and GDP-forms known from previous X-ray crystallographic studies. Only upon binding, as a ternary complex, to the mRNA-programmed ribosome, is the well-known, closed GTP-bound conformation, observed.
Collapse
Affiliation(s)
- Jesper S Johansen
- Department of Molecular Biology & Genetics, University of Aarhus, Gustav Wieds Vej 10 C, DK-8000 Aarhus C, Denmark
| | - Darius Kavaliauskas
- Department of Molecular Biology & Genetics, University of Aarhus, Gustav Wieds Vej 10 C, DK-8000 Aarhus C, Denmark
| | - Shawn H Pfeil
- Department of Physics, West Chester University, West Chester, PA 19383, USA
| | - Mickaël Blaise
- Department of Molecular Biology & Genetics, University of Aarhus, Gustav Wieds Vej 10 C, DK-8000 Aarhus C, Denmark
| | - Barry S Cooperman
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yale E Goldman
- Pennsylvania Muscle Institute, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Søren S Thirup
- Department of Molecular Biology & Genetics, University of Aarhus, Gustav Wieds Vej 10 C, DK-8000 Aarhus C, Denmark
| | - Charlotte R Knudsen
- Department of Molecular Biology & Genetics, University of Aarhus, Gustav Wieds Vej 10 C, DK-8000 Aarhus C, Denmark
| |
Collapse
|
11
|
Girodat D, Mercier E, Gzyl KE, Wieden HJ. Elongation Factor Tu's Nucleotide Binding Is Governed by a Thermodynamic Landscape Unique among Bacterial Translation Factors. J Am Chem Soc 2019; 141:10236-10246. [PMID: 31058500 DOI: 10.1021/jacs.9b01522] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Molecular switches such as GTPases are powerful devices turning "on" or "off" biomolecular processes at the core of critical biological pathways. To develop molecular switches de novo, an intimate understanding of how they function is required. Here we investigate the thermodynamic parameters that define the nucleotide-dependent switch mechanism of elongation factor (EF) Tu as a prototypical molecular switch. EF-Tu alternates between GTP- and GDP-bound conformations during its functional cycle, representing the "on" and "off" states, respectively. We report for the first time that the activation barriers for nucleotide association are the same for both nucleotides, suggesting a guanosine nucleoside or ribose-first mechanism for nucleotide association. Additionally, molecular dynamics (MD) simulations indicate that enthalpic stabilization of GDP binding compared to GTP binding originates in the backbone hydrogen bonding network of EF-Tu. In contrast, binding of GTP to EF-Tu is entropically driven by the liberation of bound water during the GDP- to GTP-bound transition. GDP binding to the apo conformation of EF-Tu is both enthalpically and entropically favored, a feature unique among translational GTPases. This indicates that the apo conformation does not resemble the GDP-bound state. Finally, we show that antibiotics and single amino acid substitutions can be used to target specific structural elements in EF-Tu to redesign the thermodynamic landscape. These findings demonstrate how, through evolution, EF-Tu has fine-tuned the structural and dynamic features that define nucleotide binding, providing insight into how altering these properties could be exploited for protein engineering.
Collapse
Affiliation(s)
- Dylan Girodat
- Alberta RNA Research and Training Institute (ARRTI), Department of Chemistry and Biochemistry , University of Lethbridge , 4401 University Drive West , Lethbridge , Alberta T1K 3M4 , Canada
| | - Evan Mercier
- Alberta RNA Research and Training Institute (ARRTI), Department of Chemistry and Biochemistry , University of Lethbridge , 4401 University Drive West , Lethbridge , Alberta T1K 3M4 , Canada
| | - Katherine E Gzyl
- Alberta RNA Research and Training Institute (ARRTI), Department of Chemistry and Biochemistry , University of Lethbridge , 4401 University Drive West , Lethbridge , Alberta T1K 3M4 , Canada
| | - Hans-Joachim Wieden
- Alberta RNA Research and Training Institute (ARRTI), Department of Chemistry and Biochemistry , University of Lethbridge , 4401 University Drive West , Lethbridge , Alberta T1K 3M4 , Canada
| |
Collapse
|
12
|
Yang J, Hong J, Luo L, Liu K, Meng C, Ji ZL, Lin D. Biophysical characterization and ligand-binding properties of the elongation factor Tu from Mycobacterium tuberculosis. Acta Biochim Biophys Sin (Shanghai) 2019; 51:139-149. [PMID: 30615070 DOI: 10.1093/abbs/gmy164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/28/2018] [Accepted: 11/30/2018] [Indexed: 02/05/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) is the key devastating bacterial pathogen responsible for tuberculosis. Increasing emergence of multi-drug-resistant, extensively drug-resistant, and rifampicin/isoniazid-resistant strains of Mtb makes the discovery of validated drug targets an urgent priority. As a vital translational component of the protein biosynthesis system, elongation factor Tu (EF-Tu) is an important molecular switch responsible for selection and binding of the cognate aminoacyl-tRNA to the acceptor site on the ribosome. In addition, EF-Tu from Mtb (MtbEF-Tu) is involved in the initial step of trans-translation which is an effective system for rescuing the stalled ribosomes from non-stop translation complexes under stress conditions. Given its crucial role in protein biosynthesis, EF-Tu is identified as an excellent molecular target for drug design. Here, we reported the recombinant expression, purification, biophysical characterization, and structural modeling of the MtbEF-Tu protein. Our results demonstrated that prokaryotic expression plasmids of pET28a-MtbEF-Tu could be expressed efficiently in Escherichia coli. We successfully purified the 6× His-tagged proteins with a yield of 16.8 mg from 1 l of Luria Bertani medium. Dynamic light scattering experiments showed that MtbEF-Tu existed in a monomeric form, and circular dichroism experiments indicated that MtbEF-Tu was well structured. Moreover, isothermal titration calorimetry experiments displayed that the purified MtbEF-Tu protein possessed intermediate binding affinities for guanosine-5'-triphosphate (GTP) and GDP. The GTP/GDP-binding sites were predicted by flexible molecular docking approach which reveals that GTP/GDP binds to MtbEF-Tu mainly through hydrogen bonds. Our work lays the essential basis for further structural and functional studies of MtbEF-Tu as well as MtbEF-Tu-related novel drug developments.
Collapse
Affiliation(s)
- Juanjuan Yang
- Institute of Pharmaceutical Biotechnology and Engineering, College of Biological Science and Biotechnology, Fuzhou University, Fuzhou, China
| | - Jing Hong
- Institute of Pharmaceutical Biotechnology and Engineering, College of Biological Science and Biotechnology, Fuzhou University, Fuzhou, China
| | - Ling Luo
- Institute of Pharmaceutical Biotechnology and Engineering, College of Biological Science and Biotechnology, Fuzhou University, Fuzhou, China
| | - Ke Liu
- State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Chun Meng
- Institute of Pharmaceutical Biotechnology and Engineering, College of Biological Science and Biotechnology, Fuzhou University, Fuzhou, China
| | - Zhi-liang Ji
- State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Donghai Lin
- High-Field NMR Center, Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| |
Collapse
|
13
|
Thofte O, Kaur R, Su YC, Brant M, Rudin A, Hood D, Riesbeck K. Anti-EF-Tu IgG titers increase with age and may contribute to protection against the respiratory pathogen Haemophilus influenzae. Eur J Immunol 2019; 49:490-499. [PMID: 30566236 PMCID: PMC6491980 DOI: 10.1002/eji.201847871] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 11/23/2018] [Accepted: 12/17/2018] [Indexed: 11/21/2022]
Abstract
Non‐typeable Haemophilus influenzae (NTHi) is a pathogen that commonly colonizes the nasopharynx of preschool children, causing opportunistic infections including acute otitis media (AOM). Patients suffering from chronic obstructive pulmonary disease (COPD) are persistently colonized with NTHi and occasionally suffer from exacerbations by the bacterium leading to increased morbidity. Elongation‐factor thermo unstable (EF‐Tu), a protein critical for bacterial protein synthesis, has been found to moonlight on the surface of several bacteria. Here, we show that antibodies against NTHi EF‐Tu were present in children already at 18 months of age, and that the IgG antibody titers increased with age. Children harboring NTHi in the nasopharynx also displayed significantly higher IgG concentrations. Interestingly, children suffering from AOM had significantly higher anti‐EF‐Tu IgG levels when NTHi was the causative agent. Human sera recognized mainly the central and C‐terminal part of the EF‐Tu molecule and peptide‐based epitope mapping confirmed similar binding patterns for sera from humans and immunized mice. Immunization of BALB/c and otitis‐prone Junbo (C3H/HeH) mice promoted lower infection rates in the nasopharynx and middle ear, respectively. In conclusion, our results suggest that IgG directed against NTHi EF‐Tu may play an important role in the host immune response against NTHi.
