1
|
Akumadu BO, Iwuchukwu EA, Soobben M, Achilonu I. Describing the interaction between Wuchereria bancrofti glutathione transferase and Bromosulphophthalein from an empirical and theoretical perspective. Int J Biol Macromol 2025; 306:141561. [PMID: 40020825 DOI: 10.1016/j.ijbiomac.2025.141561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/24/2025] [Accepted: 02/25/2025] [Indexed: 03/03/2025]
Abstract
Wuchereria bancrofti glutathione transferase (WbGST) is a therapeutic target in the parasitic worms that cause lymphatic filariasis. We described the molecular and structural basis of WbGST inhibition by Bromosulphophthalein (BSP) and compared it with human Mu (hGSTMu) and Pi (hGSTPi) class GSTs. BSP inhibited WbGST activity with an IC50 of 5 μM, 13.5 μM for the hGSTMu, and 110 μM for hGSTPi. Fluorescence spectroscopy showed that BSP altered polarity of intrinsic tryptophan residue environment and decreased the interaction between the enzymes and 8-Anilino-1-naphthalenesulphonate (ANS), a known GST H-site ligand. A computational modelling study to validate our empirical data showed that BSP binding at H-site and dimer interface of WbGST elicited diverse structural dynamics. Serial and comparative critical binding pocket studies suggest that the preferred WbGST binding pocket for interaction and stabilisation of BSP appears to be at the dimer interface. Interacting and directing energies seem clustered at the dimer interface of the WbGST, thus blocking off-targeting of the human GSTs. Structural dynamics and stability investigations suggest that WbGST experienced a more potent inhibitory outcome than the two human GSTs, corresponding to our in vitro empirical studies. These findings will provide an opportunity to design new chemotherapeutics for treating filariasis.
Collapse
Affiliation(s)
- Blessing Oluebube Akumadu
- Protein Structure-Function and Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Braamfontein, Johannesburg, 2050, South Africa
| | - Emmanuel Amarachi Iwuchukwu
- Protein Structure-Function and Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Braamfontein, Johannesburg, 2050, South Africa
| | - Marushka Soobben
- Protein Structure-Function and Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Braamfontein, Johannesburg, 2050, South Africa
| | - Ikechukwu Achilonu
- Protein Structure-Function and Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Braamfontein, Johannesburg, 2050, South Africa.
| |
Collapse
|
2
|
da Silva IM, Maraslis FT, Kawasaki JAI, Aida NK, Barcelos GRM, Koike A, Fuganti PE, Cólus IMDS, Guembarovski RL, Serpeloni JM. Allelic variants in xenobiotic metabolism genes predict susceptibility and worse prognosis of urothelial bladder cancer. Pathol Res Pract 2025; 266:155767. [PMID: 39729958 DOI: 10.1016/j.prp.2024.155767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/04/2024] [Accepted: 12/11/2024] [Indexed: 12/29/2024]
Abstract
Biomarkers that identify tumors with better/worse prognosis can help reduce treatment costs and contribute to patient survival. In urothelial bladder cancer (UBC), accurate prediction of recurrence and progression is essential to inform therapeutic management. Herein, we explore the role of genetic variants of xenobiotic metabolic pathways in UBC susceptibility and prognosis. In total, 295 participants with UBC and 295 controls were genotyped using TaqMan® probes. CYP1A1 (rs1048943), CYP3A4 (rs4646437), CYP3A5 (rs4646450), UGT2B7 (rs7438135), and UGT2B15 (rs3100) allele frequencies were compared between UBC patients and controls and were analyzed concerning tumor grade, invasion, and recurrence. CYP3A4 (AA) increased susceptibility to UBC 3-fold when interacting with CYP3A5 (AA+AA). The susceptibility was higher in CYP3A4 (AA) males (OR=3.189) and individuals exposed to pesticides (OR=5.492). When interacting with hypertension, the allele C of CYP1A1 also increased UBC susceptibility by 2-fold. The UGT2B15 mutant allele was associated with high-grade tumors (OR=2.196) and recurrences (OR=2.561), as well as tumor grade when associated with mutated alleles of CYP3A4 (OR=6.171) and CYP3A5 (OR=3.492). Genes-encoding proteins were further analyzed using the STRING program, demonstrating that the proteins had known interactions in databases and were co-expressed. This study is a pioneer in evaluating these variants in a Latin American population from Brazil and confirms occupational pesticide exposure as a risk factor for UBC, mainly in genetically susceptible individuals. Furthermore, these variants may have additional clinical value for predicting susceptibility and prognostic stratification in patients with exposure-related cancers such as UBC.
Collapse
Affiliation(s)
- Isabely Mayara da Silva
- Department of General Biology, Center of Biological Sciences, State University of Londrina (UEL), Londrina 86057-970, Brazil
| | - Flora Troina Maraslis
- Department of Biosciences, Institute for Health and Society, Federal University of São Paulo (UNIFESP), Santos 11060-001, Brazil
| | - Julia Ayumi Ikeda Kawasaki
- Department of General Biology, Center of Biological Sciences, State University of Londrina (UEL), Londrina 86057-970, Brazil
| | - Natieli Kazue Aida
- Department of General Biology, Center of Biological Sciences, State University of Londrina (UEL), Londrina 86057-970, Brazil
| | - Gustavo Rafael Mazzaron Barcelos
- Department of Biosciences, Institute for Health and Society, Federal University of São Paulo (UNIFESP), Santos 11060-001, Brazil
| | | | | | - Ilce Mara de Syllos Cólus
- Department of General Biology, Center of Biological Sciences, State University of Londrina (UEL), Londrina 86057-970, Brazil
| | - Roberta Losi Guembarovski
- Department of General Biology, Center of Biological Sciences, State University of Londrina (UEL), Londrina 86057-970, Brazil
| | - Juliana Mara Serpeloni
- Department of General Biology, Center of Biological Sciences, State University of Londrina (UEL), Londrina 86057-970, Brazil.
| |
Collapse
|
3
|
Al-Najjar BO, Helal M, Saqallah FG, Bandy B. Isozyme-specific inhibition of GSTP1-1: a crucial element in cancer-targeting drugs. RSC Med Chem 2025:d4md00872c. [PMID: 39917632 PMCID: PMC11795191 DOI: 10.1039/d4md00872c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 01/18/2025] [Indexed: 02/09/2025] Open
Abstract
Selectively targeting cancer cells has been a main challenge in cancer therapy. The purpose is to spare normal cells and minimize side effects. Targeting the antioxidant enzymes (i.e. GST) for the purpose of selectively killing cancer cells has attracted much attention in the past few decades. The intention of lowering the antioxidant enzymes is "tipping" the ROS concentrations to levels above the cytotoxic threshold. This would result in extensive damage to the cellular macromolecules and organelles leading to cell death. Here we focused on the glutathione S-transferase pi 1 (GSTP1), because it is one of the overexpressed antioxidant enzymes in cancer and has been targeted for the purpose of killing cancer cells. However, most available GSTP1 inhibitors do not show selectivity towards the isozyme. This can potentially lead to many side effects. Therefore, the search for optimal selective GSTP1 inhibitors is still underway. The novelty of this review stems from highlighting the significance of selectively targeting GSTP1. We also addressed the structural feature of the enzyme which challenges the design of novel selective GSTP1 inhibitors. We then provide guidelines to help resolve these challenges to help design future compounds. The first objective of this review is to present a brief literature review to highlight the importance of selectively targeting GSTP1. Briefly, the lack of selectivity towards GSTP1 has resulted in extensive side effects which limited reaching advanced clinical trials. We screened publications on many potential inhibitors, including some that reached phase I and II clinical trials, for their ability to bind with GSTP1, GSTM, and GSTA. All compounds appear to bind different GST isozymes (at least to some extent). The second objective is to present differences in the structures of GST isotypes (GSTP1, GSTM, GSTA) which could allow selectively targeting a certain isotype. Our modelling results highlight the importance of certain structural moieties for better selective binding to GSTP1.
Collapse
Affiliation(s)
- Belal O Al-Najjar
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Al-Ahliyya Amman University Amman 19328 Jordan
| | - M Helal
- Physiology, Pharmacology, and Toxicology Division, Biomedical Sciences Department, Faculty of Medicine and Health Sciences, An-Najah National University Palestine
| | - Fadi G Saqallah
- Faculty of Pharmacy, Al-Zaytoonah University of Jordan Amman 11733 Jordan
| | - B Bandy
- College of Pharmacy and Nutrition, University of Saskatchewan Saskatoon Canada
| |
Collapse
|
4
|
Ismail A, Mannervik B. Mutations Selectively Evolving Peroxidase Activity Among Alternative Catalytic Functions of Human Glutathione Transferase P1-1. Antioxidants (Basel) 2024; 13:1347. [PMID: 39594489 PMCID: PMC11591039 DOI: 10.3390/antiox13111347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 10/26/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024] Open
Abstract
Glutathione transferases are detoxication enzymes with broad catalytic diversity, and small alterations to the protein's primary structure can have considerable effects on the enzyme's substrate selectivity profile. We demonstrate that two point mutations in glutathione transferase P1-1 suffice to generate 20-fold enhanced non-selenium-dependent peroxidase activity indicating a facile evolutionary trajectory. Designed mutant libraries of the enzyme were screened for catalytic activities with alternative substrates representing four divergent chemistries. The chemical reactions comprised aromatic substitution, Michael addition, thiocarbamoylation, and hydroperoxide reduction. Two mutants, R1 (Y109H) and an R1-based mutant V2 (Q40M-E41Q-A46S-Y109H-V200L), were discovered with 16.3- and 30-foldincreased peroxidase activity with cumene hydroperoxide (CuOOH) compared to the wildtype enzyme, respectively. The basis of the improved peroxidase activity of the mutant V2 was elucidated by constructing double-point mutants. The mutants V501 (Q40M-Y109H) and V503 (E41Q-Y109H) were found to have 20- and 21-fold improvements in peroxidase activity relative to the wildtype enzyme, respectively. The steady-state kinetic profiles of mutants R1 and V2 in the reduction of CuOOH were compared to the wildtype parameters. The kcat values for R1 and V2 were 34- and 57-fold higher, respectively, than that of the wildtype enzyme, whereas the mutant Km values were increased approximately 3-fold. A 10-fold increased catalytic efficiency (kcat/Km) in CuOOH reduction is accomplished by the Tyr109His point mutation in R1. The 23-fold increase of the efficiency obtained in V2 was caused by adding further mutations primarily enhancing kcat. In all mutants with elevated peroxidase activity, His109 played a pivotal role.
