1
|
Knüppel R, Trahan C, Kern M, Wagner A, Grünberger F, Hausner W, Quax TEF, Albers SV, Oeffinger M, Ferreira-Cerca S. Insights into synthesis and function of KsgA/Dim1-dependent rRNA modifications in archaea. Nucleic Acids Res 2021; 49:1662-1687. [PMID: 33434266 PMCID: PMC7897474 DOI: 10.1093/nar/gkaa1268] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/01/2020] [Accepted: 12/21/2020] [Indexed: 12/19/2022] Open
Abstract
Ribosomes are intricate molecular machines ensuring proper protein synthesis in every cell. Ribosome biogenesis is a complex process which has been intensively analyzed in bacteria and eukaryotes. In contrast, our understanding of the in vivo archaeal ribosome biogenesis pathway remains less characterized. Here, we have analyzed the in vivo role of the almost universally conserved ribosomal RNA dimethyltransferase KsgA/Dim1 homolog in archaea. Our study reveals that KsgA/Dim1-dependent 16S rRNA dimethylation is dispensable for the cellular growth of phylogenetically distant archaea. However, proteomics and functional analyses suggest that archaeal KsgA/Dim1 and its rRNA modification activity (i) influence the expression of a subset of proteins and (ii) contribute to archaeal cellular fitness and adaptation. In addition, our study reveals an unexpected KsgA/Dim1-dependent variability of rRNA modifications within the archaeal phylum. Combining structure-based functional studies across evolutionary divergent organisms, we provide evidence on how rRNA structure sequence variability (re-)shapes the KsgA/Dim1-dependent rRNA modification status. Finally, our results suggest an uncoupling between the KsgA/Dim1-dependent rRNA modification completion and its release from the nascent small ribosomal subunit. Collectively, our study provides additional understandings into principles of molecular functional adaptation, and further evolutionary and mechanistic insights into an almost universally conserved step of ribosome synthesis.
Collapse
Affiliation(s)
- Robert Knüppel
- Regensburg Center for Biochemistry, Biochemistry III – Institute for Biochemistry, Genetics and Microbiology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Christian Trahan
- Institut de Recherches Cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, Québec H2W 1R7, Canada
- Faculty of Medicine, Division of Experimental Medicine, McGill University, Montréal, Québec H3A 1A3, Canada
- Département de Biochimie, Faculté de Médecine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Michael Kern
- Regensburg Center for Biochemistry, Biochemistry III – Institute for Biochemistry, Genetics and Microbiology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Alexander Wagner
- Molecular Biology of Archaea, Institute of Biology II, Faculty of Biology, Microbiology, University of Freiburg, Freiburg, Germany
| | - Felix Grünberger
- Chair of Microbiology – Institute for Biochemistry, Genetics and Microbiology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Winfried Hausner
- Chair of Microbiology – Institute for Biochemistry, Genetics and Microbiology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Tessa E F Quax
- Archaeal Virus-Host Interactions, Institute of Biology II, Faculty of Biology, Microbiology, University of Freiburg, Freiburg, Germany
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Institute of Biology II, Faculty of Biology, Microbiology, University of Freiburg, Freiburg, Germany
| | - Marlene Oeffinger
- Institut de Recherches Cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, Québec H2W 1R7, Canada
- Faculty of Medicine, Division of Experimental Medicine, McGill University, Montréal, Québec H3A 1A3, Canada
- Département de Biochimie, Faculté de Médecine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Sébastien Ferreira-Cerca
- Regensburg Center for Biochemistry, Biochemistry III – Institute for Biochemistry, Genetics and Microbiology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| |
Collapse
|
2
|
Müller C, Sokol L, Vesper O, Sauert M, Moll I. Insights into the Stress Response Triggered by Kasugamycin in Escherichia coli. Antibiotics (Basel) 2016; 5:E19. [PMID: 27258317 PMCID: PMC4929434 DOI: 10.3390/antibiotics5020019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/19/2016] [Accepted: 05/23/2016] [Indexed: 01/06/2023] Open
Abstract
The bacteriostatic aminoglycoside antibiotic kasugamycin inhibits protein synthesis at an initial step without affecting translation elongation. It binds to the mRNA track of the ribosome and prevents formation of the translation initiation complex on canonical mRNAs. In contrast, translation of leaderless mRNAs continues in the presence of the drug in vivo. Previously, we have shown that kasugamycin treatment in E. coli stimulates the formation of protein-depleted ribosomes that are selective for leaderless mRNAs. Here, we provide evidence that prolonged kasugamycin treatment leads to selective synthesis of specific proteins. Our studies indicate that leaderless and short-leadered mRNAs are generated by different molecular mechanisms including alternative transcription and RNA processing. Moreover, we provide evidence for ribosome heterogeneity in response to kasugamycin treatment by alteration of the modification status of the stalk proteins bL7/L12.