Collapse
Affiliation(s)
- Oskar Thofte
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Ravinder Kaur
- Center for Infectious Diseases and Immunology, Rochester General Hospital Research Institute, Rochester, NY
| | - Yu-Ching Su
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Marta Brant
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Anna Rudin
- Department of Immunology, Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden
| | - Derek Hood
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell Science & Innovation Campus, Oxfordshire, UK
| | - Kristian Riesbeck
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| |
Collapse
|
14
|
Thofte O, Su YC, Brant M, Littorin N, Duell BL, Alvarado V, Jalalvand F, Riesbeck K. EF-Tu From Non-typeable Haemophilus influenzae Is an Immunogenic Surface-Exposed Protein Targeted by Bactericidal Antibodies. Front Immunol 2018; 9:2910. [PMID: 30619274 PMCID: PMC6305414 DOI: 10.3389/fimmu.2018.02910] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 11/27/2018] [Indexed: 01/07/2023] Open
Abstract
Non-typeable Haemophilus influenzae (NTHi), a commensal organism in pre-school children, is an opportunistic pathogen causing respiratory tract infections including acute otitis media. Adults suffering from chronic obstructive pulmonary disease (COPD) are persistently colonized by NTHi. Previous research has suggested that, in some bacterial species, the intracellular elongation factor thermo-unstable (EF-Tu) can moonlight as a surface protein upon host encounter. The aim of this study was to determine whether EF-Tu localizes to the surface of H. influenzae, and if such surface-associated EF-Tu is a target for bactericidal antibodies. Using flow cytometry, transmission immunoelectron microscopy, and epitope mapping, we demonstrated that EF-Tu is exposed at the surface of NTHi, and identified immunodominant epitopes of this protein. Rabbits immunized with whole-cell NTHi produced significantly more immunoglobulin G (IgG) directed against EF-Tu than against the NTHi outer membrane proteins D and F as revealed by enzyme-linked immunosorbent assays. Chemical cleavage of NTHi EF-Tu by cyanogen bromide (CNBr) followed by immunoblotting showed that the immunodominant epitopes were located within the central and C-terminal regions of the protein. Peptide epitope mapping by dot blot analysis further revealed four different immunodominant peptide sequences; EF-Tu41−65, EF-Tu161−185, EF-Tu221−245, and EF-Tu281−305. These epitopes were confirmed to be surface-exposed and accessible by peptide-specific antibodies in flow cytometry. We also analyzed whether antibodies raised against NTHi EF-Tu cross-react with other respiratory tract pathogens. Anti-EF-Tu IgG significantly detected EF-Tu on unencapsulated bacteria, including the Gram-negative H. parainfluenzae, H. haemolyticus, Moraxella catarrhalis and various Gram-positive Streptococci of the oral microbiome. In contrast, considerably less EF-Tu was observed at the surface of encapsulated bacteria including H. influenzae serotype b (Hib) and Streptococcus pneumoniae (e.g., serotype 3 and 4). Removal of the capsule, as exemplified by Hib RM804, resulted in increased EF-Tu surface density. Finally, anti-NTHi EF-Tu IgG promoted complement-dependent bacterial killing of NTHi and other unencapsulated Gram-negative bacteria as well as opsonophagocytosis of Gram-positive bacteria. In conclusion, our data demonstrate that NTHi EF-Tu is surface-exposed and recognized by antibodies mediating host innate immunity against NTHi in addition to other unencapsulated respiratory tract bacteria.
Collapse
Affiliation(s)
- Oskar Thofte
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Yu-Ching Su
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Marta Brant
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Nils Littorin
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Benjamin Luke Duell
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Vera Alvarado
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Farshid Jalalvand
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Kristian Riesbeck
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| |
Collapse
|
15
|
Yang H, Perrier J, Whitford PC. Disorder guides domain rearrangement in elongation factor Tu. Proteins 2018; 86:1037-1046. [DOI: 10.1002/prot.25575] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/07/2018] [Accepted: 06/22/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Huan Yang
- Department of Physics Northeastern University Boston Massachusetts
| | - Jonathan Perrier
- Department of Physics Northeastern University Boston Massachusetts
| | - Paul C. Whitford
- Department of Physics Northeastern University Boston Massachusetts
| |
Collapse
|
16
|
Michalska K, Gucinski GC, Garza-Sánchez F, Johnson PM, Stols LM, Eschenfeldt WH, Babnigg G, Low DA, Goulding CW, Joachimiak A, Hayes CS. Structure of a novel antibacterial toxin that exploits elongation factor Tu to cleave specific transfer RNAs. Nucleic Acids Res 2017; 45:10306-10320. [PMID: 28973472 PMCID: PMC5737660 DOI: 10.1093/nar/gkx700] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 07/29/2017] [Indexed: 12/23/2022] Open
Abstract
Contact-dependent growth inhibition (CDI) is a mechanism of inter-cellular competition in which Gram-negative bacteria exchange polymorphic toxins using type V secretion systems. Here, we present structures of the CDI toxin from Escherichia coli NC101 in ternary complex with its cognate immunity protein and elongation factor Tu (EF-Tu). The toxin binds exclusively to domain 2 of EF-Tu, partially overlapping the site that interacts with the 3'-end of aminoacyl-tRNA (aa-tRNA). The toxin exerts a unique ribonuclease activity that cleaves the single-stranded 3'-end from tRNAs that contain guanine discriminator nucleotides. EF-Tu is required to support this tRNase activity in vitro, suggesting the toxin specifically cleaves substrate in the context of GTP·EF-Tu·aa-tRNA complexes. However, superimposition of the toxin domain onto previously solved GTP·EF-Tu·aa-tRNA structures reveals potential steric clashes with both aa-tRNA and the switch I region of EF-Tu. Further, the toxin induces conformational changes in EF-Tu, displacing a β-hairpin loop that forms a critical salt-bridge contact with the 3'-terminal adenylate of aa-tRNA. Together, these observations suggest that the toxin remodels GTP·EF-Tu·aa-tRNA complexes to free the 3'-end of aa-tRNA for entry into the nuclease active site.
Collapse
Affiliation(s)
- Karolina Michalska
- Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA.,Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Grant C Gucinski
- Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA 93106-9625, USA
| | - Fernando Garza-Sánchez
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106-9625, USA
| | - Parker M Johnson
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | - Lucy M Stols
- Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - William H Eschenfeldt
- Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Gyorgy Babnigg
- Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - David A Low
- Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA 93106-9625, USA.,Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106-9625, USA
| | - Celia W Goulding
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA.,Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, USA
| | - Andrzej Joachimiak
- Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA.,Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA.,Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Christopher S Hayes
- Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA 93106-9625, USA.,Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106-9625, USA
| |
Collapse
|
17
|
Prezioso SM, Brown NE, Goldberg JB. Elfamycins: inhibitors of elongation factor-Tu. Mol Microbiol 2017; 106:22-34. [PMID: 28710887 DOI: 10.1111/mmi.13750] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2017] [Indexed: 01/26/2023]
Abstract
Elfamycins are a relatively understudied group of antibiotics that target the essential process of translation through impairment of EF-Tu function. For the most part, the utility of these compounds has been as laboratory tools for the study of EF-Tu and the ribosome, as their poor pharmacokinetic profile and solubility has prevented implementation as therapeutic agents. However, due to the slowing of the antibiotic pipeline and the rapid emergence of resistance to approved antibiotics, this group is being reconsidered. Some researchers are using screens for novel naturally produced variants, while others are making directed, systematic chemical improvements on publically disclosed compounds. As an example of the latter approach, a GE2270 A derivative, LFF571, has completed phase 2 clinical trials, thus demonstrating the potential for elfamycins to become more prominent antibiotics in the future.