Collapse
Affiliation(s)
- Aram Ismail
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, SE-10691 Stockholm, Sweden;
| | - Bengt Mannervik
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, SE-10691 Stockholm, Sweden;
- Department of Chemistry, Scripps Research, La Jolla, CA 92037, USA
| |
Collapse
|
5
|
Sun X, Guo C, Huang C, Lv N, Chen H, Huang H, Zhao Y, Sun S, Zhao D, Tian J, Chen X, Zhang Y. GSTP alleviates acute lung injury by S-glutathionylation of KEAP1 and subsequent activation of NRF2 pathway. Redox Biol 2024; 71:103116. [PMID: 38479222 PMCID: PMC10945259 DOI: 10.1016/j.redox.2024.103116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/17/2024] [Accepted: 03/06/2024] [Indexed: 03/21/2024] Open
Abstract
Oxidative stress plays an important role in the pathogenesis of acute lung injury (ALI). As a typical post-translational modification triggered by oxidative stress, protein S-glutathionylation (PSSG) is regulated by redox signaling pathways and plays diverse roles in oxidative stress conditions. In this study, we found that GSTP downregulation exacerbated LPS-induced injury in human lung epithelial cells and in mice ALI models, confirming the protective effect of GSTP against ALI both in vitro and in vivo. Additionally, a positive correlation was observed between total PSSG level and GSTP expression level in cells and mice lung tissues. Further results demonstrated that GSTP inhibited KEAP1-NRF2 interaction by promoting PSSG process of KEAP1. By the integration of protein mass spectrometry, molecular docking, and site-mutation validation assays, we identified C434 in KEAP1 as the key PSSG site catalyzed by GSTP, which promoted the dissociation of KEAP1-NRF2 complex and activated the subsequent anti-oxidant genes. In vivo experiments with AAV-GSTP mice confirmed that GSTP inhibited LPS-induced lung inflammation by promoting PSSG of KEAP1 and activating the NRF2 downstream antioxidant pathways. Collectively, this study revealed the novel regulatory mechanism of GSTP in the anti-inflammatory function of lungs by modulating PSSG of KEAP1 and the subsequent KEAP1/NRF2 pathway. Targeting at manipulation of GSTP level or activity might be a promising therapeutic strategy for oxidative stress-induced ALI progression.
Collapse
Affiliation(s)
- Xiaolin Sun
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Chaorui Guo
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Chunyan Huang
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Ning Lv
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Huili Chen
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, 32827, United States
| | - Haoyan Huang
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Yulin Zhao
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Shanliang Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| | - Di Zhao
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Jingwei Tian
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China.
| | - Xijing Chen
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Yongjie Zhang
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China.
| |
Collapse
|
6
|
Cardwell PA, Del Moro C, Murphy MP, Lapthorn AJ, Hartley RC. Human mitochondrial glutathione transferases: Kinetic parameters and accommodation of a mitochondria-targeting group in substrates. Bioorg Med Chem 2024; 104:117712. [PMID: 38593670 DOI: 10.1016/j.bmc.2024.117712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/01/2024] [Accepted: 04/01/2024] [Indexed: 04/11/2024]
Abstract
Glutathione-S-transferases are key to the cellular detoxification of xenobiotics and products of oxidative damage. GSTs catalyse the reaction of glutathione (GSH) with electrophiles to form stable thioether adducts. GSTK1-1 is the main GST isoform in the mitochondrial matrix, but the GSTA1-1 and GSTA4-4 isoforms are also thought to be in the mitochondria with their distribution altering in transformed cells, thus potentially providing a cancer specific target. A mitochondria-targeted version of the GST substrate 1-chloro-2,4-dinitrobenzene (CDNB), MitoCDNB, has been used to manipulate the mitochondrial GSH pool. To finesse this approach to target particular GST isoforms in the context of cancer, here we have determined the kcat/Km for the human isoforms of GSTK1-1, GSTA1-1 and GSTA4-4 with respect to GSH and CDNB. We show how the rate of the GST-catalysed reaction between GSH and CDNB analogues can be modified by both the electron withdrawing substituents, and by the position of the mitochondria-targeting triphenylphosphonium on the chlorobenzene ring to tune the activity of mitochondria-targeted substrates. These findings can now be exploited to selectively disrupt the mitochondrial GSH pools of cancer cells expressing particular GST isoforms.
Collapse
Affiliation(s)
- Patrick A Cardwell
- School of Chemistry, Joseph Black Building, University Avenue, University of Glasgow, Glasgow G12 8QQ, UK.
| | - Carlo Del Moro
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Adrian J Lapthorn
- School of Chemistry, Joseph Black Building, University Avenue, University of Glasgow, Glasgow G12 8QQ, UK
| | - Richard C Hartley
- School of Chemistry, Joseph Black Building, University Avenue, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
7
|
Ismail A, Govindarajan S, Mannervik B. Human GST P1-1 Redesigned for Enhanced Catalytic Activity with the Anticancer Prodrug Telcyta and Improved Thermostability. Cancers (Basel) 2024; 16:762. [PMID: 38398153 PMCID: PMC10887215 DOI: 10.3390/cancers16040762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/09/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
Protein engineering can be used to tailor enzymes for medical purposes, including antibody-directed enzyme prodrug therapy (ADEPT), which can act as a tumor-targeted alternative to conventional chemotherapy for cancer. In ADEPT, the antibody serves as a vector, delivering a drug-activating enzyme selectively to the tumor site. Glutathione transferases (GSTs) are a family of naturally occurring detoxication enzymes, and the finding that some of them are overexpressed in tumors has been exploited to develop GST-activated prodrugs. The prodrug Telcyta is activated by GST P1-1, which is the GST most commonly elevated in cancer cells, implying that tumors overexpressing GST P1-1 should be particularly vulnerable to Telcyta. Promising antitumor activity has been noted in clinical trials, but the wildtype enzyme has modest activity with Telcyta, and further functional improvement would enhance its usefulness for ADEPT. We utilized protein engineering to construct human GST P1-1 gene variants in the search for enzymes with enhanced activity with Telcyta. The variant Y109H displayed a 2.9-fold higher enzyme activity compared to the wild-type GST P1-1. However, increased catalytic potency was accompanied by decreased thermal stability of the Y109H enzyme, losing 99% of its activity in 8 min at 50 °C. Thermal stability was restored by four additional mutations simultaneously introduced without loss of the enhanced activity with Telcyta. The mutation Q85R was identified as an important contributor to the regained thermostability. These results represent a first step towards a functional ADEPT application for Telcyta.
Collapse
Affiliation(s)
- Aram Ismail
- Arrhenius Laboratories, Department of Biochemistry and Biophysics, Stockholm University, SE-10691 Stockholm, Sweden;
| | | | - Bengt Mannervik
- Arrhenius Laboratories, Department of Biochemistry and Biophysics, Stockholm University, SE-10691 Stockholm, Sweden;
- Department of Chemistry, Scripps Research, La Jolla, CA 92037, USA
| |
Collapse
|
8
|
Das M, Gangopadhyay D, Hudecová J, Kessler J, Kapitán J, Bouř P. Monitoring Conformation and Protonation States of Glutathione by Raman Optical Activity and Molecular Dynamics. Chempluschem 2023; 88:e202300219. [PMID: 37283530 DOI: 10.1002/cplu.202300219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/07/2023] [Accepted: 06/07/2023] [Indexed: 06/08/2023]
Abstract
Glutathione (GSH) is a common antioxidant and its biological activity depends on the conformation and protonation state. We used molecular dynamics, Raman and Raman optical activity (ROA) spectroscopies to investigate GSH structural changes in a broad pH range. Factor analysis of the spectra provided protonation constants (2.05, 3.45, 8.62, 9.41) in good agreement with previously published values. Following the analysis, spectra of differently protonated forms were obtained by extrapolation. The complete deprotonation of the thiol group above pH 11 was clearly visible in the spectra; however, many spectral features did not change much with pH. Experimental spectra at various pH values were decomposed into the simulated ones, which allowed us to study the conformer populations and quality of molecular dynamics (MD). According to this combined ROA/MD analysis conformation of the GSH backbone is affected by the pH changes only in a limited way. The combination of ROA with the computations thus has the potential to improve the MD force field and obtain more accurate populations of the conformer species. The methodology can be used for any molecule, but for a more detailed insight better computational techniques are needed in the future.
Collapse
Affiliation(s)
- Moumita Das
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, 16610, Prague 6, Czech Republic
- Department of Analytical Chemistry Faculty of Chemical Engineering, University of Chemistry and Technology, Technická 5, 16628, Prague 6, Czech Republic
| | - Debraj Gangopadhyay
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, 16610, Prague 6, Czech Republic
| | - Jana Hudecová
- Department of Optics, Palacký University, 17. listopadu 12, 77146, Olomouc, Czech Republic
| | - Jiří Kessler
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, 16610, Prague 6, Czech Republic
| | - Josef Kapitán
- Department of Optics, Palacký University, 17. listopadu 12, 77146, Olomouc, Czech Republic
| | - Petr Bouř
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, 16610, Prague 6, Czech Republic
- Department of Analytical Chemistry Faculty of Chemical Engineering, University of Chemistry and Technology, Technická 5, 16628, Prague 6, Czech Republic
| |
Collapse
|
9
|
Lin H, Wu H, Li H, Song A, Yin W. The essential role of GSTP1 I105V polymorphism in the prediction of CDNB metabolism and toxicity: In silico and in vitro insights. Toxicol In Vitro 2023; 90:105601. [PMID: 37031912 DOI: 10.1016/j.tiv.2023.105601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/02/2023] [Accepted: 04/04/2023] [Indexed: 04/11/2023]
Abstract
Humans are continuously exposed to toxic chemicals such as nitro-chlorobenzene (CDNB) through occupation, water, and even the air we breathe. Due to the severe toxicity caused by the high electrophilicity of CDNB, occupational and environmental exposure to CDNB can produce toxic effects that ultimately lead to cell damage. CDNB can be eliminated from organisms by binding to GSH, the catalytic product of glutathione S-transferase P1 (GSTP1). Therefore, GSTP1 plays an important role in the detoxification of CDNB. However, subtle variations in GSTP1 can result in single nucleotide polymorphisms (SNPs). Indeed, the correlation between the clinical outcome of the disease and certain genotypes of GSTP1 has been extensively studied, however, their impact on the metabolic detoxification of toxicants such as CDNB remains to be elucidated. Among the various SNPs of GSTP1, I105V has a significant effect on the catalytic activity of GSTP1. In this paper, a GSTP1 I105V polymorphism model was successfully established, and its effect on CDNB metabolism and toxicity was studied by computer analysis including molecular docking and molecular dynamics simulation. The result demonstrated that the binding capacity of CDNB decreases with the I105V mutation of GSTP1(p < 0.001), indicating the changes in its detoxification efficacy in CDNB-induced cell damage. Organisms expressing GSTP1 V105 are more susceptible to cell damage caused by CDNB than individuals expressing GSTP1 I105 (p < 0.001). In sum, the data in this study provide prospective insights into the mechanism and capacity of CDNB detoxification in the GSTP1 allele, extending the CDNB-mediated toxicological profile. In addition, the heterogeneity of the GSTP1 allele should be included in toxicological studies of individuals exposed to CDNB.