Collapse
Affiliation(s)
- Christian Müller
- Max F. Perutz Laboratories, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9/4, A-1030 Vienna, Austria.
| | - Lena Sokol
- Max F. Perutz Laboratories, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9/4, A-1030 Vienna, Austria.
| | - Oliver Vesper
- Max F. Perutz Laboratories, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9/4, A-1030 Vienna, Austria.
| | - Martina Sauert
- Max F. Perutz Laboratories, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9/4, A-1030 Vienna, Austria.
| | - Isabella Moll
- Max F. Perutz Laboratories, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9/4, A-1030 Vienna, Austria.
| |
Collapse
|
3
|
Demirci H, Murphy F, Belardinelli R, Kelley AC, Ramakrishnan V, Gregory ST, Dahlberg AE, Jogl G. Modification of 16S ribosomal RNA by the KsgA methyltransferase restructures the 30S subunit to optimize ribosome function. RNA (NEW YORK, N.Y.) 2010; 16:2319-24. [PMID: 20962038 PMCID: PMC2995393 DOI: 10.1261/rna.2357210] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 09/16/2010] [Indexed: 05/08/2023]
Abstract
All organisms incorporate post-transcriptional modifications into ribosomal RNA, influencing ribosome assembly and function in ways that are poorly understood. The most highly conserved modification is the dimethylation of two adenosines near the 3' end of the small subunit rRNA. Lack of these methylations due to deficiency in the KsgA methyltransferase stimulates translational errors during both the initiation and elongation phases of protein synthesis and confers resistance to the antibiotic kasugamycin. Here, we present the X-ray crystal structure of the Thermus thermophilus 30S ribosomal subunit lacking these dimethylations. Our data indicate that the KsgA-directed methylations facilitate structural rearrangements in order to establish a functionally optimum subunit conformation during the final stages of ribosome assembly.
Collapse
MESH Headings
- Base Sequence
- Crystallography, X-Ray
- Methylation
- Methyltransferases/genetics
- Methyltransferases/metabolism
- Models, Molecular
- Molecular Sequence Data
- Mutant Proteins/chemistry
- Mutant Proteins/genetics
- Mutant Proteins/metabolism
- Nucleic Acid Conformation
- Protein Conformation
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/metabolism
- RNA, Ribosomal, 16S/physiology
- Ribosome Subunits, Small, Bacterial/chemistry
- Ribosome Subunits, Small, Bacterial/metabolism
- Ribosome Subunits, Small, Bacterial/physiology
- Ribosomes/chemistry
- Ribosomes/metabolism
- Ribosomes/physiology
- Structure-Activity Relationship
- Thermus thermophilus/chemistry
- Thermus thermophilus/metabolism
- Thermus thermophilus/physiology
Collapse
Affiliation(s)
- Hasan Demirci
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Baudin-Baillieu A, Fabret C, Liang XH, Piekna-Przybylska D, Fournier MJ, Rousset JP. Nucleotide modifications in three functionally important regions of the Saccharomyces cerevisiae ribosome affect translation accuracy. Nucleic Acids Res 2010; 37:7665-77. [PMID: 19820108 PMCID: PMC2794176 DOI: 10.1093/nar/gkp816] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Important regions of rRNA are rich in nucleotide modifications that can have strong effects on ribosome biogenesis and translation efficiency. Here, we examine the influence of pseudouridylation and 2′-O-methylation on translation accuracy in yeast, by deleting the corresponding guide snoRNAs. The regions analyzed were: the decoding centre (eight modifications), and two intersubunit bridge domains—the A-site finger and Helix 69 (six and five modifications). Results show that a number of modifications influence accuracy with effects ranging from 0.3- to 2.4-fold of wild-type activity. Blocking subsets of modifications, especially from the decoding region, impairs stop codon termination and reading frame maintenance. Unexpectedly, several Helix 69 mutants possess ribosomes with increased fidelity. Consistent with strong positional and synergistic effects is the finding that single deletions can have a more pronounced phenotype than multiple deficiencies in the same region. Altogether, the results demonstrate that rRNA modifications have significant roles in translation accuracy.
Collapse
|
5
|
Binet R, Maurelli AT. The chlamydial functional homolog of KsgA confers kasugamycin sensitivity to Chlamydia trachomatis and impacts bacterial fitness. BMC Microbiol 2009; 9:279. [PMID: 20043826 PMCID: PMC2807437 DOI: 10.1186/1471-2180-9-279] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Accepted: 12/31/2009] [Indexed: 12/22/2022] Open
Abstract
Background rRNA adenine dimethyltransferases, represented by the Escherichia coli KsgA protein, are highly conserved phylogenetically and are generally not essential for growth. They are responsible for the post-transcriptional transfer of two methyl groups to two universally conserved adenosines located near the 3'end of the small subunit rRNA and participate in ribosome maturation. All sequenced genomes of Chlamydia reveal a ksgA homolog in each species, including C. trachomatis. Yet absence of a S-adenosyl-methionine synthetase in Chlamydia, the conserved enzyme involved in the synthesis of the methyl donor S-adenosyl-L-methionine, raises a doubt concerning the activity of the KsgA homolog in these organisms. Results Lack of the dimethylated adenosines following ksgA inactivation confers resistance to kasugamycin (KSM) in E. coli. Expression of the C. trachomatis L2 KsgA ortholog restored KSM sensitivity to the E. coli ksgA mutant, suggesting that the chlamydial KsgA homolog has specific rRNA dimethylase activity. C. trachomatis growth was sensitive to KSM and we were able to isolate a KSM resistant mutant of C. trachomatis containing a frameshift mutation in ksgA, which led to the formation of a shorter protein with no activity. Growth of the C. trachomatis ksgA mutant was negatively affected in cell culture highlighting the importance of the methylase in the development of these obligate intracellular and as yet genetically intractable pathogens. Conclusion The presence of a functional rRNA dimethylase enzyme belonging to the KsgA family in Chlamydia presents an excellent chemotherapeutic target with real potential. It also confirms the existence of S-adenosyl-methionine - dependent methylation reactions in Chlamydia raising the question of how these organisms acquire this cofactor.