Collapse
Affiliation(s)
- Samantha M Prezioso
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA.,Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Nicole E Brown
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Joanna B Goldberg
- Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA.,Emory+Children's Center for Cystic Fibrosis and Airway Disease Research, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
18
|
Dagbay KB, Bolik-Coulon N, Savinov SN, Hardy JA. Caspase-6 Undergoes a Distinct Helix-Strand Interconversion upon Substrate Binding. J Biol Chem 2017; 292:4885-4897. [PMID: 28154009 DOI: 10.1074/jbc.m116.773499] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/01/2017] [Indexed: 12/22/2022] Open
Abstract
Caspases are cysteine aspartate proteases that are major players in key cellular processes, including apoptosis and inflammation. Specifically, caspase-6 has also been implicated in playing a unique and critical role in neurodegeneration; however, structural similarities between caspase-6 and other caspase active sites have hampered precise targeting of caspase-6. All caspases can exist in a canonical conformation, in which the substrate binds atop a β-strand platform in the 130's region. This caspase-6 region can also adopt a helical conformation that has not been seen in any other caspases. Understanding the dynamics and interconversion between the helical and strand conformations in caspase-6 is critical to fully assess its unique function and regulation. Here, hydrogen/deuterium exchange mass spectrometry indicated that caspase-6 is inherently and dramatically more conformationally dynamic than closely related caspase-7. In contrast to caspase-7, which rests constitutively in the strand conformation before and after substrate binding, the hydrogen/deuterium exchange data in the L2' and 130's regions suggested that before substrate binding, caspase-6 exists in a dynamic equilibrium between the helix and strand conformations. Caspase-6 transitions exclusively to the canonical strand conformation only upon substrate binding. Glu-135, which showed noticeably different calculated pK a values in the helix and strand conformations, appears to play a key role in the interconversion between the helix and strand conformations. Because caspase-6 has roles in several neurodegenerative diseases, exploiting the unique structural features and conformational changes identified here may provide new avenues for regulating specific caspase-6 functions for therapeutic purposes.
Collapse
Affiliation(s)
| | | | - Sergey N Savinov
- Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003
| | | |
Collapse
|
19
|
Kessenbrock M, Groth G. Circular Dichroism and Fluorescence Spectroscopy to Study Protein Structure and Protein-Protein Interactions in Ethylene Signaling. Methods Mol Biol 2017; 1573:141-159. [PMID: 28293846 DOI: 10.1007/978-1-4939-6854-1_12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Circular dichroism (CD) spectroscopy is an invaluable technique to analyze secondary structure and functional folding of recombinant purified proteins. CD spectroscopy can also be applied to detect changes in protein secondary structure related to the pH or redox conditions found in different cellular compartments or to the interaction with other molecules. Another biophysical technique to monitor conformational changes and interaction with small molecule ligands or biological macromolecules is protein fluorescence spectroscopy making use of the aromatic amino acid tryptophan as a sensitive intrinsic fluorescent probe. Here, we describe the application of CD and tryptophan fluorescence spectroscopy to study soluble and membrane proteins of the ethylene signaling pathway.
Collapse
Affiliation(s)
- Mareike Kessenbrock
- Institute of Biochemical Plant Physiology, Heinrich-Heine University Düsseldorf, Universitätsstraße 1, D-40225, Düsseldorf, Germany
| | - Georg Groth
- Institute of Biochemical Plant Physiology, Heinrich-Heine University Düsseldorf, Universitätsstraße 1, D-40225, Düsseldorf, Germany.
| |
Collapse
|
20
|
Créchet JB, Malosse C, Hountondji C. EF-Tu from the enacyloxin producing Frateuria W-315 strain: Structure/activity relationship and antibiotic resistance. Biochimie 2016; 127:59-69. [PMID: 27126073 DOI: 10.1016/j.biochi.2016.04.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 04/20/2016] [Indexed: 10/21/2022]
Abstract
In this report, we have demonstrated that the poly(U)-dependent poly(Phe) synthesis activity of elongator factor Tu (EF-Tu) from the enacyloxin producing strain Frateuria sp. W-315 is inhibited by the antibiotic similarly to that of Escherichia coli EF-Tu. The inhibitory effect of enacyloxin observed in a purified system was the same as that obtained with an S30 extract from E. coli or Frateuria sp. W-315, respectively, suggesting that antibiotic resistance of enacyloxin producing Frateuria sp. W-315 is not due neither to EF-Tu nor to other components of the translation machinery but to a still unknown mechanism. The EF-Tu gene, as PCR amplified from Frateuria W-315 genomic DNA and sequenced represented an ORF of 1191 nucleotides corresponding to 396 amino acids. This protein is larger than the product of tufA from E. coli by only two amino acid residues. Alignment of the amino acid sequence of EF-Tu from E. coli with those of Frateuria and Ralstonia solanacearum indicates on average 80% identical amino acid residues and 9.7% conservative replacements between EF-Tu Frateuria and EF-Tu E. coli, on one hand, and 97% identity and 1.7% conservative replacement between EF-Tu Frateuria and EF-Tu Ralstonia solanacearum, on the other hand. These strong primary structure similarities between EF-Tu from different origins are consistent with the fact that this factor is essential for the translation process in all kingdoms of life. Comparison of the effects of antibiotics on EF-Tu Frateuria and EF-Tu E. coli revealed that enacyloxin, kirromycin and pulvomycin exert a stronger stimulation of the GDP dissociation rate on EF-Tu Frateuria, while the effects of the antibiotics on the GDP association rate were comparable for the two EF-Tu species. Different mutants of EF-Tu E. coli were constructed with the help of site directed mutagenesis by changing one or several residues of EF-Tu E. coli by the corresponding residues of EF-Tu Frateuria. The single A45K substitution did not modify the intrinsic GTPase activity of EF-Tu E. coli. In contrast, a 2-3 fold stimulation of the intrinsic GTPase activity was observed with the single A42E, F46Y, Q48E and the double F46Y/Q48E substitution. Finally, up to a 7 fold stimulation was observed with the quadruple substitution (mutant A42E/A45K/F46Y/Q48E.
Collapse
Affiliation(s)
| | - Christian Malosse
- Institut Pasteur, Département de Biologie Structurale et Chimie, Unité Spectrométrie de Masse Structurale et Protéomique, CNRS UMR 3528, 28 rue du Dr Roux, 75724 PARIS Cedex 15 France
| | - Codjo Hountondji
- Sorbonne Universités UPMC Univ Paris 06, Unité de Recherche UPMC UR6 "Enzymologie de l'ARN", 4, Place Jussieu, F-75252 Paris Cedex 05, France
| |
Collapse
|
21
|
Kim B, Do TD, Hayden EY, Teplow DB, Bowers MT, Shea JE. Aggregation of Chameleon Peptides: Implications of α-Helicity in Fibril Formation. J Phys Chem B 2016; 120:5874-83. [PMID: 27001160 DOI: 10.1021/acs.jpcb.6b00830] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We investigate the relationship between the inherent secondary structure and aggregation propensity of peptides containing chameleon sequences (i.e., sequences that can adopt either α or β structure depending on context) using a combination of replica exchange molecular dynamics simulations, ion-mobility mass spectrometry, circular dichroism, and transmission electron microscopy. We focus on an eight-residue long chameleon sequence that can adopt an α-helical structure in the context of the iron-binding protein from Bacillus anthracis (PDB id 1JIG ) and a β-strand in the context of the baculovirus P35 protein (PDB id 1P35 ). We show that the isolated chameleon sequence is intrinsically disordered, interconverting between α-helical and β-rich conformations. The inherent conformational plasticity of the sequence can be constrained by addition of flanking residues with a given secondary structure propensity. Intriguingly, we show that the chameleon sequence with helical flanking residues aggregates rapidly into fibrils, whereas the chameleon sequence with flanking residues that favor β-conformations has weak aggregation propensity. This work sheds new insights into the possible role of α-helical intermediates in fibril formation.