Collapse
Affiliation(s)
- Hao Lin
- The State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Han Wu
- The State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Hengda Li
- The State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Aoqi Song
- Department of Pharmacy, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Wu Yin
- The State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China.
| |
Collapse
|
10
|
Bezerra WADS, Tavares CP, Rocha CQD, Vaz Junior IDS, Michels PA, Costa Junior LM, Soares AMDS. Anonaine from Annona crassiflora inhibits glutathione S-transferase and improves cypermethrin activity on Rhipicephalus (Boophilus) microplus (Canestrini, 1887). Exp Parasitol 2022; 243:108398. [DOI: 10.1016/j.exppara.2022.108398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/29/2022]
|
11
|
Identification of L. infantum trypanothione synthetase inhibitors with leishmanicidal activity from a (non-biased) in-house chemical library. Eur J Med Chem 2022; 243:114675. [DOI: 10.1016/j.ejmech.2022.114675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 11/21/2022]
|
12
|
NIITSU Y, SATO Y, TAKAYAMA T. Implications of glutathione-S transferase P1 in MAPK signaling as a CRAF chaperone: In memory of Dr. Irving Listowsky. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2022; 98:72-86. [PMID: 35153270 PMCID: PMC8890996 DOI: 10.2183/pjab.98.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Glutathione-S transferase P1 (GSTP1) is one of the glutathione-S transferase isozymes that belong to a family of phase II metabolic isozymes. The unique feature of GSTP1 compared with other GST isozymes is its relatively high expression in malignant tissues. Thus, clinically, GSTP1 serves as a tumor marker and as a refractory factor against certain types of anticancer drugs through its primary function as a detoxifying enzyme. Additionally, recent studies have identified a chaperone activity of GSTP1 involved in the regulation the function of various intracellular proteins, including factors of the growth signaling pathway. In this review, we will first describe the function of GSTP1 and then extend the details onto its role in the mitogen-activated protein kinase signal pathway, referring to the results of our recent study that proposed a novel autocrine signal loop formed by the CRAF/GSTP1 complex in mutated KRAS and BRAF cancers. Finally, the possibilities of new therapeutic approaches for these cancers by targeting this complex will be discussed.
Collapse
Affiliation(s)
- Yoshiro NIITSU
- Oncology Section, Center of Advanced Medicine, Shonan Kamakura Innovation Park, Shonan Kamakura General Hospital, Kamakura, Kanagawa, Japan
- Sapporo Medical University, Sapporo, Hokkaido, Japan
| | - Yasushi SATO
- Department of Community Medicine for Gastroenterology and Oncology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Tetsuji TAKAYAMA
- Department of Community Medicine for Gastroenterology and Oncology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| |
Collapse
|
13
|
Geib T, Lento C, Marensi V, Thulasingam M, Haeggström JZ, Olsson M, Wilson DJ, Leslie EM, Sleno L. Determining site occupancy of acetaminophen covalent binding to target proteins in vitro. ANALYTICAL SCIENCE ADVANCES 2021; 2:263-271. [PMID: 38716151 PMCID: PMC10989598 DOI: 10.1002/ansa.202000182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/08/2021] [Accepted: 03/11/2021] [Indexed: 11/17/2024]
Abstract
Acetaminophen (APAP)-related toxicity is caused by the formation of N-acetyl p-benzoquinone imine (NAPQI), a reactive metabolite able to covalently bind to protein thiols. A targeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) method, using multiple reaction monitoring (MRM), was developed to measure APAP binding on selected target proteins, including glutathione S-transferases (GSTs). In vitro incubations with CYP3A4 were performed to form APAP in the presence of different proteins, including four purified GST isozymes. A custom alkylation agent was used to prepare heavy labeled modified protein containing a structural isomer of APAP on all cysteine residues for isotope dilution. APAP incubations were spiked with heavy labeled protein, digested with either trypsin or pepsin, followed by peptide fractionation by HPLC prior to LC-MRM analysis. Relative site occupancy on the protein-level was used for comparing levels of modification of different sites in target proteins, after validation of protein and peptide-level relative quantitation using human serum albumin as a model system. In total, seven modification sites were quantified, namely Cys115 and 174 in GSTM2, Cys15, 48 and 170 in GSTP1, and Cys50 in human MGST1 and rat MGST1. In addition, APAP site occupancies of three proteins from liver microsomes were also quantified by using heavily labeled microsomes spiked into APAP microsomal incubations. A novel approach employing an isotope-labeled alkylation reagent was used to determine site occupancies on multiple protein thiols.
Collapse
Affiliation(s)
- Timon Geib
- Chemistry DepartmentUniversité du Québec à MontréalMontréalCanada
| | - Cristina Lento
- Department of Chemistry/The Centre for Research in Mass SpectrometryYork UniversityTorontoCanada
| | | | - Madhuranayaki Thulasingam
- Division of Physiological Chemistry IIDepartment of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSweden
| | - Jesper Z. Haeggström
- Division of Physiological Chemistry IIDepartment of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSweden
| | - Magnus Olsson
- Unit of Biochemical ToxicologyInstitute of Environmental MedicineKarolinska InstitutetStockholmSweden
| | - Derek J. Wilson
- Department of Chemistry/The Centre for Research in Mass SpectrometryYork UniversityTorontoCanada
| | | | - Lekha Sleno
- Chemistry DepartmentUniversité du Québec à MontréalMontréalCanada
| |
Collapse
|
14
|
Rajapaksha H, Pandithavidana DR, Dahanayake JN. Demystifying Chronic Kidney Disease of Unknown Etiology (CKDu): Computational Interaction Analysis of Pesticides and Metabolites with Vital Renal Enzymes. Biomolecules 2021; 11:261. [PMID: 33578980 PMCID: PMC7916818 DOI: 10.3390/biom11020261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/29/2021] [Accepted: 02/05/2021] [Indexed: 12/28/2022] Open
Abstract
Chronic kidney disease of unknown etiology (CKDu) has been recognized as a global non-communicable health issue. There are many proposed risk factors for CKDu and the exact reason is yet to be discovered. Understanding the inhibition or manipulation of vital renal enzymes by pesticides can play a key role in understanding the link between CKDu and pesticides. Even though it is very important to take metabolites into account when investigating the relationship between CKDu and pesticides, there is a lack of insight regarding the effects of pesticide metabolites towards CKDu. In this study, a computational approach was used to study the effects of pesticide metabolites on CKDu. Further, interactions of selected pesticides and their metabolites with renal enzymes were studied using molecular docking and molecular dynamics simulation studies. It was evident that some pesticides and metabolites have affinity to bind at the active site or at regulatory sites of considered renal enzymes. Another important discovery was the potential of some metabolites to have higher binding interactions with considered renal enzymes compared to the parent pesticides. These findings raise the question of whether pesticide metabolites may be a main risk factor towards CKDu.
Collapse
Affiliation(s)
| | | | - Jayangika N. Dahanayake
- Department of Chemistry, Faculty of Science, University of Kelaniya, Dalugama, Kelaniya 11600, Western Province, Sri Lanka; (H.R.); (D.R.P.)
| |
Collapse
|
15
|
Zhang XX, Qi H, Liu YL, Yang SQ, Li P, Qiao Y, Zhang PY, Wen SH, Piao HL, Han KL. A fluorophore's electron-deficiency does matter in designing high-performance near-infrared fluorescent probes. Chem Sci 2020; 11:11205-11213. [PMID: 34094361 PMCID: PMC8162715 DOI: 10.1039/d0sc04411c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The applications of most fluorescent probes available for Glutathione S-Transferases (GSTs), including NI3 which we developed recently based on 1,8-naphthalimide (NI), are limited by their short emission wavelengths due to insufficient penetration. To realize imaging at a deeper depth, near-infrared (NIR) fluorescent probes are required. Here we report for the first time the designing of NIR fluorescent probes for GSTs by employing the NIR fluorophore HCy which possesses a higher brightness, hydrophilicity and electron-deficiency relative to NI. Intriguingly, with the same receptor unit, the HCy-based probe is always more reactive towards glutathione than the NI-based one, regardless of the specific chemical structure of the receptor unit. This was proved to result from the higher electron-deficiency of HCy instead of its higher hydrophilicity based on a comprehensive analysis. Further, with caging of the autofluorescence being crucial and more difficult to achieve via photoinduced electron transfer (PET) for a NIR probe, the quenching mechanism of HCy-based probes was proved to be PET for the first time with femtosecond transient absorption and theoretical calculations. Thus, HCy2 and HCy9, which employ receptor units less reactive than the one adopted in NI3, turned out to be the most appropriate NIR probes with high-sensitivity and little nonenzymatic background noise. They were then successfully applied to detecting GST in cells, tissues and tumor xenografts in vivo. Additionally, unlike HCy2 with a broad isoenzyme selectivity, HCy9 is specific for GSTA1-1, which is attributed to its lower reactivity and the higher effectiveness of GSTA1-1 in stabilizing the active intermediate via H-bonds based on docking simulations. An abnormal and intriguing phenomenon that the fluorophore's electron-deficiency could affect a probe's performance is now revealed for the first time.![]()
Collapse
Affiliation(s)
- Xue-Xiang Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 P. R. China
| | - Huan Qi
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 P. R. China
| | - Ya-Lan Liu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 P. R. China
| | - Song-Qiu Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 P. R. China
| | - Peng Li
- Institute of Molecular Sciences and Engineering, Shandong University Qingdao 266237 P. R. China
| | - Yan Qiao
- Department of Pathophysiology, Basic Medical College of Zhengzhou University Zhengzhou 450001 P. R. China
| | - Pei-Yu Zhang
- Shenzhen Jingtai Technology Co., Ltd Floor 4, No. 9, Hualian Industrial Zone, Dalang Street, Longhua District Shenzhen P. R. China
| | - Shu-Hao Wen
- Shenzhen Jingtai Technology Co., Ltd Floor 4, No. 9, Hualian Industrial Zone, Dalang Street, Longhua District Shenzhen P. R. China
| | - Hai-Long Piao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 P. R. China
| | - Ke-Li Han
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 P. R. China .,Institute of Molecular Sciences and Engineering, Shandong University Qingdao 266237 P. R. China
| |
Collapse
|
16
|
Elkin ER, Harris SM, Su AL, Lash LH, Loch-Caruso R. Placenta as a target of trichloroethylene toxicity. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:472-486. [PMID: 32022077 PMCID: PMC7103546 DOI: 10.1039/c9em00537d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Trichloroethylene (TCE) is an industrial solvent and a common environmental contaminant detected in thousands of hazardous waste sites. Risk of exposure is a concern for workers in occupations that use TCE as well as for residents who live near industries that use TCE or who live near TCE-contaminated sites. Although renal, hepatic and carcinogenic effects of TCE have been documented, less is known about TCE impacts on reproductive functions despite epidemiology reports associating maternal TCE exposure with adverse pregnancy outcomes. Toxicological evidence suggests that the placenta mediates at least some of the adverse pregnancy outcomes associated with TCE exposure. Toxicology studies show that the TCE metabolite, S-(1,2-dichlorovinyl)-l-cysteine (DCVC) generates toxic effects such as mitochondrial dysfunction, apoptosis, oxidative stress, and release of prostaglandins and pro-inflammatory cytokines in placental cell lines. Each of these mechanisms of toxicity have significant implications for placental functions and, thus, ultimately the health of mother and developing child. Despite these findings there remain significant gaps in our knowledge about effects of TCE on the placenta, including effects on specific placental cell types and functions as well as sex differences in response to TCE exposure. Due to the critical role that the placenta plays in pregnancy, future research addressing some of these knowledge gaps could lead to significant gains in public health.