Collapse
Affiliation(s)
- Rachel Binet
- Department of Microbiology and Immunology, F, Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814-4799, USA.
| | | |
Collapse
|
6
|
Abstract
Protein synthesis is one of the major targets in the cell for antibiotics. This review endeavors to provide a comprehensive "post-ribosome structure" A-Z of the huge diversity of antibiotics that target the bacterial translation apparatus, with an emphasis on correlating the vast wealth of biochemical data with more recently available ribosome structures, in order to understand function. The binding site, mechanism of action, and modes of resistance for 26 different classes of protein synthesis inhibitors are presented, ranging from ABT-773 to Zyvox. In addition to improving our understanding of the process of translation, insight into the mechanism of action of antibiotics is essential to the development of novel and more effective antimicrobial agents to combat emerging bacterial resistance to many clinically-relevant drugs.
Collapse
Affiliation(s)
- Daniel N Wilson
- Gene Center and Department of Chemistry and Biochemistry, University of Munich, LMU, Munich, Germany.
| |
Collapse
|
7
|
Demirci H, Belardinelli R, Seri E, Gregory ST, Gualerzi C, Dahlberg AE, Jogl G. Structural rearrangements in the active site of the Thermus thermophilus 16S rRNA methyltransferase KsgA in a binary complex with 5'-methylthioadenosine. J Mol Biol 2009; 388:271-82. [PMID: 19285505 PMCID: PMC2679894 DOI: 10.1016/j.jmb.2009.02.066] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Revised: 01/16/2009] [Accepted: 02/28/2009] [Indexed: 11/21/2022]
Abstract
Posttranscriptional modification of ribosomal RNA (rRNA) occurs in all kingdoms of life. The S-adenosyl-L-methionine-dependent methyltransferase KsgA introduces the most highly conserved rRNA modification, the dimethylation of A1518 and A1519 of 16S rRNA. Loss of this dimethylation confers resistance to the antibiotic kasugamycin. Here, we report biochemical studies and high-resolution crystal structures of KsgA from Thermus thermophilus. Methylation of 30S ribosomal subunits by T. thermophilus KsgA is more efficient at low concentrations of magnesium ions, suggesting that partially unfolded RNA is the preferred substrate. The overall structure is similar to that of other methyltransferases but contains an additional alpha-helix in a novel N-terminal extension. Comparison of the apoenzyme with complex structures with 5'-methylthioadenosine or adenosine bound in the cofactor-binding site reveals novel features when compared with related enzymes. Several mobile loop regions that restrict access to the cofactor-binding site are observed. In addition, the orientation of residues in the substrate-binding site indicates that conformational changes are required for binding two adjacent residues of the substrate rRNA.
Collapse
Affiliation(s)
- Hasan Demirci
- Department of Molecular Biology, Cell Biology and Biochemistry, Box G-L235, Brown University, Providence, Rhode Island 02912, USA
| | - Riccardo Belardinelli
- Department of Molecular Biology, Cell Biology and Biochemistry, Box G-L235, Brown University, Providence, Rhode Island 02912, USA
- Laboratory of Genetics, Department of Biology MCA, University of Camerino, 62032 Camerino (MC), Italy
| | - Emilia Seri
- Laboratory of Genetics, Department of Biology MCA, University of Camerino, 62032 Camerino (MC), Italy
| | - Steven T. Gregory
- Department of Molecular Biology, Cell Biology and Biochemistry, Box G-L235, Brown University, Providence, Rhode Island 02912, USA
| | - Claudio Gualerzi
- Laboratory of Genetics, Department of Biology MCA, University of Camerino, 62032 Camerino (MC), Italy
| | - Albert E. Dahlberg
- Department of Molecular Biology, Cell Biology and Biochemistry, Box G-L235, Brown University, Providence, Rhode Island 02912, USA
| | - Gerwald Jogl
- Department of Molecular Biology, Cell Biology and Biochemistry, Box G-L235, Brown University, Providence, Rhode Island 02912, USA
| |
Collapse
|
8
|
Tu C, Tropea JE, Austin BP, Court DL, Waugh DS, Ji X. Structural basis for binding of RNA and cofactor by a KsgA methyltransferase. Structure 2009; 17:374-85. [PMID: 19278652 PMCID: PMC2672589 DOI: 10.1016/j.str.2009.01.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Revised: 12/23/2008] [Accepted: 01/06/2009] [Indexed: 11/19/2022]
Abstract
Among methyltransferases, KsgA and the reaction it catalyzes are conserved throughout evolution. However, the specifics of substrate recognition by the enzyme remain unknown. Here we report structures of Aquifex aeolicus KsgA, in its ligand-free form, in complex with RNA, and in complex with both RNA and S-adenosylhomocysteine (SAH, reaction product of cofactor S-adenosylmethionine), revealing critical structural information on KsgA-RNA and KsgA-SAH interactions. Moreover, the structures show how conformational changes that occur upon RNA binding create the cofactor-binding site. There are nine conserved functional motifs (motifs I-VIII and X) in KsgA. Prior to RNA binding, motifs I and VIII are flexible, each exhibiting two distinct conformations. Upon RNA binding, the two motifs become stabilized in one of these conformations, which is compatible with the binding of SAH. Motif X, which is also stabilized upon RNA binding, is directly involved in the binding of SAH.