Collapse
Affiliation(s)
| | | | - Eric Y Hayden
- Department of Neurology, David Geffen School of Medicine at UCLA, Mary S. Easton Center for Alzheimer's Disease Research at UCLA, and Brain Research Institute and Molecular Biology Institute, University of California , 635 Charles Young Drive South, Los Angeles, California 90095, United States
| | - David B Teplow
- Department of Neurology, David Geffen School of Medicine at UCLA, Mary S. Easton Center for Alzheimer's Disease Research at UCLA, and Brain Research Institute and Molecular Biology Institute, University of California , 635 Charles Young Drive South, Los Angeles, California 90095, United States
| | | | | |
Collapse
|
22
|
Katava M, Kalimeri M, Stirnemann G, Sterpone F. Stability and Function at High Temperature. What Makes a Thermophilic GTPase Different from Its Mesophilic Homologue. J Phys Chem B 2016; 120:2721-30. [DOI: 10.1021/acs.jpcb.6b00306] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Marina Katava
- CNRS (UPR9080),
Institut de Biologie Physico-Chimique, Université de Paris
Sorbonne Cité et Paris Science et Lettres, Univ. Paris Diderot,
Laboratoire de Biochimie Théorique, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | - Maria Kalimeri
- Department
of Physics, Tampere University of Technology, Tampere, Finland
| | - Guillaume Stirnemann
- CNRS (UPR9080),
Institut de Biologie Physico-Chimique, Université de Paris
Sorbonne Cité et Paris Science et Lettres, Univ. Paris Diderot,
Laboratoire de Biochimie Théorique, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | - Fabio Sterpone
- CNRS (UPR9080),
Institut de Biologie Physico-Chimique, Université de Paris
Sorbonne Cité et Paris Science et Lettres, Univ. Paris Diderot,
Laboratoire de Biochimie Théorique, 13 rue Pierre et Marie Curie, 75005, Paris, France
| |
Collapse
|
23
|
Dwell-Time Distribution, Long Pausing and Arrest of Single-Ribosome Translation through the mRNA Duplex. Int J Mol Sci 2015; 16:23723-44. [PMID: 26473825 PMCID: PMC4632723 DOI: 10.3390/ijms161023723] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 09/18/2015] [Accepted: 09/23/2015] [Indexed: 12/31/2022] Open
Abstract
Proteins in the cell are synthesized by a ribosome translating the genetic information encoded on the single-stranded messenger RNA (mRNA). It has been shown that the ribosome can also translate through the duplex region of the mRNA by unwinding the duplex. Here, based on our proposed model of the ribosome translation through the mRNA duplex we study theoretically the distribution of dwell times of the ribosome translation through the mRNA duplex under the effect of a pulling force externally applied to the ends of the mRNA to unzip the duplex. We provide quantitative explanations of the available single molecule experimental data on the distribution of dwell times with both short and long durations, on rescuing of the long paused ribosomes by raising the pulling force to unzip the duplex, on translational arrests induced by the mRNA duplex and Shine-Dalgarno(SD)-like sequence in the mRNA. The functional consequences of the pauses or arrests caused by the mRNA duplex and the SD sequence are discussed and compared with those obtained from other types of pausing, such as those induced by "hungry" codons or interactions of specific sequences in the nascent chain with the ribosomal exit tunnel.
Collapse
|
24
|
Xie P. Ribosome utilizes the minimum free energy changes to achieve the highest decoding rate and fidelity. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:022716. [PMID: 26382441 DOI: 10.1103/physreve.92.022716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Indexed: 06/05/2023]
Abstract
The performance of ribosome translation can be characterized by two factors, the translation rate and fidelity. Here, we provide analytical studies of the effect of the near-cognate tRNAs on the two factors. It is shown that the increase of the concentration of the near-cognate tRNAs relative to that of the cognate tRNA has negative effects on the ribosome translation by reducing both the translation rate and the translation fidelity. The effect of the near-cognate ternary complexes on the translation rate results mainly from the initial selection phase, whereas the proofreading phase has a minor effect. By contrast, the effect of the near-cognate ternary complexes on the fidelity results almost equally from the two phases. By using two successive phases, the initial selection and the proofreading, the ribosome can achieve higher translation fidelity than the product of the fidelity when only the initial selection is included and when only the proofreading is included, especially at the large ratio of the concentration of the near-cognate tRNAs compared to that of the cognate tRNA. Moreover, we study the changes of the free energy landscape in the tRNA decoding step. It is found that the rate constants of the tRNA decoding step measured experimentally give the minimum energy changes for the ribosomal complex to attain the optimal performance with both the highest decoding rate and fidelity and/or with the maximum value of the decoding fitness function. This suggests that the ribosome has evolved to utilize the minimum free energy changes gained from the conformational changes of the ribosome, EF-Tu, and tRNA to achieve the optimal performance in the tRNA decoding.
Collapse
Affiliation(s)
- Ping Xie
- Key Laboratory of Soft Matter Physics and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
25
|
Phenotypic Suppression of Streptomycin Resistance by Mutations in Multiple Components of the Translation Apparatus. J Bacteriol 2015; 197:2981-8. [PMID: 26148717 DOI: 10.1128/jb.00219-15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 07/02/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The bacterial ribosome and its associated translation factors are frequent targets of antibiotics, and antibiotic resistance mutations have been found in a number of these components. Such mutations can potentially interact with one another in unpredictable ways, including the phenotypic suppression of one mutation by another. These phenotypic interactions can provide evidence of long-range functional interactions throughout the ribosome and its functional complexes and potentially give insights into antibiotic resistance mechanisms. In this study, we used genetics and experimental evolution of the thermophilic bacterium Thermus thermophilus to examine the ability of mutations in various components of the protein synthesis apparatus to suppress the streptomycin resistance phenotypes of mutations in ribosomal protein S12, specifically those located distant from the streptomycin binding site. With genetic selections and strain constructions, we identified suppressor mutations in EF-Tu or in ribosomal protein L11. Using experimental evolution, we identified amino acid substitutions in EF-Tu or in ribosomal proteins S4, S5, L14, or L19, some of which were found to also relieve streptomycin resistance. The wide dispersal of these mutations is consistent with long-range functional interactions among components of the translational machinery and indicates that streptomycin resistance can result from the modulation of long-range conformational signals. IMPORTANCE The thermophilic bacterium Thermus thermophilus has become a model system for high-resolution structural studies of macromolecular complexes, such as the ribosome, while its natural competence for transformation facilitates genetic approaches. Genetic studies of T. thermophilus ribosomes can take advantage of existing high-resolution crystallographic information to allow a structural interpretation of phenotypic interactions among mutations. Using a combination of genetic selections, strain constructions, and experimental evolution, we find that certain mutations in the translation apparatus can suppress the phenotype of certain antibiotic resistance mutations. Suppression of resistance can occur by mutations located distant in the ribosome or in a translation factor. These observations suggest the existence of long-range conformational signals in the translating ribosome, particularly during the decoding of mRNA.
Collapse
|
26
|
Xie P. Model of ribosomal translocation coupled with intra- and inter-subunit rotations. Biochem Biophys Rep 2015; 2:87-93. [PMID: 29124148 PMCID: PMC5668647 DOI: 10.1016/j.bbrep.2015.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 05/18/2015] [Accepted: 05/18/2015] [Indexed: 11/03/2022] Open
Abstract
The ribosomal translocation involves both intersubunit rotations between the small 30S and large 50S subunits and the intrasubunit rotations of the 30S head relative to the 30S body. However, the detailed molecular mechanism on how the intersubunit and intrasubunit rotations are related to the translocation remains unclear. Here, based on available structural data a model is proposed for the ribosomal translocation, into which both the intersubunit and intrasubunit rotations are incorporated. With the model, we provide quantitative explanations of in vitro experimental data showing the biphasic character in the fluorescence change associated with the mRNA translocation and the character of a rapid increase that is followed by a slow single-exponential decrease in the fluorescence change associated with the 30S head rotation. The calculated translation rate is also consistent with the in vitro single-molecule experimental data.