Collapse
Affiliation(s)
- Elana R Elkin
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109-2029, USA.
| | | | | | | | | |
Collapse
|
17
|
Geib T, Lento C, Wilson DJ, Sleno L. Liquid Chromatography-Tandem Mass Spectrometry Analysis of Acetaminophen Covalent Binding to Glutathione S-Transferases. Front Chem 2019; 7:558. [PMID: 31457004 PMCID: PMC6700392 DOI: 10.3389/fchem.2019.00558] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/22/2019] [Indexed: 01/12/2023] Open
Abstract
Acetaminophen (APAP)-induced hepatotoxicity is the most common cause of acute liver failure in the Western world. APAP is bioactivated to N-acetyl p-benzoquinone imine (NAPQI), a reactive metabolite, which can subsequently covalently bind to glutathione and protein thiols. In this study, we have used liquid chromatography-tandem mass spectrometry (LC-MS/MS) to characterize NAPQI binding to human glutathione S-transferases (GSTs) in vitro. GSTs play a crucial role in the detoxification of reactive metabolites and therefore are interesting target proteins to study in the context of APAP covalent binding. Recombinantly-expressed and purified GSTs were used to assess NAPQI binding in vitro. APAP biotransformation to NAPQI was achieved using rat liver microsomes or human cytochrome P450 Supersomes in the presence of GSTA1, M1, M2, or P1. Resulting adducts were analyzed using bottom-up proteomics, with or without LC fractionation prior to LC-MS/MS analysis on a quadrupole-time-of-flight instrument with data-dependent acquisition (DDA). Targeted methods using multiple reaction monitoring (MRM) on a triple quadrupole platform were also developed by quantitatively labeling all available cysteine residues with a labeling reagent yielding isomerically-modified peptides following enzymatic digestion. Seven modified cysteine sites were confirmed, including Cys112 in GSTA1, Cys78 in GSTM1, Cys115 and 174 in GSTM2, as well as Cys15, 48, and 170 in GSTP1. Most modified peptides could be detected using both untargeted (DDA) and targeted (MRM) approaches, however the latter yielded better detection sensitivity with higher signal-to-noise and two sites were uniquely found by MRM.
Collapse
Affiliation(s)
- Timon Geib
- Chemistry Department, Université du Québec à Montréal, Montréal, QC, Canada
| | - Cristina Lento
- Department of Chemistry, The Centre for Research in Mass Spectrometry, York University, Toronto, ON, Canada
| | - Derek J Wilson
- Department of Chemistry, The Centre for Research in Mass Spectrometry, York University, Toronto, ON, Canada
| | - Lekha Sleno
- Chemistry Department, Université du Québec à Montréal, Montréal, QC, Canada
| |
Collapse
|
18
|
Yang J, Gu W, Li Y. Biological enrichment prediction of polychlorinated biphenyls and novel molecular design based on 3D-QSAR/HQSAR associated with molecule docking. Biosci Rep 2019; 39:BSR20180409. [PMID: 31101726 PMCID: PMC6522710 DOI: 10.1042/bsr20180409] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 11/28/2022] Open
Abstract
Based on the experimental data of octanol-water partition coefficients (Kow, represents bioaccumulation) for 13 polychlorinated biphenyl (PCB) congeners, comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were used to establish 3D-QSAR models, combined with the hologram quantitative structure-activity relationship (HQSAR), the substitution sites (mono-substituted and bis-substituted) and substituent groups (electron-withdrawing hydrophobic groups) that significantly affect the octanol-water partition coefficients values of PCBs were identified, a total of 63 monosubstituted and bis-substituted were identified. Compared with using 3D-QSAR model alone, the coupling of 3D-QSAR and HQSAR models greatly increased the number of newly designed bis-substituted molecules, and the logKow reduction in newly designed bis-substituted molecules was larger than that of monosubstituted molecules. This was established to predict the Kow values of 196 additional PCBs and carry out a modification of target molecular PCB-207 to lower its Kow (biological enrichment) significantly, simultaneously maintaining the flame retardancy and insulativity after calculation by using Gaussian09. Simultaneously, molecular docking could further screen out three more environmental friendly low biological enrichment newly designed PCB-207 molecules (5-methyl-PCB-207, 5-amino-PCB-207, and 4-amino-5-ethyl-PCB-207).
Collapse
Affiliation(s)
- Jiawen Yang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, China
- Moe Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing, China
| | - Wenwen Gu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, China
- Moe Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing, China
| | - Yu Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, China
- Moe Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing, China
| |
Collapse
|
19
|
Nelson DR, Chaiboonchoe A, Fu W, Hazzouri KM, Huang Z, Jaiswal A, Daakour S, Mystikou A, Arnoux M, Sultana M, Salehi-Ashtiani K. Potential for Heightened Sulfur-Metabolic Capacity in Coastal Subtropical Microalgae. iScience 2019; 11:450-465. [PMID: 30684492 PMCID: PMC6348204 DOI: 10.1016/j.isci.2018.12.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/07/2018] [Accepted: 12/28/2018] [Indexed: 12/05/2022] Open
Abstract
The activities of microalgae support nutrient cycling that helps to sustain aquatic and terrestrial ecosystems. Most microalgal species, especially those from the subtropics, are genomically uncharacterized. Here we report the isolation and genomic characterization of 22 microalgal species from subtropical coastal regions belonging to multiple clades and three from temperate areas. Halotolerant strains including Halamphora, Dunaliella, Nannochloris, and Chloroidium comprised the majority of these isolates. The subtropical-based microalgae contained arrays of methyltransferase, pyridine nucleotide-disulfide oxidoreductase, abhydrolase, cystathionine synthase, and small-molecule transporter domains present at high relative abundance. We found that genes for sulfate transport, sulfotransferase, and glutathione S-transferase activities were especially abundant in subtropical, coastal microalgal species and halophytic species in general. Our metabolomics analyses indicate lineage- and habitat-specific sets of biomolecules implicated in niche-specific biological processes. This work effectively expands the collection of available microalgal genomes by ∼50%, and the generated resources provide perspectives for studying halophyte adaptive traits. We have sequenced 20+ microallgal genomes from the subtropics This new collection increases the available microalgal genomes by ∼50% Metabolomics indicates lineage- and habitat-specificity of biomolecules Coastal, subtropical species of microalgae show expansion of sulfur-metabolic genes
Collapse
Affiliation(s)
- David R Nelson
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, UAE
| | | | - Weiqi Fu
- Division of Science and Math, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Khaled M Hazzouri
- Khalifa Center for Genetic Engineering and Biotechnology (KCGEB), United Arab Emirates University, Al-Ain, UAE
| | - Ziyuan Huang
- Department of Computer Science, New York University Shanghai, Shanghai, China
| | - Ashish Jaiswal
- Division of Science and Math, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Sarah Daakour
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Alexandra Mystikou
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Marc Arnoux
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Mehar Sultana
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Kourosh Salehi-Ashtiani
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, UAE; Division of Science and Math, New York University Abu Dhabi, Abu Dhabi, UAE.
| |
Collapse
|
20
|
Markus V, Teralı K, Dalmizrak O, Ozer N. Assessment of the inhibitory activity of the pyrethroid pesticide deltamethrin against human placental glutathione transferase P1-1: A combined kinetic and docking study. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 61:18-23. [PMID: 29807309 DOI: 10.1016/j.etap.2018.05.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 04/17/2018] [Accepted: 05/21/2018] [Indexed: 06/08/2023]
Abstract
Deltamethrin (DEL), which is a synthetic pyrethroid insecticide, has been used successfully all over the world to treat mosquito nets for the control of malaria. Glutathione S-transferases (GSTs; EC 2.5.1.18) catalyze the conjugation of reduced glutathione (GSH) to a variety of xenobiotics and are normally recognized as detoxification enzymes. Here, we used a colorimetric assay based on the human placental GSTP1-1 (hpGSTP1-1)-catalyzed reaction between GSH and the model substrate 1-chloro-2,4-dinitrobenzene (CDNB) as well as molecular docking to investigate the mechanistic and structural aspects of hpGSTP1-1 inhibition by DEL. We show that DEL is a potent, noncompetitive inhibitor of hpGSTP1-1 with an IC50 value of 6.1 μM and Ki values of 5.61 ± 0.32 μM and 7.96 ± 0.97 μM at fixed [CDNB]-varied [GSH] and fixed [GSH]-varied [CDNB], respectively. DEL appears to be accommodated well in an eccentric cavity located at the interface of the hpGSTP1-1 homodimer, presumably causing conformational changes to the enzyme's substrate-binding sites such that the enzyme is no longer able to transform GSH and CDNB effectively. Correspondingly, considerable maternal exposure to and subsequent accumulation of DEL may interfere with the proper development of the vulnerable fetus, possibly increasing the risk of developing congenital defects.