Collapse
Affiliation(s)
- Chao Tu
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702 USA
| | - Joseph E. Tropea
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702 USA
| | - Brian P. Austin
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702 USA
| | - Donald L. Court
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702 USA
| | - David S. Waugh
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702 USA
| | - Xinhua Ji
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702 USA
| |
Collapse
|
9
|
Kaberdina AC, Szaflarski W, Nierhaus KH, Moll I. An unexpected type of ribosomes induced by kasugamycin: a look into ancestral times of protein synthesis? Mol Cell 2009; 33:227-36. [PMID: 19187763 PMCID: PMC2967816 DOI: 10.1016/j.molcel.2008.12.014] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Revised: 10/13/2008] [Accepted: 12/09/2008] [Indexed: 11/25/2022]
Abstract
Translation of leaderless mRNAs, lacking ribosomal recruitment signals other than the 5'-terminal AUG-initiating codon, occurs in all three domains of life. Contemporary leaderless mRNAs may therefore be viewed as molecular fossils resembling ancestral mRNAs. Here, we analyzed the phenomenon of sustained translation of a leaderless mRNA in the presence of the antibiotic kasugamycin. Unexpected from the known in vitro effects of the drug, kasugamycin induced the formation of stable approximately 61S ribosomes in vivo, which were proficient in selectively translating leaderless mRNA. 61S particles are devoid of more than six proteins of the small subunit, including the functionally important proteins S1 and S12. The lack of these proteins could be reconciled with structural changes in the 16S rRNA. These studies provide in vivo evidence for the functionality of ribosomes devoid of multiple proteins and shed light on the evolutionary history of ribosomes.
Collapse
MESH Headings
- Aminoglycosides/pharmacology
- Anti-Bacterial Agents/pharmacology
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Escherichia coli Proteins/genetics
- Escherichia coli Proteins/metabolism
- Gene Expression Regulation, Bacterial
- Models, Biological
- Models, Molecular
- Nucleic Acid Conformation
- Peptide Chain Initiation, Translational/drug effects
- Protein Biosynthesis/drug effects
- Protein Conformation
- RNA, Bacterial/chemistry
- RNA, Bacterial/metabolism
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/metabolism
- Ribosomes/metabolism
Collapse
Affiliation(s)
- Anna Chao Kaberdina
- Max F. Perutz Laboratories, Department of Microbiology and Immunobiology, University Departments at the Vienna Biocenter, Dr. Bohrgasse 9/4, 1030 Vienna, Austria
| | - Witold Szaflarski
- Max-Planck-Institut für Molekulare Genetik, AG Ribosomen, Ihnestrasse 73, D-14185 Berlin, Germany
| | - Knud H. Nierhaus
- Max-Planck-Institut für Molekulare Genetik, AG Ribosomen, Ihnestrasse 73, D-14185 Berlin, Germany
| | - Isabella Moll
- Max F. Perutz Laboratories, Department of Microbiology and Immunobiology, University Departments at the Vienna Biocenter, Dr. Bohrgasse 9/4, 1030 Vienna, Austria
| |
Collapse
|
10
|
Montoya J, López-Gallardo E, Herrero-Martín MD, Martínez-Romero I, Gómez-Durán A, Pacheu D, Carreras M, Díez-Sánchez C, López-Pérez MJ, Ruiz-Pesini E. Diseases of the human mitochondrial oxidative phosphorylation system. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 652:47-67. [PMID: 20225019 DOI: 10.1007/978-90-481-2813-6_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mitochondrial diseases, or diseases of the oxidative phosphorylation system, consist of a group of disorders originated by a deficient synthesis of ATP. This system is composed of proteins codified in the two genetic systems of the cell, the nuclear and the mitochondrial genomes, and, therefore, the mode of inheritance could be either mendelian or maternal. The diseases can also appear sporadically. Due to the central role that mitochondria play in cellular physiology, these diseases are a social and health problem of great importance. They are considered rare diseases; however, together they constitute a large variety of genetic disorders. It is also believed that mitochondria are involved, directly or indirectly, in many other human diseases, mainly in age-related diseases. This review will focus mainly on describing the special characteristics of the mitochondrial genetic system and the diseases caused by mitochondrial DNA mutations. We will also note the difficulties in studying these pathologies, and the possible involvement of the genetic variability of the mitochondrial genome in the development of these diseases.
Collapse
Affiliation(s)
- Julio Montoya
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Miguel Servet, 177, 50013, Zaragoza, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Liang XH, Liu Q, Fournier MJ. rRNA modifications in an intersubunit bridge of the ribosome strongly affect both ribosome biogenesis and activity. Mol Cell 2008; 28:965-77. [PMID: 18158895 DOI: 10.1016/j.molcel.2007.10.012] [Citation(s) in RCA: 179] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2007] [Revised: 07/28/2007] [Accepted: 10/09/2007] [Indexed: 10/21/2022]
Abstract
The presence of nucleotide modifications in rRNA has been known for nearly 40 years; however, information about their roles is sparse. Here, we describe the consequences of depleting modifications from an intersubunit bridge (helix 69) of the ribosomal large subunit in yeast. Helix 69 interacts with both A and P site tRNAs and contains five modifications. Blocking one to two modifications has no apparent effect on cell growth, whereas loss of three to five modifications impairs growth and causes the broadest defects observed thus far for modification loss in any ribosome region. Major effects include the following: (1) reduced amino acid incorporation rates in vivo (25%-60%); (2) increased stop codon readthrough activity; (3) increased sensitivity to ribosome-based antibiotics; (4) reduced rRNA levels (20%-50%), due mainly to faster turnover; and (5) altered rRNA structure in the ribosome. Taken together, the results indicate that this subset of rRNA modifications can influence both ribosome synthesis and function and in synergistic ways.