Collapse
Affiliation(s)
- Ping Xie
- Key Laboratory of Soft Matter Physics and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
27
|
Protein synthesis during cellular quiescence is inhibited by phosphorylation of a translational elongation factor. Proc Natl Acad Sci U S A 2015; 112:E3274-81. [PMID: 26056311 DOI: 10.1073/pnas.1505297112] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In nature, most organisms experience conditions that are suboptimal for growth. To survive, cells must fine-tune energy-demanding metabolic processes in response to nutrient availability. Here, we describe a novel mechanism by which protein synthesis in starved cells is down-regulated by phosphorylation of the universally conserved elongation factor Tu (EF-Tu). Phosphorylation impairs the essential GTPase activity of EF-Tu, thereby preventing its release from the ribosome. As a consequence, phosphorylated EF-Tu has a dominant-negative effect in elongation, resulting in the overall inhibition of protein synthesis. Importantly, this mechanism allows a quick and robust regulation of one of the most abundant cellular proteins. Given that the threonine that serves as the primary site of phosphorylation is conserved in all translational GTPases from bacteria to humans, this mechanism may have important implications for growth-rate control in phylogenetically diverse organisms.
Collapse
|
28
|
Yanagisawa T, Ishii R, Hikida Y, Fukunaga R, Sengoku T, Sekine SI, Yokoyama S. A SelB/EF-Tu/aIF2γ-like protein from Methanosarcina mazei in the GTP-bound form binds cysteinyl-tRNA(Cys.). JOURNAL OF STRUCTURAL AND FUNCTIONAL GENOMICS 2015; 16:25-41. [PMID: 25618148 PMCID: PMC4329189 DOI: 10.1007/s10969-015-9193-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 01/10/2015] [Indexed: 11/15/2022]
Abstract
The putative translation elongation factor Mbar_A0971 from the methanogenic archaeon Methanosarcina barkeri was proposed to be the pyrrolysine-specific paralogue of EF-Tu ("EF-Pyl"). In the present study, the crystal structures of its homologue from Methanosarcina mazei (MM1309) were determined in the GMPPNP-bound, GDP-bound, and apo forms, by the single-wavelength anomalous dispersion phasing method. The three MM1309 structures are quite similar (r.m.s.d. < 0.1 Å). The three domains, corresponding to domains 1, 2, and 3 of EF-Tu/SelB/aIF2γ, are packed against one another to form a closed architecture. The MM1309 structures resemble those of bacterial/archaeal SelB, bacterial EF-Tu in the GTP-bound form, and archaeal initiation factor aIF2γ, in this order. The GMPPNP and GDP molecules are visible in their co-crystal structures. Isothermal titration calorimetry measurements of MM1309·GTP·Mg(2+), MM1309·GDP·Mg(2+), and MM1309·GMPPNP·Mg(2+) provided dissociation constants of 0.43, 26.2, and 222.2 μM, respectively. Therefore, the affinities of MM1309 for GTP and GDP are similar to those of SelB rather than those of EF-Tu. Furthermore, the switch I and II regions of MM1309 are involved in domain-domain interactions, rather than nucleotide binding. The putative binding pocket for the aminoacyl moiety on MM1309 is too small to accommodate the pyrrolysyl moiety, based on a comparison of the present MM1309 structures with that of the EF-Tu·GMPPNP·aminoacyl-tRNA ternary complex. A hydrolysis protection assay revealed that MM1309 binds cysteinyl (Cys)-tRNA(Cys) and protects the aminoacyl bond from non-enzymatic hydrolysis. Therefore, we propose that MM1309 functions as either a guardian protein that protects the Cys moiety from oxidation or an alternative translation factor for Cys-tRNA(Cys).
Collapse
Affiliation(s)
- Tatsuo Yanagisawa
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
- RIKEN Structural Biology Laboratory, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
| | - Ryohei Ishii
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Yasushi Hikida
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
- RIKEN Structural Biology Laboratory, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Ryuya Fukunaga
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
- Present Address: Department of Biochemistry, School of Medicine, Johns Hopkins University, 725 N. Wolfe Street, 521A Physiology Bldg., Baltimore, MD 21205 USA
| | - Toru Sengoku
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
- RIKEN Structural Biology Laboratory, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Shun-ichi Sekine
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
- RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Shigeyuki Yokoyama
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
- RIKEN Structural Biology Laboratory, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| |
Collapse
|
29
|
Abstract
Transfer RNAs (tRNAs) are central players in the protein translation machinery and as such are prominent targets for a large number of natural and synthetic antibiotics. This review focuses on the role of tRNAs in bacterial antibiosis. We will discuss examples of antibiotics that target multiple stages in tRNA biology from tRNA biogenesis and modification, mature tRNAs, aminoacylation of tRNA as well as prevention of proper tRNA function by small molecules binding to the ribosome. Finally, the role of deacylated tRNAs in the bacterial “stringent response” mechanism that can lead to bacteria displaying antibiotic persistence phenotypes will be discussed.
Collapse
|
30
|
Zha D, Zhang H, Zhang H, Xu L, Yan Y. N-terminal transmembrane domain of lipase LipA from Pseudomonas protegens Pf-5: A must for its efficient folding into an active conformation. Biochimie 2014; 105:165-71. [DOI: 10.1016/j.biochi.2014.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 07/08/2014] [Indexed: 11/16/2022]
|
31
|
Scotti JS, Leung IKH, Ge W, Bentley MA, Paps J, Kramer HB, Lee J, Aik W, Choi H, Paulsen SM, Bowman LAH, Loik ND, Horita S, Ho CH, Kershaw NJ, Tang CM, Claridge TDW, Preston GM, McDonough MA, Schofield CJ. Human oxygen sensing may have origins in prokaryotic elongation factor Tu prolyl-hydroxylation. Proc Natl Acad Sci U S A 2014; 111:13331-6. [PMID: 25197067 PMCID: PMC4169948 DOI: 10.1073/pnas.1409916111] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The roles of 2-oxoglutarate (2OG)-dependent prolyl-hydroxylases in eukaryotes include collagen stabilization, hypoxia sensing, and translational regulation. The hypoxia-inducible factor (HIF) sensing system is conserved in animals, but not in other organisms. However, bioinformatics imply that 2OG-dependent prolyl-hydroxylases (PHDs) homologous to those acting as sensing components for the HIF system in animals occur in prokaryotes. We report cellular, biochemical, and crystallographic analyses revealing that Pseudomonas prolyl-hydroxylase domain containing protein (PPHD) contain a 2OG oxygenase related in structure and function to the animal PHDs. A Pseudomonas aeruginosa PPHD knockout mutant displays impaired growth in the presence of iron chelators and increased production of the virulence factor pyocyanin. We identify elongation factor Tu (EF-Tu) as a PPHD substrate, which undergoes prolyl-4-hydroxylation on its switch I loop. A crystal structure of PPHD reveals striking similarity to human PHD2 and a Chlamydomonas reinhardtii prolyl-4-hydroxylase. A crystal structure of PPHD complexed with intact EF-Tu reveals that major conformational changes occur in both PPHD and EF-Tu, including a >20-Å movement of the EF-Tu switch I loop. Comparison of the PPHD structures with those of HIF and collagen PHDs reveals conservation in substrate recognition despite diverse biological roles and origins. The observed changes will be useful in designing new types of 2OG oxygenase inhibitors based on various conformational states, rather than active site iron chelators, which make up most reported 2OG oxygenase inhibitors. Structurally informed phylogenetic analyses suggest that the role of prolyl-hydroxylation in human hypoxia sensing has ancient origins.