Collapse
Affiliation(s)
- Victor Markus
- Department of Medical Biochemistry, Faculty of Medicine, Near East University, Nicosia, TRNC, 99138, Mersin 10, Turkey
| | - Kerem Teralı
- Department of Medical Biochemistry, Faculty of Medicine, Near East University, Nicosia, TRNC, 99138, Mersin 10, Turkey
| | - Ozlem Dalmizrak
- Department of Medical Biochemistry, Faculty of Medicine, Near East University, Nicosia, TRNC, 99138, Mersin 10, Turkey
| | - Nazmi Ozer
- Department of Medical Biochemistry, Faculty of Medicine, Near East University, Nicosia, TRNC, 99138, Mersin 10, Turkey.
| |
Collapse
|
21
|
Drug metabolizing enzymes and their inhibitors' role in cancer resistance. Biomed Pharmacother 2018; 105:53-65. [PMID: 29843045 DOI: 10.1016/j.biopha.2018.05.117] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 05/21/2018] [Accepted: 05/23/2018] [Indexed: 12/15/2022] Open
Abstract
Despite continuous research on chemotherapeutic agents, different mechanisms of resistance have become a major pitfall in cancer chemotherapy. Although, exhaustive efforts are being made by several researchers to target resistance against chemotherapeutic agents, there is another class of resistance mechanism which is almost carrying on unattended. This class of resistance includes pharmacokinetics resistance such as efflux by ABC transporters and drug metabolizing enzymes. ABC transporters are the membrane bound proteins which are responsible for the movement of substrates through the cell membrane. Drug metabolizing enzymes are an integral part of phase-II metabolism that helps in the detoxification of exogenous, endogenous and xenobiotics substrates. These include uridine diphospho-glucuronosyltransferases (UGTs), glutathione-S-transferases (GSTs), dihydropyrimidine dehydrogenases (DPDs) and thiopurine methyltransferases (TPMTs). These enzymes may affect the role of drugs in both positive as well negative manner, depending upon the type of tissue and cells present and when present in tumors, can result in drug resistance. However, the underlying mechanism of resistance by drug metabolizing enzymes is still not clear. Here, we have tried to cover various aspects of these enzymes in relation to anticancer drugs.
Collapse
|
22
|
van Onselen R, Downing T. BMAA-protein interactions: A possible new mechanism of toxicity. Toxicon 2018; 143:74-80. [DOI: 10.1016/j.toxicon.2018.01.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 01/16/2018] [Accepted: 01/18/2018] [Indexed: 02/08/2023]
|
23
|
Abstract
Probes that detect specific biological materials are indispensable tools for deepening our understanding of various cellular phenomena. In live cell imaging, the probe must emit fluorescence only when a specific substance is detected. In this paper, we introduce a new probe we developed for live cell imaging. Glutathione S-transferase (GST) activity is higher in tumor cells than in normal cells and is involved in the development of resistance to various anticancer drugs. We previously reported the development of a general strategy for the synthesis of probes for detection of GST enzymes, including fluorogenic, bioluminogenic, and 19F-NMR probes. Arylsulfonyl groups were used as caging groups during probe design. The fluorogenic probes were successfully used to quantitate very low levels of GST activity in cell extracts and were also successfully applied to the imaging of microsomal MGST1 activity in living cells. The bioluminogenic and 19F-NMR probes were able to detect GST activity in Escherichia coli cells. Oligonucleotide-templated reactions are powerful tools for nucleic acid sensing. This strategy exploits the target strand as a template for two functionalized probes and provides a simple molecular mechanism for multiple turnover reactions. We developed a nucleophilic aromatic substitution reaction-triggered fluorescent probe. The probe completed its reaction within 30 s of initiation and amplified the fluorescence signal from 0.5 pM target oligonucleotide by 1500 fold under isothermal conditions. Additionally, we applied the oligonucleotide-templated reaction for molecular releasing and peptide detection.
Collapse
|
24
|
Association of Glutathione S-Transferase P-1 (GSTP-1) rs1695 polymorphism with overall survival in glioblastoma patients treated with combined radio-chemotherapy. Invest New Drugs 2017; 36:340-345. [DOI: 10.1007/s10637-017-0516-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 09/22/2017] [Indexed: 01/08/2023]
|
25
|
Elegheert J, Brigé A, Van Beeumen J, Savvides SN. Structural dissection ofShewanella oneidensisold yellow enzyme 4 bound to a Meisenheimer complex and (nitro)phenolic ligands. FEBS Lett 2017; 591:3391-3401. [DOI: 10.1002/1873-3468.12833] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 08/17/2017] [Accepted: 08/25/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Jonathan Elegheert
- Laboratory for Protein Biochemistry and Biomolecular Engineering (L-ProBE); Department of Biochemistry and Microbiology; Ghent University; Belgium
| | - Ann Brigé
- Laboratory for Protein Biochemistry and Biomolecular Engineering (L-ProBE); Department of Biochemistry and Microbiology; Ghent University; Belgium
- Ablynx NV; Zwijnaarde Belgium
| | - Jozef Van Beeumen
- Laboratory for Protein Biochemistry and Biomolecular Engineering (L-ProBE); Department of Biochemistry and Microbiology; Ghent University; Belgium
| | - Savvas N. Savvides
- Laboratory for Protein Biochemistry and Biomolecular Engineering (L-ProBE); Department of Biochemistry and Microbiology; Ghent University; Belgium
- VIB-UGent Center for Inflammation Research (IRC); Ghent University; Zwijnaarde Belgium
| |
Collapse
|
26
|
Mohana K, Achary A. Human cytosolic glutathione-S-transferases: quantitative analysis of expression, comparative analysis of structures and inhibition strategies of isozymes involved in drug resistance. Drug Metab Rev 2017; 49:318-337. [DOI: 10.1080/03602532.2017.1343343] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Krishnamoorthy Mohana
- Department of Biotechnology, Centre for Research, Kamaraj College of Engineering and Technology, Virudhunagar, India
| | - Anant Achary
- Department of Biotechnology, Centre for Research, Kamaraj College of Engineering and Technology, Virudhunagar, India
| |
Collapse
|
27
|
Basharat Z, Yasmin A. Energy landscape of a GSTP1 polymorph linked with cytological function decay in response to chemical stressors. Gene 2017; 609:19-27. [PMID: 28153749 DOI: 10.1016/j.gene.2017.01.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 11/20/2016] [Accepted: 01/27/2017] [Indexed: 12/19/2022]
Abstract
Gene polymorphisms lead to varied structure and functional properties. A single nucleotide polymorphism (SNP) i.e. Ile105Val (rs1695) in glutathione S-transferase P1 (GSTP1) gene influences cytological toxicity and modulates the risk to occupational diseases. Apart from this, cancer, neuropathy, NOx, SOx and ozone mediated respiratory function decline including lung inflammation, asthma, allergy etc., have been reported in people with this missense mutation. Here, the functional properties of rs1695 polymorph are revisited through a computational approach. Changes incurred by GSTP1 antioxidant protein as a result of alteration in its sequence, have been studied through docking followed by Poisson-Boltzmann electrostatic equation interpretation, grid and coulombic energy profile mapping for protein polymorphs with DelPhi. Molecular docking simulation of variant and wild type (WT) protein was carried out with eight FDA approved compounds that target GSTP1 for treatment of various diseases. This was to observe binding pattern variation upon mutation induction. Grid, reaction field and coulombic energy calculation of WT and mutated polymorph, complexed with and without these moieties was then attempted. Alteration in conformation and energy was observed in apo- and holo- form of GSTP1 and their ligand-bound complexes as a result of this mutation. This study is a demo of appraising gene-environment interaction based deleteriousness through molecular docking and dynamics simulation approach.
Collapse
Affiliation(s)
- Zarrin Basharat
- Microbiology & Biotechnology Research Lab, Department of Environmental Sciences, Fatima Jinnah Women University, Rawalpindi 46000, Pakistan.
| | - Azra Yasmin
- Microbiology & Biotechnology Research Lab, Department of Environmental Sciences, Fatima Jinnah Women University, Rawalpindi 46000, Pakistan
| |
Collapse
|
28
|
Al-Qattan MN, Mordi MN, Mansor SM. Assembly of ligands interaction models for glutathione-S-transferases from Plasmodium falciparum, human and mouse using enzyme kinetics and molecular docking. Comput Biol Chem 2016; 64:237-249. [PMID: 27475235 DOI: 10.1016/j.compbiolchem.2016.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 07/08/2016] [Accepted: 07/16/2016] [Indexed: 01/12/2023]
Abstract
BACKGROUND Glutathione-s-transferases (GSTs) are enzymes that principally catalyze the conjugation of electrophilic compounds to the endogenous nucleophilic glutathione substrate, besides, they have other non-catalytic functions. The Plasmodium falciparum genome encodes a single isoform of GST (PfGST) which is involved in buffering the toxic heme, thus considered a potential anti-malarial target. In mammals several classes of GSTs are available, each of various isoforms. The human (human GST Pi-1 or hGSTP1) and mouse (murine GST Mu-1 or mGSTM1) GST isoforms control cellular apoptosis by interaction with signaling proteins, thus considered as potential anti-cancer targets. In the course of GSTs inhibitors development, the models of ligands interactions with GSTs are used to guide rational molecular modification. In the absence of X-ray crystallographic data, enzyme kinetics and molecular docking experiments can aid in addressing ligands binding modes to the enzymes. METHODS Kinetic studies were used to investigate the interactions between the three GSTs and each of glutathione, 1-chloro-2,4-dinitrobenzene, cibacron blue, ethacrynic acid, S-hexyl glutathione, hemin and protoporphyrin IX. Since hemin displacement is intended for PfGST inhibitors, the interactions between hemin and other ligands at PfGST binding sites were studied kinetically. Computationally determined binding modes and energies were interlinked with the kinetic results to resolve enzymes-ligands interaction models at atomic level. RESULTS The results showed that hemin and cibacron blue have different binding modes in the three GSTs. Hemin has two binding sites (A and B) with two binding modes at site-A depending on presence of GSH. None of the ligands were able to compete hemin binding to PfGST except ethacrynic acid. Besides bind differently in GSTs, the isolated anthraquinone moiety of cibacron blue is not maintaining sufficient interactions with GSTs to be used as a lead. Similarly, the ethacrynic acid uses water bridges to mediate interactions with GSTs and at least the conjugated form of EA is the true hemin inhibitor, thus EA may not be a suitable lead. CONCLUSIONS Glutathione analogues with bulky substitution at thiol of cysteine moiety or at γ-amino group of γ-glutamine moiety may be the most suitable to provide GST inhibitors with hemin competition.