Collapse
Affiliation(s)
- Xue-hai Liang
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | | | | |
Collapse
|
12
|
Montoya J, López-Pérez MJ, Ruiz-Pesini E. Mitochondrial DNA transcription and diseases: past, present and future. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1757:1179-89. [PMID: 16697348 DOI: 10.1016/j.bbabio.2006.03.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2006] [Revised: 03/21/2006] [Accepted: 03/31/2006] [Indexed: 11/25/2022]
Abstract
The transcription of mitochondrial DNA has been studied for 30 years. However, many of the earlier observations are still unsolved. In this review we will recall the basis of mitochondrial DNA transcription, established more than twenty years ago, will include some of the recent progress in the understanding of this process and will suggest hypotheses for some of the unexplained topics. Moreover, we will show some examples of mitochondrial pathology due to altered transcription and RNA metabolism.
Collapse
Affiliation(s)
- Julio Montoya
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza-Instituto Aragonés de Ciencias de la Salud, Miguel Servet 177, 50013-Zaragoza, Spain.
| | | | | |
Collapse
|
13
|
Desai PM, Rife JP. The adenosine dimethyltransferase KsgA recognizes a specific conformational state of the 30S ribosomal subunit. Arch Biochem Biophys 2006; 449:57-63. [PMID: 16620761 DOI: 10.1016/j.abb.2006.02.028] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Revised: 02/20/2006] [Accepted: 02/23/2006] [Indexed: 11/17/2022]
Abstract
The methyltransferase KsgA modifies two adjacent adenosines in 16S rRNA by adding two methyl groups to the N(6) position of each nucleotide. Unlike nearly all other rRNA modifications, these modifications and the responsible enzyme are highly conserved phylogenetically, suggesting that the modification system has an important role in ribosome biogenesis. It has been known for some time that KsgA recognizes a complex pre-30S substrate in vitro, but there is disagreement in the literature as to what that substrate can be. That disagreement is resolved in this report; KsgA is unable to methylate 30S subunits in the translationally active conformation, but rather can modify 30S when in an experimentally well established translationally inactive conformation. Recent 30S crystal structures provide some basis for explaining why it is impossible for KsgA to methylate 30S in the translationally active conformation. Previous work identified one set of ribosomal proteins important for efficient methylation by KsgA and another set refractory methylation. With the exception of S21 the recent crystal structures of 30S also instructs that the proteins important for KsgA activity all exert their influence indirectly. Unfortunately, S21, which is inhibitory to KsgA activity, has not had its position determined by X-ray crystallography. A reevaluation of published biophysical data on the location also suggests that the refractory nature of S21 is also indirect. Therefore, it appears that KsgA solely senses the conformation 16S rRNA when carrying out its enzymatic activity.
Collapse
Affiliation(s)
- Pooja M Desai
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23298-0133, USA
| | | |
Collapse
|
14
|
Abstract
Mitochondria are the central processing units for cellular energy metabolism and, in addition to carrying out oxidative phosphorylation, regulate important processes such as apoptosis and calcium homeostasis. Because mitochondria possess a genome that is central to their multiple functions, an understanding of the mechanism of mitochondrial gene expression is required to decipher the many ways mitochondrial dysfunction contributes to human disease. Towards this end, two human transcription factors that are related to rRNA methyltransferases have recently been characterized, providing new insight into the mechanism of mitochondrial transcription and a novel link to maternally inherited deafness. Furthermore, studies in the Saccharomyces cerevisiae model system have revealed a functional coupling of transcription and translation at the inner mitochondrial membrane, where assembly of the oxidative phosphorylation system commences. Defects in an analogous coupling mechanism in humans might underlie the cytochrome oxidase deficiency that causes a form of Leigh Syndrome.
Collapse
Affiliation(s)
- Gerald S Shadel
- Department of Pathology, Yale University School of Medicine, 300 Cedar Street, PO Box 208023, New Haven, CT 06520-8023, USA.
| |
Collapse
|
15
|
Sarzynska J, Nilsson L, Kulinski T. Effects of base substitutions in an RNA hairpin from molecular dynamics and free energy simulations. Biophys J 2004; 85:3445-59. [PMID: 14645041 PMCID: PMC1303653 DOI: 10.1016/s0006-3495(03)74766-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Contributions of individual interactions in the GGCGCAAGCC hairpin containing a GCAA tetraloop were studied by computer simulations using base substitutions. The G in the first tetraloop position was replaced by inosine (I) or adenosine (A), and the G in the C-G basepair closing the tetraloop was replaced by I. These substitutions eliminate particular hydrogen bonds proposed in the nuclear magnetic resonance model of the GCAA tetraloop. Molecular dynamics simulations of the GCAA tetraloop in aqueous solvent displayed a well-defined hydrogen pattern between the first and last loop nucleotides (G and A) stabilized by a bridging water molecule. Substitution of G-->I in the basepair closing the tetraloop did not significantly influence the loop structure and dynamics. The ICAA loop maintained the overall structure, but displayed variation in the hydrogen-bond network within the tetraloop itself. Molecular dynamics simulations of the ACAA loop led to conformational heterogeneity of the resulting structures. Changes of hairpin formation free energy associated with substitutions of individual bases were calculated by the free energy perturbation method. The calculated decrease of the hairpin stability upon G-->I substitution in the C-G basepair closing the tetraloop was in good agreement with experimental thermodynamic data. Our theoretical estimates for G-->I and G-->A mutations located in the tetraloop suggest larger loop destabilization than corresponding experimental results. The extent of conformational sampling of the structures resulting from base substitutions and its impact on the calculated free energy was discussed.