Collapse
Affiliation(s)
- John S Scotti
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Ivanhoe K H Leung
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Wei Ge
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom; Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Michael A Bentley
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom
| | - Jordi Paps
- Department of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom
| | - Holger B Kramer
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3QX, United Kingdom; and
| | - Joongoo Lee
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - WeiShen Aik
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Hwanho Choi
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Steinar M Paulsen
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom
| | - Lesley A H Bowman
- Department of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Nikita D Loik
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Shoichiro Horita
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom; Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3QX, United Kingdom; and
| | - Chia-hua Ho
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Nadia J Kershaw
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Christoph M Tang
- Department of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Timothy D W Claridge
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Gail M Preston
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom
| | - Michael A McDonough
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom;
| |
Collapse
|
32
|
Diaz C, Corentin H, Thierry V, Chantal A, Tanguy B, David S, Jean-Marc H, Pascual F, Françoise B, Edgardo F. Virtual screening on an α-helix to β-strand switchable region of the FGFR2 extracellular domain revealed positive and negative modulators. Proteins 2014; 82:2982-97. [PMID: 25082719 DOI: 10.1002/prot.24657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 06/30/2014] [Accepted: 07/03/2014] [Indexed: 12/15/2022]
Abstract
The secondary structure of some protein segments may vary between α-helix and β-strand. To predict these switchable segments, we have developed an algorithm, Switch-P, based solely on the protein sequence. This algorithm was used on the extracellular parts of FGF receptors. For FGFR2, it predicted that β4 and β5 strands of the third Ig-like domain were highly switchable. These two strands possess a high number of somatic mutations associated with cancer. Analysis of PDB structures of FGF receptors confirmed the switchability prediction for β5. We thus evaluated if compound-driven α-helix/β-strand switching of β5 could modulate FGFR2 signaling. We performed the virtual screening of a library containing 1.4 million of chemical compounds with two models of the third Ig-like domain of FGFR2 showing different secondary structures for β5, and we selected 32 compounds. Experimental testing using proliferation assays with FGF7-stimulated SNU-16 cells and a FGFR2-dependent Erk1/2 phosphorylation assay with FGFR2-transfected L6 cells, revealed activators and inhibitors of FGFR2. Our method for the identification of switchable proteinic regions, associated with our virtual screening approach, provides an opportunity to discover new generation of drugs with under-explored mechanism of action.
Collapse
Affiliation(s)
- Constantino Diaz
- Exploratory Unit, Sanofi-Aventis Research and Development, 195 Route d'Espagne, 31036, Toulouse, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Burnett BJ, Altman RB, Ferguson A, Wasserman MR, Zhou Z, Blanchard SC. Direct evidence of an elongation factor-Tu/Ts·GTP·Aminoacyl-tRNA quaternary complex. J Biol Chem 2014; 289:23917-27. [PMID: 24990941 DOI: 10.1074/jbc.m114.583385] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During protein synthesis, elongation factor-Tu (EF-Tu) bound to GTP chaperones the entry of aminoacyl-tRNA (aa-tRNA) into actively translating ribosomes. In so doing, EF-Tu increases the rate and fidelity of the translation mechanism. Recent evidence suggests that EF-Ts, the guanosine nucleotide exchange factor for EF-Tu, directly accelerates both the formation and dissociation of the EF-Tu-GTP-Phe-tRNA(Phe) ternary complex (Burnett, B. J., Altman, R. B., Ferrao, R., Alejo, J. L., Kaur, N., Kanji, J., and Blanchard, S. C. (2013) J. Biol. Chem. 288, 13917-13928). A central feature of this model is the existence of a quaternary complex of EF-Tu/Ts·GTP·aa-tRNA(aa). Here, through comparative investigations of phenylalanyl, methionyl, and arginyl ternary complexes, and the development of a strategy to monitor their formation and decay using fluorescence resonance energy transfer, we reveal the generality of this newly described EF-Ts function and the first direct evidence of the transient quaternary complex species. These findings suggest that EF-Ts may regulate ternary complex abundance in the cell through mechanisms that are distinct from its guanosine nucleotide exchange factor functions.
Collapse
Affiliation(s)
| | | | - Angelica Ferguson
- Tri-Institutional Program in Chemical Biology, Weill Cornell Medical College, New York, New York 10065
| | | | - Zhou Zhou
- From the Department of Physiology and Biophysics and
| | - Scott C Blanchard
- From the Department of Physiology and Biophysics and Tri-Institutional Program in Chemical Biology, Weill Cornell Medical College, New York, New York 10065
| |
Collapse
|
34
|
Xie P. Dynamics of +1 ribosomal frameshifting. Math Biosci 2014; 249:44-51. [PMID: 24508018 DOI: 10.1016/j.mbs.2014.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 01/22/2014] [Accepted: 01/24/2014] [Indexed: 11/19/2022]
Abstract
It has been well characterized that the amino acid starvation can induce +1 frameshifting. However, how the +1 frameshifting occurs has not been fully understood. Here, taking Escherichia coli RF2 programmed frameshifting as an example we present systematical analysis of the +1 frameshifting that could occur during every state-transition step in elongation phase of protein synthesis, showing that the +1 frameshifting can occur only during the period after deacylated tRNA dissociation from the posttranslocation state and before the recognition of the next "hungry" codon. The +1 frameshifting efficiency is theoretically studied, with the simple analytical solutions showing that the high efficiency is almost solely due to the occurrence of ribosome pausing which in turn results from the insufficient RF2. The analytical solutions also provide a consistent explanation of a lot of independent experimental data.
Collapse
Affiliation(s)
- Ping Xie
- Key Laboratory of Soft Matter Physics and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
35
|
Xie P. A dynamical model of programmed −1 ribosomal frameshifting. J Theor Biol 2013; 336:119-31. [DOI: 10.1016/j.jtbi.2013.07.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 07/01/2013] [Accepted: 07/22/2013] [Indexed: 11/29/2022]
|
36
|
Kalimeri M, Rahaman O, Melchionna S, Sterpone F. How conformational flexibility stabilizes the hyperthermophilic elongation factor G-domain. J Phys Chem B 2013; 117:13775-85. [PMID: 24087838 DOI: 10.1021/jp407078z] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Proteins from thermophilic organisms are stable and functional well above ambient temperature. Understanding the molecular mechanism underlying such a resistance is of crucial interest for many technological applications. For some time, thermal stability has been assumed to correlate with high mechanical rigidity of the protein matrix. In this work we address this common belief by carefully studying a pair of homologous G-domain proteins, with their melting temperatures differing by 40 K. To probe the thermal-stability content of the two proteins we use extensive simulations covering the microsecond time range and employ several different indicators to assess the salient features of the conformational landscape and the role of internal fluctuations at ambient condition. At the atomistic level, while the magnitude of fluctuations is comparable, the distribution of flexible and rigid stretches of amino-acids is more regular in the thermophilic protein causing a cage-like correlation of amplitudes along the sequence. This caging effect is suggested to favor stability at high T by confining the mechanical excitations. Moreover, it is found that the thermophilic protein, when folded, visits a higher number of conformational substates than the mesophilic homologue. The entropy associated with the occupation of the different substates and the thermal resilience of the protein intrinsic compressibility provide a qualitative insight on the thermal stability of the thermophilic protein as compared to its mesophilic homologue. Our findings potentially open the route to new strategies in the design of thermostable proteins.