Collapse
Affiliation(s)
| | - Mohd Nizam Mordi
- Centre For Drug Research, Universiti Sains Malaysia. Gelugor 11700 Penang, Malaysia
| | | |
Collapse
|
29
|
Fang Y, Ding Y, Feinstein WP, Koppelman DM, Moreno J, Jarrell M, Ramanujam J, Brylinski M. GeauxDock: Accelerating Structure-Based Virtual Screening with Heterogeneous Computing. PLoS One 2016; 11:e0158898. [PMID: 27420300 PMCID: PMC4946785 DOI: 10.1371/journal.pone.0158898] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 06/23/2016] [Indexed: 12/19/2022] Open
Abstract
Computational modeling of drug binding to proteins is an integral component of direct drug design. Particularly, structure-based virtual screening is often used to perform large-scale modeling of putative associations between small organic molecules and their pharmacologically relevant protein targets. Because of a large number of drug candidates to be evaluated, an accurate and fast docking engine is a critical element of virtual screening. Consequently, highly optimized docking codes are of paramount importance for the effectiveness of virtual screening methods. In this communication, we describe the implementation, tuning and performance characteristics of GeauxDock, a recently developed molecular docking program. GeauxDock is built upon the Monte Carlo algorithm and features a novel scoring function combining physics-based energy terms with statistical and knowledge-based potentials. Developed specifically for heterogeneous computing platforms, the current version of GeauxDock can be deployed on modern, multi-core Central Processing Units (CPUs) as well as massively parallel accelerators, Intel Xeon Phi and NVIDIA Graphics Processing Unit (GPU). First, we carried out a thorough performance tuning of the high-level framework and the docking kernel to produce a fast serial code, which was then ported to shared-memory multi-core CPUs yielding a near-ideal scaling. Further, using Xeon Phi gives 1.9× performance improvement over a dual 10-core Xeon CPU, whereas the best GPU accelerator, GeForce GTX 980, achieves a speedup as high as 3.5×. On that account, GeauxDock can take advantage of modern heterogeneous architectures to considerably accelerate structure-based virtual screening applications. GeauxDock is open-sourced and publicly available at www.brylinski.org/geauxdock and https://figshare.com/articles/geauxdock_tar_gz/3205249.
Collapse
Affiliation(s)
- Ye Fang
- School of Electrical Engineering and Computer Science, Louisiana State University, Baton Rouge, Louisiana, United States of America
- Center for Computation & Technology, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Yun Ding
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Wei P. Feinstein
- High-Performance Computing, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - David M. Koppelman
- School of Electrical Engineering and Computer Science, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Juana Moreno
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana, United States of America
- Center for Computation & Technology, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Mark Jarrell
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana, United States of America
- Center for Computation & Technology, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - J. Ramanujam
- School of Electrical Engineering and Computer Science, Louisiana State University, Baton Rouge, Louisiana, United States of America
- Center for Computation & Technology, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Michal Brylinski
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
- Center for Computation & Technology, Louisiana State University, Baton Rouge, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
30
|
Bartolini D, Galli F. The functional interactome of GSTP: A regulatory biomolecular network at the interface with the Nrf2 adaption response to oxidative stress. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1019:29-44. [DOI: 10.1016/j.jchromb.2016.02.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 02/01/2016] [Accepted: 02/02/2016] [Indexed: 01/01/2023]
|
31
|
Perbandt M, Eberle R, Fischer-Riepe L, Cang H, Liebau E, Betzel C. High resolution structures of Plasmodium falciparum GST complexes provide novel insights into the dimer-tetramer transition and a novel ligand-binding site. J Struct Biol 2015; 191:365-75. [PMID: 26072058 DOI: 10.1016/j.jsb.2015.06.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 06/08/2015] [Accepted: 06/09/2015] [Indexed: 10/23/2022]
Abstract
Protection from oxidative stress and efficient redox regulation are essential for malarial parasites which have to grow and multiply rapidly in pro-oxidant rich environments. Therefore, redox active proteins currently belong to the most attractive antimalarial drug targets. The glutathione S-transferase from Plasmodium falciparum (PfGST) is a redox active protein displaying a peculiar dimer-tetramer transition that causes full enzyme-inactivation. This distinct structural feature is absent in mammalian GST isoenzyme counterparts. A flexible loop between residues 113-119 has been reported to be necessary for this tetramerization process. However, here we present structural data of a modified PfGST lacking loop 113-119 at 1.9 Å resolution. Our results clearly show that this loop is not essential for the formation of stable tetramers. Moreover we present for the first time the structures of both, the inactive and tetrameric state at 1.7 Å and the active dimeric state in complex with reduced glutathione at 2.4 Å resolution. Surprisingly, the structure of the inactive tetrameric state reveals a novel non-substrate binding-site occupied by a 2-(N-morpholino) ethane sulfonic acid (MES) molecule in each monomer. Although it is known that the PfGST has the ability to bind lipophilic anionic ligands, the location of the PfGST ligand-binding site remained unclear up to now.
Collapse
Affiliation(s)
- Markus Perbandt
- Institute of Biochemistry and Molecular Biology, University of Hamburg, Laboratory of Structural Biology of Infection and Inflammation, c/o DESY, Notkestr. 85, Build. 22a, D-22603 Hamburg, Germany; Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), D-20246 Hamburg, Germany; The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, D-22761 Hamburg, Germany.
| | - Raphael Eberle
- Institute of Biochemistry and Molecular Biology, University of Hamburg, Laboratory of Structural Biology of Infection and Inflammation, c/o DESY, Notkestr. 85, Build. 22a, D-22603 Hamburg, Germany
| | - Lena Fischer-Riepe
- Department of Molecular Physiology, University of Münster, Schlossplatz 8, D-48143 Münster, Germany
| | - Huaixing Cang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Eva Liebau
- Department of Molecular Physiology, University of Münster, Schlossplatz 8, D-48143 Münster, Germany
| | - Christian Betzel
- Institute of Biochemistry and Molecular Biology, University of Hamburg, Laboratory of Structural Biology of Infection and Inflammation, c/o DESY, Notkestr. 85, Build. 22a, D-22603 Hamburg, Germany; The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, D-22761 Hamburg, Germany
| |
Collapse
|
32
|
Groom H, Lee M, Patil P, Josephy PD. Inhibition of human glutathione transferases by dinitronaphthalene derivatives. Arch Biochem Biophys 2014; 555-556:71-6. [DOI: 10.1016/j.abb.2014.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 05/29/2014] [Accepted: 06/02/2014] [Indexed: 10/25/2022]
|
33
|
Shibata A, Nakano Y, Ito M, Araki M, Zhang J, Yoshida Y, Shuto S, Mannervik B, Morgenstern R, Mogenstern R, Ito Y, Abe H. Fluorogenic probes using 4-substituted-2-nitrobenzenesulfonyl derivatives as caging groups for the analysis of human glutathione transferase catalyzed reactions. Analyst 2014; 138:7326-30. [PMID: 24151635 DOI: 10.1039/c3an01339a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have synthesized a series of 4-substituted-2-nitrobenzene-sulfonyl compounds for caged fluorogenic probes and conducted a Hammett plot analysis using the steady-state kinetic parameters. The results revealed that the glutathione transferase (GST) alpha catalyzed reaction was dependent on the σ value in the same way as the non-enzymatic reaction, whereas the dependence of the σ value of the GST mu and pi was not as pronounced as that of GST alpha.
Collapse
Affiliation(s)
- Aya Shibata
- Nano Medical Engineering Laboratory, RIKEN, 2-1 Hirosawa, Wako-Shi, Saitama 351-0198, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Maciag AE, Holland RJ, Kim Y, Kumari V, Luthers C, Sehareen WS, Biswas D, Morris NL, Ji X, Anderson LM, Saavedra JE, Keefer LK. Nitric oxide (NO) releasing poly ADP-ribose polymerase 1 (PARP-1) inhibitors targeted to glutathione S-transferase P1-overexpressing cancer cells. J Med Chem 2014; 57:2292-302. [PMID: 24521039 PMCID: PMC3983374 DOI: 10.1021/jm401550d] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Indexed: 11/29/2022]
Abstract
We report the antitumor effects of nitric oxide (NO) releasing derivatives of the PARP-1 inhibitor olaparib (1). Compound 5b was prepared by coupling the carboxyl group of 3b and the free amino group of arylated diazeniumdiolated piperazine 4. Analogue 5a has the same structure except that the F is replaced by H. Compound 13 is the same as 5b except that a Me2N-N(O)═NO- group was added para and ortho to the nitro groups of the dinitrophenyl ring. The resulting prodrugs are activated by glutathione in a reaction accelerated by glutathione S-transferase P1 (GSTP1), an enzyme frequently overexpressed in cancers. This metabolism generates NO plus a PARP-1 inhibitor simultaneously, consuming reducing equivalents, leading to DNA damage concomitant with inhibition of DNA repair, and in the case of 13 inducing cross-linking glutathionylation of proteins. Compounds 5b and 13 reduced the growth rates of A549 human lung adenocarcinoma xenografts with no evidence of systemic toxicity.
Collapse
Affiliation(s)
- Anna E. Maciag
- Chemical
Biology Laboratory, Leidos Biomedical Research,
Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Ryan J. Holland
- Chemical
Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Youseung Kim
- Chemical
Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Vandana Kumari
- Macromolecular
Crystallography Laboratory, National Cancer
Institute, Frederick, Maryland 21702, United
States
| | - Christina
E. Luthers
- Chemical
Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Waheed S. Sehareen
- Chemical
Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Debanjan Biswas
- Chemical
Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Nicole L. Morris
- Laboratory
Animal Sciences Program, Leidos Biomedical
Research, Inc., Frederick National Laboratory for Cancer
Research, Frederick, Maryland 21702, United States
| | - Xinhua Ji
- Macromolecular
Crystallography Laboratory, National Cancer
Institute, Frederick, Maryland 21702, United
States
| | - Lucy M. Anderson
- Chemical
Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Joseph E. Saavedra
- Chemical
Biology Laboratory, Leidos Biomedical Research,
Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Larry K. Keefer
- Chemical
Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
35
|
Deponte M. Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes. Biochim Biophys Acta Gen Subj 2013; 1830:3217-66. [DOI: 10.1016/j.bbagen.2012.09.018] [Citation(s) in RCA: 730] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 09/25/2012] [Indexed: 12/12/2022]
|
36
|
Human cytosolic glutathione transferases: structure, function, and drug discovery. Trends Pharmacol Sci 2012; 33:656-68. [DOI: 10.1016/j.tips.2012.09.007] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 09/26/2012] [Accepted: 09/27/2012] [Indexed: 11/19/2022]
|
37
|
Boušová I, Skálová L. Inhibition and induction of glutathione S-transferases by flavonoids: possible pharmacological and toxicological consequences. Drug Metab Rev 2012; 44:267-86. [PMID: 22998389 DOI: 10.3109/03602532.2012.713969] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Many studies reviewed herein demonstrated the potency of some flavonoids to modulate the activity and/or expression of glutathione S-transferases (GSTs). Because GSTs play a crucial role in the detoxification of xenobiotics, their inhibition or induction may significantly affect metabolism and biological effects of many drugs, industrials, and environmental contaminants. The effect of flavonoids on GSTs strongly depends on flavonoid structure, concentration, period of administration, as well as on GST isoform and origin. Moreover, the results obtained in vitro are often contrary to the vivo results. Based on these facts, the revelation of important flavonoid-drug or flavonoid-pollutant interaction has been complicated. However, it should be borne in mind that ingestion of certain flavonoids in combination with drugs or pollutants (e.g., acetaminophen, simvastatin, cyclophosphamide, cisplatine, polycyclic aromatic hydrocarbons, chlorpyrifos, acrylamide, and isocyanates), which are GST substrates, could have significant pharmacological and toxicological consequences. Although reasonable consumptions of a flavonoids-rich diet (that may lead to GST induction) are mostly beneficial, the uncontrolled intake of high concentrations of certain flavonoids (e.g., quercetin and catechins) in dietary supplements (that may cause GST inhibition) may threaten human health.