Collapse
Affiliation(s)
- Joanna Sarzynska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | | | | |
Collapse
|
16
|
Stuart JW, Koshlap KM, Guenther R, Agris PF. Naturally-occurring modification restricts the anticodon domain conformational space of tRNA(Phe). J Mol Biol 2004; 334:901-18. [PMID: 14643656 DOI: 10.1016/j.jmb.2003.09.058] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Post-transcriptional modifications contribute chemistry and structure to RNAs. Modifications of tRNA at nucleoside 37, 3'-adjacent to the anticodon, are particularly interesting because they facilitate codon recognition and negate translational frame-shifting. To assess if the functional contribution of a position 37-modified nucleoside defines a specific structure or restricts conformational flexibility, structures of the yeast tRNA(Phe) anticodon stem and loop (ASL(Phe)) with naturally occurring modified nucleosides differing only at position 37, ASL(Phe)-(Cm(32),Gm(34),m(5)C(40)), and ASL(Phe)-(Cm(32),Gm(34),m(1)G(37),m(5)C(40)), were determined by NMR spectroscopy and restrained molecular dynamics. The ASL structures had similarly resolved stems (RMSD approximately 0.6A) of five canonical base-pairs in standard A-form RNA. The "NOE walk" was evident on the 5' and 3' sides of the stems of both RNAs, and extended to the adjacent loop nucleosides. The NOESY cross-peaks involving U(33) H2' and characteristic of tRNA's anticodon domain U-turn were present but weak, whereas those involving the U(33) H1' proton were absent from the spectra of both ASLs. However, ASL(Phe)-(Cm(32),Gm(34),m(1)G(37),m(5)C(40)) exhibited the downfield shifted 31P resonance of U(33)pGm(34) indicative of U-turns; ASL(Phe)-(Cm(32),Gm(34),m(5)C(40)) did not. An unusual "backwards" NOE between Gm(34) and A(35) (Gm(34)/H8 to A(35)/H1') was observed in both molecules. The RNAs exhibited a protonated A(+)(38) resulting in the final structures having C(32).A(+)(38) intra-loop base-pairs, with that of ASL(Phe)-(Cm(32),Gm(34),m(1)G(37),m(5)C(40)) being especially well defined. A single family of low-energy structures of ASL(Phe)-(Cm(32),Gm(34), m(1)G(37),m(5)C(40)) (loop RMSD 0.98A) exhibited a significantly restricted conformational space for the anticodon loop in comparison to that of ASL(Phe)-(Cm(32),Gm(34),m(5)C(40)) (loop RMSD 2.58A). In addition, the ASL(Phe)-(Cm(32),Gm(34),m(1)G(37),m(5)C(40)) average structure had a greater degree of similarity to that of the yeast tRNA(Phe) crystal structure. A comparison of the resulting structures indicates that modification of position 37 affects the accuracy of decoding and the maintenance of the mRNA reading frame by restricting anticodon loop conformational space.
Collapse
Affiliation(s)
- John W Stuart
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695-7622, USA
| | | | | | | |
Collapse
|
17
|
Dolan MA, Babin P, Wollenzien P. Construction and analysis of base-paired regions of the 16S rRNA in the 30S ribosomal subunit determined by constraint satisfaction molecular modelling. J Mol Graph Model 2002; 19:495-513. [PMID: 11552678 DOI: 10.1016/s1093-3263(00)00097-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Structure models for each of the secondary structure regions from the Escherichia coli 16S rRNA (58 separate elements) were constructed using a constraint satisfaction modelling program to determine which helices deviated from classic A-form geometry. Constraints for each rRNA element included the comparative secondary structure, H-bonding conformations predicted from patterns of base-pair covariation, tertiary interactions predicted from covariation analysis, chemical probing data, rRNA-rRNA crosslinking information, and coordinates from solved structures. Models for each element were built using the MC-SYM modelling algorithm and subsequently were subjected to energy minimization to correct unfavorable geometry. Approximately two-thirds of the structures that result from the input data are very similar to A-form geometry. In the remaining instances, the presence of internal loops and bulges, some sequences (and sequence covariants) and accessory information require deviation from A-form geometry. The structures of regions containing more complex base-pairing arrangements including the central pseudoknot, the 530 region, and the pseudoknot involving base-pairing between G570-U571/A865-C866 and G861-C862/G867-C868 were predicted by this approach. These molecular models provide insight into the connection between patterns of H-bonding, the presence of unpaired nucleotides, and the overall geometry of each element.