Collapse
Affiliation(s)
- Maria Kalimeri
- Laboratoire de Biochimie Théorique, IBPC, CNRS, UPR9080, Université Paris Diderot , Sorbonne Paris Cité, France
| | | | | | | |
Collapse
|
37
|
Leman JK, Mueller R, Karakas M, Woetzel N, Meiler J. Simultaneous prediction of protein secondary structure and transmembrane spans. Proteins 2013; 81:1127-40. [PMID: 23349002 DOI: 10.1002/prot.24258] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 01/03/2013] [Accepted: 01/09/2013] [Indexed: 11/06/2022]
Abstract
Prediction of transmembrane spans and secondary structure from the protein sequence is generally the first step in the structural characterization of (membrane) proteins. Preference of a stretch of amino acids in a protein to form secondary structure and being placed in the membrane are correlated. Nevertheless, current methods predict either secondary structure or individual transmembrane states. We introduce a method that simultaneously predicts the secondary structure and transmembrane spans from the protein sequence. This approach not only eliminates the necessity to create a consensus prediction from possibly contradicting outputs of several predictors but bears the potential to predict conformational switches, i.e., sequence regions that have a high probability to change for example from a coil conformation in solution to an α-helical transmembrane state. An artificial neural network was trained on databases of 177 membrane proteins and 6048 soluble proteins. The output is a 3 × 3 dimensional probability matrix for each residue in the sequence that combines three secondary structure types (helix, strand, coil) and three environment types (membrane core, interface, solution). The prediction accuracies are 70.3% for nine possible states, 73.2% for three-state secondary structure prediction, and 94.8% for three-state transmembrane span prediction. These accuracies are comparable to state-of-the-art predictors of secondary structure (e.g., Psipred) or transmembrane placement (e.g., OCTOPUS). The method is available as web server and for download at www.meilerlab.org.
Collapse
Affiliation(s)
- Julia Koehler Leman
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee; Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA
| | | | | | | | | |
Collapse
|
38
|
Burnett BJ, Altman RB, Ferrao R, Alejo JL, Kaur N, Kanji J, Blanchard SC. Elongation factor Ts directly facilitates the formation and disassembly of the Escherichia coli elongation factor Tu·GTP·aminoacyl-tRNA ternary complex. J Biol Chem 2013; 288:13917-28. [PMID: 23539628 DOI: 10.1074/jbc.m113.460014] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Aminoacyl-tRNA (aa-tRNA) enters the ribosome in a ternary complex with the G-protein elongation factor Tu (EF-Tu) and GTP. RESULTS EF-Tu·GTP·aa-tRNA ternary complex formation and decay rates are accelerated in the presence of the nucleotide exchange factor elongation factor Ts (EF-Ts). CONCLUSION EF-Ts directly facilitates the formation and disassociation of ternary complex. SIGNIFICANCE This system demonstrates a novel function of EF-Ts. Aminoacyl-tRNA enters the translating ribosome in a ternary complex with elongation factor Tu (EF-Tu) and GTP. Here, we describe bulk steady state and pre-steady state fluorescence methods that enabled us to quantitatively explore the kinetic features of Escherichia coli ternary complex formation and decay. The data obtained suggest that both processes are controlled by a nucleotide-dependent, rate-determining conformational change in EF-Tu. Unexpectedly, we found that this conformational change is accelerated by elongation factor Ts (EF-Ts), the guanosine nucleotide exchange factor for EF-Tu. Notably, EF-Ts attenuates the affinity of EF-Tu for GTP and destabilizes ternary complex in the presence of non-hydrolyzable GTP analogs. These results suggest that EF-Ts serves an unanticipated role in the cell of actively regulating the abundance and stability of ternary complex in a manner that contributes to rapid and faithful protein synthesis.
Collapse
Affiliation(s)
- Benjamin J Burnett
- Departments of Physiology and Biophysics, Weill Cornell Medical College, New York, New York 10065, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Xie P. Dynamics of tRNA occupancy and dissociation during translation by the ribosome. J Theor Biol 2013; 316:49-60. [DOI: 10.1016/j.jtbi.2012.09.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2012] [Revised: 09/17/2012] [Accepted: 09/18/2012] [Indexed: 12/23/2022]
|
40
|
Abstract
Legionella is a gram-negative bacterium and the causative pathogen of legionellosis-a severe pneumonia in humans. A large number of Legionella effectors interfere with numerous host cell functions, including intracellular vacuole trafficking and maturation, phospholipid metabolism, protein ubiquitination, pro-/anti-apoptotic balances or inflammatory responses. Moreover, eukaryotic protein synthesis is affected by L. pneumophila glucosyltransferases Lgt1, Lgt2, and Lgt3. Structurally, these enzymes are similar to large clostridial cytotoxins, use UDP-glucose as a co-substrate and modify a conserved serine residue (Ser-53) in elongation factor 1A (eEF1A). The ternary complex consisting of eEF1A, GTP, and aminoacylated-tRNA seems to be the substrate for Lgts. Studies with Saccharomyces cerevisiae corroborated that eEF1A is the major target responsible for Lgt-induced cytotoxic activity. In addition to Lgt proteins, Legionella produces other effector glycosyltransferase, including the modularly composed protein SetA, which displays tropism for early endosomal compartments, subverts host cell vesicle trafficking and demonstrates toxic activities toward yeast and mammalian cells. Here, our current knowledge about both groups of L. pneumophila glycosylating effectors is reviewed.
Collapse
|
41
|
Xie P. Model of ribosome translation and mRNA unwinding. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2012; 42:347-54. [DOI: 10.1007/s00249-012-0879-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 11/19/2012] [Accepted: 11/29/2012] [Indexed: 10/27/2022]
|
42
|
Romanowska J, Nowiński KS, Trylska J. Determining Geometrically Stable Domains in Molecular Conformation Sets. J Chem Theory Comput 2012; 8:2588-99. [DOI: 10.1021/ct300206j] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Julia Romanowska
- Department of Biophysics,
Faculty of Physics, University of Warsaw, Hoża 69, 00-681 Warsaw, Poland
- Interdisciplinary
Centre for Mathematical and Computational Modelling (ICM), University of Warsaw, Pawińskiego
5a, 02-106 Warsaw, Poland
| | - Krzysztof S. Nowiński
- Interdisciplinary
Centre for Mathematical and Computational Modelling (ICM), University of Warsaw, Pawińskiego
5a, 02-106 Warsaw, Poland
| | - Joanna Trylska
- Centre of New Technologies
(CeNT), University of Warsaw, Żwirki i Wigury 93, 02-089 Warsaw, Poland
| |
Collapse
|
43
|
Kanjee U, Ogata K, Houry WA. Direct binding targets of the stringent response alarmone (p)ppGpp. Mol Microbiol 2012; 85:1029-43. [PMID: 22812515 DOI: 10.1111/j.1365-2958.2012.08177.x] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The Escherichia coli stringent response, mediated by the alarmone ppGpp, is responsible for the reorganization of cellular transcription upon nutritional starvation and other stresses. These transcriptional changes occur mainly as a result of the direct effects of ppGpp and its partner transcription factor DksA on RNA polymerase. An often overlooked feature of the stringent response is the direct targeting of other proteins by ppGpp. Here we review the literature on proteins that are known to bind ppGpp and, based on sequence homology, X-ray crystal structures and in silico docking, we propose new potential protein binding targets for ppGpp. These proteins were found to fall into five main categories: (i) cellular GTPases, (ii) proteins involved in nucleotide metabolism, (iii) proteins involved in lipid metabolism, (iv) general metabolic proteins and (v) PLP-dependent basic aliphatic amino acid decarboxylases. Bioinformatic rationale is provided for expanding the role of ppGpp in regulating the activities of the cellular GTPases. Proteins involved in nucleotide and lipid metabolism and general metabolic proteins provide an interesting set of structurally varied stringent response targets. While the inhibition of some PLP-dependent decarboxylases by ppGpp suggests the existence of cross-talk between the acid stress and stringent response systems.
Collapse
Affiliation(s)
- Usheer Kanjee
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | |
Collapse
|
44
|
Kavaliauskas D, Nissen P, Knudsen CR. The busiest of all ribosomal assistants: elongation factor Tu. Biochemistry 2012; 51:2642-51. [PMID: 22409271 DOI: 10.1021/bi300077s] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
During translation, the nucleic acid language employed by genes is translated into the amino acid language used by proteins. The translator is the ribosome, while the dictionary employed is known as the genetic code. The genetic information is presented to the ribosome in the form of a mRNA, and tRNAs connect the two languages. Translation takes place in three steps: initiation, elongation, and termination. After a protein has been synthesized, the components of the translation apparatus are recycled. During each phase of translation, the ribosome collaborates with specific translation factors, which secure a proper balance between speed and fidelity. Notably, initiation, termination, and ribosomal recycling occur only once per protein produced during normal translation, while the elongation step is repeated a large number of times, corresponding to the number of amino acids constituting the protein of interest. In bacteria, elongation factor Tu plays a central role during the selection of the correct amino acids throughout the elongation phase of translation. Elongation factor Tu is the main subject of this review.