Collapse
Affiliation(s)
- Iva Boušová
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy, Hradec Králové, Czech Republic, European Union
| | | |
Collapse
|
38
|
Binding of GSH conjugates to π-GST: a cross-docking approach. J Mol Graph Model 2011; 32:9-18. [PMID: 22014382 DOI: 10.1016/j.jmgm.2011.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 09/15/2011] [Accepted: 09/21/2011] [Indexed: 10/17/2022]
Abstract
The high degree of flexibility characterizing the members of the GST protein family is supposed to be an evolution-resolved feature related to the detoxifying role of these enzymes. Many evidences suggest that overexpression of these enzymes may be implicated in the development of acquired resistance to antitumor agents. Among the most effective GST inhibitors, GSH conjugates have been found to be particularly promising because of their low toxicity. Here, we used a cross docking approach based on an ensemble of X-ray structures of GST bound complexes to model the effects of protein flexibility on the binding of GSH conjugates. We showed that our multitarget approach, allows to analyze the impact of protein flexibility and induced fit effects in GSH conjugate docking to GST. Moreover, the inclusion of conserved water molecules in the model allowed to include a further source of target variability and improve the performances in the docking of GSH conjugates through an enhanced description of the GSH moiety interactions. Therefore, a map of ligand-protein interactions reflecting the target variability included in the docking model was retraced and used to gain a thorough insight about the way GSH conjugates bind to GST.
Collapse
|
39
|
Tew KD, Manevich Y, Grek C, Xiong Y, Uys J, Townsend DM. The role of glutathione S-transferase P in signaling pathways and S-glutathionylation in cancer. Free Radic Biol Med 2011; 51:299-313. [PMID: 21558000 PMCID: PMC3125017 DOI: 10.1016/j.freeradbiomed.2011.04.013] [Citation(s) in RCA: 174] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 04/07/2011] [Accepted: 04/07/2011] [Indexed: 12/12/2022]
Abstract
Glutathione S-transferase P is abundantly expressed in some mammalian tissues, particularly those associated with malignancies. While the enzyme can catalyze thioether bond formation between some electrophilic chemicals and GSH, novel nondetoxification functions are now ascribed to it. This review summarizes recent material that implicates GSTP in mediating S-glutathionylation of specific clusters of target proteins and in reactions that define a negative regulatory role in some kinase pathways through ligand or protein:protein interactions. It is becoming apparent that GSTP participates in the maintenance of cellular redox homeostasis through a number of convergent and divergent mechanisms. Moreover, drug platforms that have GSTP as a target have produced some interesting preclinical and clinical candidates.
Collapse
Affiliation(s)
- Kenneth D Tew
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Abstract
The glutathione transferases (GSTs) are one of the most important families of detoxifying enzymes in nature. The classic activity of the GSTs is conjugation of compounds with electrophilic centers to the tripeptide glutathione (GSH), but many other activities are now associated with GSTs, including steroid and leukotriene biosynthesis, peroxide degradation, double-bond cis-trans isomerization, dehydroascorbate reduction, Michael addition, and noncatalytic "ligandin" activity (ligand binding and transport). Since the first GST structure was determined in 1991, there has been an explosion in structural data across GSTs of all three families: the cytosolic GSTs, the mitochondrial GSTs, and the membrane-associated proteins in eicosanoid and glutathione metabolism (MAPEG family). In this review, the major insights into GST structure and function will be discussed.
Collapse
Affiliation(s)
- Aaron Oakley
- School of Chemistry, University of Wollongong, Wollongong, Australia.
| |
Collapse
|
41
|
Arginine 15 stabilizes an SNAr reaction transition state and the binding of anionic ligands at the active site of human glutathione transferase A1-1. Biophys Chem 2010; 146:118-25. [DOI: 10.1016/j.bpc.2009.11.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 11/12/2009] [Accepted: 11/12/2009] [Indexed: 11/22/2022]
|
42
|
Berendt FJ, Fröhlich T, Bolbrinker P, Boelhauve M, Güngör T, Habermann FA, Wolf E, Arnold GJ. Highly sensitive saturation labeling reveals changes in abundance of cell cycle-associated proteins and redox enzyme variants during oocyte maturation in vitro. Proteomics 2009; 9:550-64. [PMID: 19137544 DOI: 10.1002/pmic.200700417] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Oocyte maturation is a complex process and a critical issue in assisted reproduction techniques (ART) in humans and other mammals. We used a sensitive 2-D DIGE saturation labeling approach including an internal pooled standard for quantitative proteome profiling of immature versus in vitro matured bovine oocytes in six independent samples. The study comprised 48 2D gel images representing 24 DIGE experiments. From 250 ng sample analyzed per gel, quantitative analysis revealed an average of 2244 spots in pH 4-7 images and 1291 spots in pH 6-9 images. Thirty-eight spots with different intensities were detected in total. Spots of a preparative gel from 2200 oocytes were identified by nano-LC-MS/MS analysis. The ten spots which could be unambiguously identified include the Ca2+-binding protein translationally controlled tumor protein, enzymes of the Krebs and pentose phosphate cycles, clusterin, 14-3-3 epsilon, elongation factor-1 gamma, and redox enzymes such as polymorphic forms of GST Mu 5 and peroxiredoxin-3. The cellular distribution of two proteins was determined by confocal laser scanning microscopy. The interesting protein candidates identified by this study may help to improve the in vitro maturation process in order to increase the rate of successful in vitro fertilization and other ART in cattle and other mammals.
Collapse
Affiliation(s)
- Frank J Berendt
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Kinsley N, Sayed Y, Armstrong RN, Dirr HW. Characterization of the binding of 8-anilinonaphthalene sulfonate to rat class Mu GST M1-1. Biophys Chem 2008; 137:100-4. [PMID: 18703268 PMCID: PMC2603631 DOI: 10.1016/j.bpc.2008.07.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Revised: 07/26/2008] [Accepted: 07/28/2008] [Indexed: 10/21/2022]
Abstract
Molecular docking and ANS-displacement experiments indicated that 8-anilinonaphthalene sulfonate (ANS) binds the hydrophobic site (H-site) in the active site of dimeric class Mu rGST M1-1. The naphthalene moiety provides most of the van der Waals contacts at the ANS-binding interface while the anilino group is able to sample different rotamers. The energetics of ANS binding were studied by isothermal titration calorimetry (ITC) over the temperature range of 5-30 degrees C. Binding is both enthalpically and entropically driven and displays a stoichiometry of one ANS molecule per subunit (or H-site). ANS binding is linked to the uptake of 0.5 protons at pH 6.5. Enthalpy of binding depends linearly upon temperature yielding a DeltaC(p) of -80+/-4 cal K(-1) mol(-1) indicating the burial of solvent-exposed nonpolar surface area upon ANS-protein complex formation. While ion-pair interactions between the sulfonate moiety of ANS and protein cationic groups may be significant for other ANS-binding proteins, the binding of ANS to rGST M1-1 is primarily hydrophobic in origin. The binding properties are compared with those of other GSTs and ANS-binding proteins.
Collapse
Affiliation(s)
- Nichole Kinsley
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of the Wiwatersrand, Johannesburg 2050, South Africa
| | - Yasien Sayed
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of the Wiwatersrand, Johannesburg 2050, South Africa
| | - Richard N. Armstrong
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146 USA
| | - Heini W. Dirr
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of the Wiwatersrand, Johannesburg 2050, South Africa
| |
Collapse
|
44
|
Bian XW, Xu JP, Ping YF, Wang Y, Chen JH, Xu CP, Wu YZ, Wu J, Zhou XD, Chen YS, Shi JQ, Wang JM. Unique proteomic features induced by a potential antiglioma agent, Nordy (dl-nordihydroguaiaretic acid), in glioma cells. Proteomics 2008; 8:484-94. [PMID: 18232056 DOI: 10.1002/pmic.200700054] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Nordy is a chirally synthesized compound of a natural lipoxygenase inhibitor nordihydroguaiaretic acid. In this study, we found that Nordy inhibited the growth of human glioma cell lines in vitro and their tumorigenicity in mice. In addition, Nordy promoted differentiation of highly malignant human glioma cells. Investigation into the mechanistic basis of Nordy activities revealed that it altered the pattern of protein expression profiles in tumor cells. By using 2-DE, we found that in human glioma cell lines, at least six proteins were down-regulated after Nordy treatment, while four proteins were elevated in the same cells. Among the six down-regulated proteins, microsequencing with MALDI TOF MS confirmed the identity of five: proliferation-associated gene A (PAG-A), alternative splicing factor-3 (ASF-3), beta-galactoside binding lectin, eukaryotic translation initiation factor 5A (eIF-5A), and coffilin-1 (nonmuscle). Four up-regulated proteins were GST-pi, glyceraldehyde-3-phosphate dehydrogenase, alpha-enolase, and cyclophilin. All these proteins have been reported to participate in key cellular functions including proliferation, metabolism, differentiation, apoptosis, and gene transcription. Our results suggest that Nordy may constitute a promising drug lead for the development of novel antitumor agents targeting proteins that control tumor cell function at multiple levels.
Collapse
Affiliation(s)
- Xiu-Wu Bian
- Institute of Pathology, Southwest Hospital, Third Military Medical University, Chongqing, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Ji X, Pal A, Kalathur R, Hu X, Gu Y, Saavedra JE, Buzard GS, Srinivasan A, Keefer LK, Singh SV. Structure-Based Design of Anticancer Prodrug PABA/NO. Drug Des Devel Ther 2008; 2:123-130. [PMID: 19662104 PMCID: PMC2721280 DOI: 10.2147/dddt.s3931] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Glutathione S-transferase (GST) is a superfamily of detoxification enzymes, represented by GSTalpha, GSTmu, GSTpi, etc. GSTalpha is the predominant isoform of GST in human liver, playing important roles for our well being. GSTpi is overexpressed in many forms of cancer, thus presenting an opportunity for selective targeting of cancer cells. Our structure-based design of prodrugs intended to release cytotoxic levels of nitric oxide in GSTpi-overexpressing cancer cells yielded PABA/NO, which exhibited anticancer activity both in vitro and in vivo with a potency similar to that of cisplatin (Findlay et al. Mol. Pharmacol. 2004, 65, 1070-1079). Here, we present the details on structural modification, molecular modeling, and enzymatic characterization for the design of PABA/NO. The design was efficient because it was on the basis of the reaction mechanism and the structures of related GST isozymes at both the ground state and the transition state. The ground-state structures outlined the shape and property of the substrate-binding site in different isozymes, and the structural information at the transition-state indicated distinct conformations of the Meisenheimer complex of prodrugs in the active site of different isozymes, providing guidance for the modifications of the molecular structure of the prodrug molecules. Two key alterations of a GSTalpha -selective compound led to the GSTpi-selective PABA/NO.