Collapse
Affiliation(s)
- M A Dolan
- Department of Biochemistry, North Carolina State University, Raleigh, North Carolina 27695-762, USA
| | | | | |
Collapse
|
18
|
Höbartner C, Ebert MO, Jaun B, Micura R. RNA Two-State Conformation Equilibria and the Effect of Nucleobase Methylation. Angew Chem Int Ed Engl 2002. [DOI: 10.1002/1521-3773(20020215)41:4<605::aid-anie605>3.0.co;2-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Höbartner C, Ebert MO, Jaun B, Micura R. RNA-Konformationsgleichgewichte und der Einfluss der Methylierung von Nucleobasen auf die Gleichgewichtslage. Angew Chem Int Ed Engl 2002. [DOI: 10.1002/1521-3757(20020215)114:4<619::aid-ange619>3.0.co;2-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
20
|
Micura R, Pils W, Höbartner C, Grubmayr K, Ebert MO, Jaun B. Methylation of the nucleobases in RNA oligonucleotides mediates duplex-hairpin conversion. Nucleic Acids Res 2001; 29:3997-4005. [PMID: 11574682 PMCID: PMC115353 DOI: 10.1093/nar/29.19.3997] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2001] [Revised: 08/09/2001] [Accepted: 08/09/2001] [Indexed: 11/12/2022] Open
Abstract
We have systematically investigated the duplex to hairpin conversion of oligoribonucleotides under the aspect of nucleobase methylation. The first part of our study refers to the self-complementary sequence rCGCGAAUUCGCGA, which forms a stable Watson-Crick base paired duplex under various buffer conditions. It is shown that this sequence is forced to adopt a hairpin conformation if one of the central 6 nt is replaced by the corresponding methylated nucleotide, such as 1-methylguanosine N(2),N(2)-dimethylguanosine, N(6),N(6)-dimethyladenosine (m(6)(2)A) or 3-methyluridine. On the other hand, the duplex structure is retained and even stabilized by replacement of a central nucleotide with N(2)-methylguanosine (m(2)G) or N(4)-methylcytidine. A borderline case is represented by N(6)-methyladenosine (m(6)A). Although generally a duplex-preserving modification, our data indicate that m(6)A in specific strand positions and at low strand concentrations is able to effectuate duplex-hairpin conversion. Our studies also include the ssu ribosomal helix 45 sequence motif, rGACCm(2)GGm(6)(2)Am(6)(2)AGGUC. In analogy, it is demonstrated that the tandem m(6)(2)A nucleobases of this oligoribonucleotide prevent duplex formation with complementary strands. Therefore, it can be concluded that nucleobase methylations at the Watson-Crick base pairing site provide the potential not only to modulate but to substantially affect RNA structure by formation of different secondary structure motifs.
Collapse
Affiliation(s)
- R Micura
- Institut für Organische Chemie, Leopold Franzens Universität, Innrain 52a, A-6020 Innsbruck, Austria.
| | | | | | | | | | | |
Collapse
|
21
|
Huber PW, Rife JP, Moore PB. The structure of helix III in Xenopus oocyte 5 S rRNA: an RNA stem containing a two-nucleotide bulge. J Mol Biol 2001; 312:823-32. [PMID: 11575935 DOI: 10.1006/jmbi.2001.4966] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The solution structure of an oligonucleotide containing the helix III sequence from Xenopus oocyte 5 S rRNA has been determined by NMR spectroscopy. Helix III includes two unpaired adenosine residues, flanked on either side by G:C base-pairs, that are required for binding of ribosomal protein L5. The consensus conformation of helix III in the context provided by this oligonucleotide has the two adenosine residues located in the minor groove and stacked upon the 3' flanking guanosine residue, consistent with biochemical studies of free 5 S rRNA in solution. A distinct break in stacking that occurs between the first adenosine residue of the bulge and the flanking 5' guanosine residue exposes the base of the adenosine residue in the minor groove and the base of the guanosine residue in the major groove. The major groove of the helix is widened at the site of the unpaired nucleotides and the helix is substantially bent; nonetheless, the G:C base-pairs flanking the bulge are intact. The data indicate that there may be conformational heterogeneity centered in the bulge region. The corresponding adenosine residues in the Haloarcula marismortui 50 S ribosomal subunit form a dinucleotide platform, which is quite different from the motif seen in solution. Thus, the conformation of helix III probably changes when 5 S rRNA is incorporated into the ribosome.
Collapse
Affiliation(s)
- P W Huber
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | | | | |
Collapse
|
22
|
Hedenstierna KO, Siefert JL, Fox GE, Murgola EJ. Co-conservation of rRNA tetraloop sequences and helix length suggests involvement of the tetraloops in higher-order interactions. Biochimie 2000; 82:221-7. [PMID: 10863005 DOI: 10.1016/s0300-9084(00)00212-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Terminal loops containing four nucleotides (tetraloops) are common in structural RNAs, and they frequently conform to one of three sequence motifs, GNRA, UNCG, or CUUG. Here we compare available sequences and secondary structures for rRNAs from bacteria, and we show that helices capped by phylogenetically conserved GNRA loops display a strong tendency to be of conserved length. The simplest interpretation of this correlation is that the conserved GNRA loops are involved in higher-order interactions, intramolecular or intermolecular, resulting in a selective pressure for maintaining the lengths of these helices. A small number of conserved UNCG loops were also found to be associated with conserved length helices, consistent with the possibility that this type of tetraloop also takes part in higher-order interactions.