Collapse
Affiliation(s)
- Darius Kavaliauskas
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus C, Denmark
| | | | | |
Collapse
|
45
|
Abstract
The wealth of available protein structural data provides unprecedented opportunity to study and better understand the underlying principles of protein folding and protein structure evolution. A key to achieving this lies in the ability to analyse these data and to organize them in a coherent classification scheme. Over the past years several protein classifications have been developed that aim to group proteins based on their structural relationships. Some of these classification schemes explore the concept of structural neighbourhood (structural continuum), whereas other utilize the notion of protein evolution and thus provide a discrete rather than continuum view of protein structure space. This chapter presents a strategy for classification of proteins with known three-dimensional structure. Steps in the classification process along with basic definitions are introduced. Examples illustrating some fundamental concepts of protein folding and evolution with a special focus on the exceptions to them are presented.
Collapse
|
46
|
Belyi Y, Jank T, Aktories K. Effector glycosyltransferases in legionella. Front Microbiol 2011; 2:76. [PMID: 21833323 PMCID: PMC3153043 DOI: 10.3389/fmicb.2011.00076] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 03/31/2011] [Indexed: 11/13/2022] Open
Abstract
Legionella causes severe pneumonia in humans. The pathogen produces an array of effectors, which interfere with host cell functions. Among them are the glucosyltransferases Lgt1, Lgt2 and Lgt3 from L. pneumophila. Lgt1 and Lgt2 are produced predominately in the post-exponential phase of bacterial growth, while synthesis of Lgt3 is induced mainly in the lag-phase before intracellular replication of bacteria starts. Lgt glucosyltransferases are structurally similar to clostridial glucosylating toxins. The enzymes use UDP–glucose as a donor substrate and modify eukaryotic elongation factor eEF1A at serine-53. This modification results in inhibition of protein synthesis and death of target cells.In addition to Lgts, Legionella genomes disclose several genes, coding for effector proteins likely to possess glycosyltransferase activities, including SetA (subversion of eukaryotic vesicle trafficking A), which influences vesicular trafficking in the yeast model system and displays tropism for late endosomal/lysosomal compartments of mammalian cells. This review mainly discusses recent results on the structure–function relationship of Lgt glucosyltransferases.
Collapse
Affiliation(s)
- Yury Belyi
- Gamaleya Research Institute Moscow, Russia
| | | | | |
Collapse
|
47
|
Codon-dependent tRNA fluctuations monitored with fluorescence polarization. Biophys J 2011; 99:3849-58. [PMID: 21112310 DOI: 10.1016/j.bpj.2010.10.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 10/14/2010] [Accepted: 10/18/2010] [Indexed: 11/21/2022] Open
Abstract
During protein synthesis dictated by the codon sequence of messenger RNA, the ribosome selects aminoacyl-tRNA (aa-tRNA) with high accuracy, the exact mechanism of which remains elusive. By using a single-molecule fluorescence resonance energy transfer method coupled with fluorescence emission anisotropy, we provide evidence of random thermal motion of tRNAs within the ribosome in nanosecond timescale that we refer to as fluctuations. Our results indicate that cognate aa-tRNA fluctuates less frequently than near-cognate. This is counterintuitive because cognate aa-tRNA is expected to fluctuate more frequently to reach the ribosomal A-site faster than near-cognate. In addition, cognate aa-tRNA occupies the same position in the ribosome as near-cognate. These results argue for a mechanism which guides cognate aa-tRNA more accurately toward the A-site as compared to near-cognate. We suggest that a basis for this mechanism is the induced fit of the 30S subunit upon cognate aa-tRNA binding. Our single-molecule fluorescence resonance energy transfer time traces also point to a mechanistic model for GTP hydrolysis on elongation factor Tu mediated by aa-tRNA.
Collapse
|
48
|
Structural insights into cognate versus near-cognate discrimination during decoding. EMBO J 2011; 30:1497-507. [PMID: 21378755 DOI: 10.1038/emboj.2011.58] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 02/04/2011] [Indexed: 11/09/2022] Open
Abstract
The structural basis of the tRNA selection process is investigated by cryo-electron microscopy of ribosomes programmed with UGA codons and incubated with ternary complex (TC) containing the near-cognate Trp-tRNA(Trp) in the presence of kirromycin. Going through more than 350 000 images and employing image classification procedures, we find ∼8% in which the TC is bound to the ribosome. The reconstructed 3D map provides a means to characterize the arrangement of the near-cognate aa-tRNA with respect to elongation factor Tu (EF-Tu) and the ribosome, as well as the domain movements of the ribosome. One of the interesting findings is that near-cognate tRNA's acceptor stem region is flexible and CCA end becomes disordered. The data bring direct structural insights into the induced-fit mechanism of decoding by the ribosome, as the analysis of the interactions between small and large ribosomal subunit, aa-tRNA and EF-Tu and comparison with the cognate case (UGG codon) offers clues on how the conformational signals conveyed to the GTPase differ in the two cases.
Collapse
|
49
|
Bhattacharjee N, Biswas P. Statistical analysis and molecular dynamics simulations of ambivalent α-helices. BMC Bioinformatics 2010; 11:519. [PMID: 20955581 PMCID: PMC2973962 DOI: 10.1186/1471-2105-11-519] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2010] [Accepted: 10/18/2010] [Indexed: 11/17/2022] Open
Abstract
Background Analysis of known protein structures reveals that identical sequence fragments in proteins can adopt different secondary structure conformations. The extent of this conformational diversity is influenced by various factors like the intrinsic sequence propensity, sequence context and other environmental factors such as pH, site directed mutations or alteration of the binding ligands. Understanding the mechanism by which the environment affects the structural ambivalence of these peptides has potential implications for protein design and reliable local structure prediction algorithms. Identification of the structurally ambivalent sequence fragments and determining the rules which dictate their conformational preferences play an important role in understanding the conformational changes observed in misfolding diseases. However, a systematic classification of their intrinsic sequence patterns or a statistical analysis of their properties and sequence context in relation to the origin of their structural diversity have largely remained unexplored. Results In this work, the conformational variability of α-helices is studied by mapping sequences from the non-redundant database to identical sequences across all classes of the SCOP (Structural Classification of Proteins) database. Some helices retain their conformations when mapped in the SCOP database while others exhibit a complete/partial switch to non-helical conformations. The results clearly depict the differences in the propensities of amino acids for the variable and conserved helices. Sequences flanking these ambivalent sequence fragments have anisotropic propensities at the N- and C-termini. This structural variability is depicted by molecular dynamics simulations in explicit solvent, which show that the short conserved helices retain their conformations while their longer counterparts fray into two or more shorter helices. Variable helices in the non-redundant database exhibit a trend of retaining helical conformations while their corresponding non-helical conformations in SCOP database show large deviations from their respective initial structures by adopting partial or full helical conformations. Partially ambivalent helices are also found to retain their respective conformations. Conclusions All sequence fragments which show structural diversity in different proteins of the non-redundant database are investigated. The final conformation of these ambivalent sequences are dictated by a fine tuning of their intrinsic sequence propensity and the anisotropic amino acid propensity of the flanking sequences. This analysis may unravel the connection between diverse secondary structures, which conserve the overall structural fold of the protein thus determining its function.
Collapse
|
50
|
Berisio R, Ruggiero A, Vitagliano L. Elongation Factors EFIA and EF-Tu: Their Role in Translation and Beyond. Isr J Chem 2010. [DOI: 10.1002/ijch.201000005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|