Collapse
Affiliation(s)
- Xinhua Ji
- Macromolecular Crystallography Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Ajai Pal
- Department of Pharmacology and University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Ravi Kalathur
- Macromolecular Crystallography Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Xun Hu
- Department of Pharmacology and University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Yijun Gu
- Macromolecular Crystallography Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
- Department of Pharmacology and University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Joseph E Saavedra
- Basic Research Program, SAIC-Frederick Inc., Frederick, MD 21702, USA
| | - Gregory S Buzard
- Basic Research Program, SAIC-Frederick Inc., Frederick, MD 21702, USA
| | - Aloka Srinivasan
- Laboratory of Comparative Carcinogenesis, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Larry K Keefer
- Laboratory of Comparative Carcinogenesis, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Shivendra V Singh
- Department of Pharmacology and University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
46
|
Singh R, White MA, Ramana KV, Petrash JM, Watowich SJ, Bhatnagar A, Srivastava SK. Structure of a glutathione conjugate bound to the active site of aldose reductase. Proteins 2006; 64:101-10. [PMID: 16639747 DOI: 10.1002/prot.20988] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Aldose reductase (AR) is a monomeric NADPH-dependent oxidoreductase that catalyzes the reduction of aldehydes, ketones, and aldo-sugars. AR has been linked to the development of hyperglycemic injury and is a clinical target for the treatment of secondary diabetic complications. In addition to reducing glucose, AR is key regulator of cell signaling through it's reduction of aldehydes derived from lipoproteins and membrane phospholipids. AR catalyzes the reduction of glutathione conjugates of unsaturated aldehydes with higher catalytic efficiency than free aldehydes. The X-ray structure of human AR holoenzyme in complex with the glutathione analogue S-(1,2-dicarboxyethyl) glutathione (DCEG) was determined at a resolution of 1.94 A. The distal carboxylate group of DCEG's dicarboxyethyl moiety interacted with the conserved AR anion binding site residues Tyr48, His110, and Trp111. The bound DCEG's glutathione backbone adopted the low-energy Y-shape form. The C-terminal carboxylate of DCEG glutathione's glycine formed hydrogen bonds to Leu301 and Ser302, while the remaining interactions between DCEG and AR were hydrophobic, permitting significant flexibility of the AR and glutathione (GS) analogue interaction. The observed conformation and interactions of DCEG with AR were consistent with our previously published molecular dynamics model of glutathionyl-propanal binding to AR. The current structure identifies major interactions of glutathione conjugates with the AR active-site residues.
Collapse
Affiliation(s)
- Ranvir Singh
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston 77555-0647, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Hirota K, Hanyu Y. Method for identification of mutant glutathione S-transferases conferring enhanced resistance to the anti-cancer drug chlorambucil. J Biosci Bioeng 2005; 93:618-21. [PMID: 16233260 DOI: 10.1016/s1389-1723(02)80248-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2001] [Accepted: 03/01/2002] [Indexed: 10/27/2022]
Abstract
We screened library of mutant glutathione S-transferases (GSTs) in Escherichia coli by successive treatments with anti-cancer drug chlorambucil and identified mutant GSTs that conferred enhanced resistance to host against chlorambucil compared with wild-type GST. This study provides a method to develop enzymes with improved efficiency of detoxification against cytotoxic substances.
Collapse
Affiliation(s)
- Kiyonori Hirota
- Molecular and Cell Biology, National Institute ofAdvanced Industrial Science and Technology (AIST), Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | | |
Collapse
|
48
|
Kolobe D, Sayed Y, Dirr H. Characterization of bromosulphophthalein binding to human glutathione S-transferase A1-1: thermodynamics and inhibition kinetics. Biochem J 2005; 382:703-9. [PMID: 15147239 PMCID: PMC1133828 DOI: 10.1042/bj20040056] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2004] [Revised: 05/12/2004] [Accepted: 05/18/2004] [Indexed: 11/17/2022]
Abstract
In addition to their catalytic functions, GSTs (glutathione S-transferases) bind a wide variety of structurally diverse non-substrate ligands. This ligandin function is known to result in the inhibition of catalytic function. The interaction between hGSTA1-1 (human class Alpha GST with two type 1 subunits) and a non-substrate anionic ligand, BSP (bromosulphophthalein), was studied by isothermal titration calorimetry and inhibition kinetics. The binding isotherm is biphasic, best described by a set of two independent sites: a high-affinity site and a low-affinity site(s). The binding stoichiometries for these sites are 1 and 3 molecules of BSP respectively. BSP binds to the high-affinity site 80 times more tightly (K(d)=0.12 microM) than it does to the low-affinity site(s) (K(d)=9.1 microM). Binding at these sites is enthalpically and entropically favourable, with no linkage to protonation events. Temperature- and salt-dependent studies indicate the significance of hydrophobic interactions in the binding of BSP, and that the low-affinity site(s) displays low specificity towards the anion. Binding of BSP results in the release of ordered water molecules at these hydrophobic sites, which more than offsets unfavourable entropic changes during binding. BSP inhibition studies show that the binding of BSP to its high-affinity site does not inhibit hGSTA1-1. This site, located near Trp-20, may be related to the buffer-binding site observed in GSTP1-1. The low-affinity-binding site(s) for BSP is most probably located at or near the active site of hGSTA1-1. Binding to this site(s) results in non-competitive inhibition with respect to CDNB (1-chloro-2,4-dinitrobenzene) (K(i)(BSP)=16.8+/-1.9 microM). Given the properties of the H site and the relatively small size of the electrophilic substrate CDNB, it is plausible that the active site of the enzyme can simultaneously accommodate both BSP and CDNB. This would explain the non-competitive behaviour of certain inhibitors that bind the active site (e.g. BSP).
Collapse
Affiliation(s)
- Doris Kolobe
- Protein Structure–Function Research Programme, School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Yasien Sayed
- Protein Structure–Function Research Programme, School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Heini W. Dirr
- Protein Structure–Function Research Programme, School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg 2050, South Africa
- To whom correspondence should be addressed (email )
| |
Collapse
|
49
|
Perbandt M, Höppner J, Betzel C, Walter RD, Liebau E. Structure of the major cytosolic glutathione S-transferase from the parasitic nematode Onchocerca volvulus. J Biol Chem 2005; 280:12630-6. [PMID: 15640152 DOI: 10.1074/jbc.m413551200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Onchocerciasis is a debilitating parasitic disease caused by the filarial worm Onchocerca volvulus. Similar to other helminth parasites, O. volvulus is capable of evading the host's immune responses by a variety of defense mechanisms, including the detoxification activities of the glutathione S-transferases (GSTs). Additionally, in response to drug treatment, helminth GSTs are highly up-regulated, making them tempting targets both for chemotherapy and for vaccine development. We analyzed the three-dimensional x-ray structure of the major cytosolic GST from O. volvulus (Ov-GST2) in complex with its natural substrate glutathione and its competitive inhibitor S-hexylglutathione at 1.5 and 1.8 angstrom resolution, respectively. From the perspective of the biochemical classification, the Ov-GST2 seems to be related to pi-class GSTs. However, in comparison to other pi-class GSTs, in particular to the host's counterpart, the Ov-GST2 reveals significant and unusual differences in the sequence and overall structure. Major differences can be found in helix alpha-2, an important region for substrate recognition. Moreover, the binding site for the electrophilic co-substrate is spatially increased and more solvent-accessible. These structural alterations are responsible for different substrate specificities and will form the basis of parasite-specific structure-based drug design investigations.
Collapse
Affiliation(s)
- Markus Perbandt
- Institute of Biochemistry and Foodchemistry, Department of Biochemistry and Molecularbiology, University of Hamburg, Martin Luther King Platz 6, 20146 Hamburg, Germany.
| | | | | | | | | |
Collapse
|
50
|
Ralat LA, Colman RF. Monobromobimane occupies a distinct xenobiotic substrate site in glutathione S-transferase pi. Protein Sci 2004; 12:2575-87. [PMID: 14573868 PMCID: PMC2366952 DOI: 10.1110/ps.03249303] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Monobromobimane (mBBr), functions as a substrate of porcine glutathione S-transferase pi (GST pi): The enzyme catalyzes the reaction of mBBr with glutathione. S-(Hydroxyethyl)bimane, a nonreactive analog of monobromobimane, acts as a competitive inhibitor with respect to mBBr as substrate but does not affect the reaction of GST pi with another substrate, 1-chloro-2,4-dinitrobenzene (CDNB). In the absence of glutathione, monobromobimane inactivates GST pi at pH 7.0 and 25 degrees C as assayed using mBBr as substrate, with a lesser effect on the enzyme's use of CDNB as substrate. These results indicate that the sites occupied by CDNB and mBBr are not identical. Inactivation is proportional to the incorporation of 2 moles of bimane/mole of subunit. Modification of GST pi with mBBr does not interfere with its binding of 8-anilino-1-naphthalene sulfonate, indicating that this hydrophobic site is not the target of monobromobimane. S-Methylglutathione and S-(hydroxyethyl)bimane each yield partial protection against inactivation and decrease reagent incorporation, while glutathionyl-bimane protects completely against inactivation. Peptide analysis after trypsin digestion indicates that mBBr modifies Cys45 and Cys99 equally. Modification of Cys45 is reduced in the presence of S-methylglutathione, indicating that this residue is at or near the glutathione binding region. In contrast, modification of Cys99 is reduced in the presence of S-(hydroxyethyl)bimane, suggesting that this residue is at or near the mBBr xenobiotic substrate binding site. Modification of Cys99 can best be understood by reaction with monobromobimane while it is bound to its xenobiotic substrate site in an alternate orientation. These results support the concept that glutathione S-transferase accomplishes its ability to react with a diversity of substrates in part by harboring distinct xenobiotic substrate sites.
Collapse
Affiliation(s)
- Luis A Ralat
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | | |
Collapse
|