Collapse
Affiliation(s)
- K O Hedenstierna
- Department of Molecular Genetics, The University of Texas M.D. Anderson Cancer Center, Houston 77030-4095, USA.
| | | | | | | |
Collapse
|
23
|
Abstract
The powerful explanatory paradigm of molecular biology requiring form to co-evolve with function has again been proven successful when, over the recent two decades, a wealth of biological functions have been uncovered for RNA. Previously considered as a mere mediator of the genetic code, RNA is now acknowledged as a key player in a wide variety of cellular processes. Along with the discovery of novel biological functions of RNA molecules, a number of RNA three-dimensional structures have been solved which beautifully demonstrate the molecular adaptability which allows RNA to participate as a key player in these functions. A distinct repertoire of molecular motifs provides a basis for the assembly of complex RNA tertiary architectures.
Collapse
Affiliation(s)
- T Hermann
- Cellular Biochemistry and Biophysics Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA.
| | | |
Collapse
|
24
|
Vila-Sanjurjo A, Squires CL, Dahlberg AE. Isolation of kasugamycin resistant mutants in the 16 S ribosomal RNA of Escherichia coli. J Mol Biol 1999; 293:1-8. [PMID: 10512710 DOI: 10.1006/jmbi.1999.3160] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Three ribosomal RNA mutations conferring resistance to the antibiotic kasugamycin were isolated using a strain of Escherichia coli in which all of the rRNA is transcribed from a plasmid-encoded rrn operon. The mutations, A794G, G926A, and A1519C, mapped to universally conserved sites in the 16 S RNA gene. Site-directed mutagenesis studies showed that virtually all mutations at these three sites conferred kasugamycin resistance and had very slight effects on cell growth. It has been known for many years that the absence of post-transcriptional modification at A1519 and the adjacent A1518 in strains lacking a functional KsgA methylase produces a kasugamycin resistance phenotype. Mutations at A1519 conferred kasugamycin resistance and had minor effects on cell growth, whereas mutations at 1518 did not confer resistance and increased the doubling time of the cells dramatically. Expression of mutations at A1518/A1519 in a methylase deficient ksgA(-)strain had divergent effects on the phenotype of the rRNA mutants, suggesting that the base identity at either position does not affect methylation at the adjacent site. Residues A794 and G926 are protected from chemical modification by kasugamycin and tRNA, and have been implicated in the initiation of protein synthesis. Despite the universal conservation and functional importance of these residues, the results presented here show that the identity of the bases is not critical for ribosomal function.
Collapse
Affiliation(s)
- A Vila-Sanjurjo
- J. W. Wilson Laboratory Department of Molecular and Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA.
| | | | | |
Collapse
|
25
|
Abstract
Significant progress is occurring at an accelerated rate in structural studies of ribosomes. A 3D cryoelectron microscopy map of the 70S ribosome from Escherichia coli is available at 15 A resolution and a combination of cryoelectron microscopy with X-ray crystallography has yielded a 9 A resolution map of the 50S subunit from Haloarcula marismortui, an archaebacterium. For eukaryotes, 3D cryomaps of the 80S ribosomes from yeast and from mammals have now been produced at resolutions in the range 20 to 30 A. The most ground-breaking results have been obtained from the 3D mapping of ligands in functional studies of prokaryotic ribosomes. These studies, which directly visualize the protein synthesis machine in action, have brought new excitement to a field that was relatively dormant during the past decade.
Collapse
Affiliation(s)
- R K Agrawal
- Wadsworth Center, Department of Biomedical Sciences, State University of New York at Albany, Empire State Plaza, Albany, NY 12201-0509, USA.
| | | |
Collapse
|
26
|
Rife JP, Cheng CS, Moore PB, Strobel SA. N 2-methylguanosine is iso-energetic with guanosine in RNA duplexes and GNRA tetraloops. Nucleic Acids Res 1998; 26:3640-4. [PMID: 9685477 PMCID: PMC147776 DOI: 10.1093/nar/26.16.3640] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Modified nucleotides are resource-intensive alternatives to the four nucleotides that constitute the bulk of natural RNAs. Yet, even in cases where modifications are highly conserved, their functions are difficult to identify. One possible function might be to modulate the stability of RNA structures. To investigate this possibility for N 2-methylguanosine (m2G), which is present in a wide variety of RNAs, we have determined the thermodynamic consequences of substituting m2G for G in G-C Watson-Crick pairs and G@U wobble pairs within RNA duplexes. The m2G substitution is iso-energetic with G in all cases, except for aninternal m2G@U pair, where it has a modest (0.3 kcal/mol) stabilizing effect. We have also examined theconsequences of replacing G by m2G, and A by N 6, N 6-dimethyladenosine (m26A) in the helix 45 tetraloop of 16S rRNA, which would otherwise be a standard GNRA tetraloop. This loop is a conserved, hypermethylated region of the ribosome where methylation appears to modulate activity. m26A substitution destabilizes the tetraloop, presumably because it prevents the formation of the G@A sheared pair it would otherwise contain. m2G substitution has no effect on tetraloop stability. Together, these results suggest that m2G is equally stable as either the s-cis or s-trans rotamer. The lack of a significant effect on secondary structural stability in these systems suggests that m2G is introduced into naturally occurring RNAs for reasons other than modulation of duplex stability.
Collapse
Affiliation(s)
- J P Rife
- Department of Chemistry and Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|