1
|
Ragchana P, Saengkaew P, Wetchagarun S, Tiyapun K, Dangprasert M, Khamwan K. Preliminary experiments to produce lutetium-177 in the TRR-1/M1 Thai research reactor. Appl Radiat Isot 2025; 218:111708. [PMID: 39923338 DOI: 10.1016/j.apradiso.2025.111708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/31/2025] [Accepted: 02/04/2025] [Indexed: 02/11/2025]
Abstract
Lutetium-177 has emerged as a highly efficient radionuclide for medical applications, particularly in the field of targeted radionuclide therapy. Its production has been increasingly optimized through neutron activation techniques, which offer distinct advantages over alternative methods. Utilizing the TRR-1/M1 research reactor, which has been in operation for nearly six decades, provides a strategic opportunity for advancing domestic radioisotope production, thereby supporting the medical sector in Thailand. The TRR-1/M1 reactor, despite its operational age, continues to exhibit considerable potential for contributing to medical research and radioisotope development in Thailand. Preliminary experimental results, conducted at a flux of 1.42 × 1012 n/cm2/s demonstrated promising outcomes, even under operational constraints such as fuel management limitations. Notably, the direct neutron activation of natural lutetium oxide notably yielded a specific activity of 177Lu at 10.92 GBq/g (295.06 mCi/g) with a production yield of 44.8%, with projections reaching 222 GBq/g (6 Ci/g) after 40 days of neutron irradiation. In comparison, the indirect method, using natural ytterbium oxide as a precursor, achieved a maximum specific activity of 177Lu at 6.6 MBq/g (180.3 μCi/g) with a yield of 37.8% of a theoretical maximum of 17.6 MBq/g (476 μCi/g) after only 10 h of neutron activation. These results highlight the feasibility and promise of 177Lu radioisotope production in Thailand.
Collapse
Affiliation(s)
- Pitima Ragchana
- Department of Nuclear Engineering, Faculty of Engineering, Chulalongkorn University, Phatumwan, Bangkok, 10330, Thailand; Department of Radiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkoknoi, Bangkok, 10700, Thailand
| | - Phannee Saengkaew
- Department of Nuclear Engineering, Faculty of Engineering, Chulalongkorn University, Phatumwan, Bangkok, 10330, Thailand.
| | - Saensuk Wetchagarun
- Research Reactor Center, Thailand Institute of Nuclear Technology (Public Organization), Ongkarak, Nakhon Nayok, 26120, Thailand
| | - Kanokrat Tiyapun
- Research Reactor Center, Thailand Institute of Nuclear Technology (Public Organization), Ongkarak, Nakhon Nayok, 26120, Thailand
| | - Moleephan Dangprasert
- Radioisotope Center, Thailand Institute of Nuclear Technology (Public Organization), Ongkarak, NakhonNayok, 26120, Thailand
| | - Kitiwat Khamwan
- Division of Nuclear Medicine, Department of Radiology, Faculty of Medicine, Chulalongkorn University, Phatumwan, Bangkok, 10330, Thailand
| |
Collapse
|
2
|
Kumar N, Suman SK, Guleria M, Kolay S, Amirdhanayagam J, Chakraborty A, Rakshit S, Mukherjee A, Das T. Chlorambucil Conjugation Enhances the Potency of Rituximab: Synthesis and Evaluation of the Novel [ 177Lu]Lu-Labeled Rituximab-Chlorambucil Conjugate toward Therapy of Non-Hodgkin's Lymphoma. J Med Chem 2025; 68:1365-1381. [PMID: 39807673 DOI: 10.1021/acs.jmedchem.4c01954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
In this study, a novel antibody-drug conjugate (ADC) consisting of Rituximab and Chlorambucil (Rituximab-CMB) was synthesized. The average number of drug molecules attached per Rituximab molecule was determined using MALDI-TOF mass spectrometry, revealing a range of 4-6 drug molecules per antibody. To further improve the therapeutic potential of the ADC, it was radiolabeled with the therapeutic radionuclide 177Lu via a DOTA chelator, achieving a final radiochemical purity of over 95%. In vitro assays demonstrated that the Rituximab-CMB conjugate had greater cytotoxicity compared to that of both unconjugated Rituximab and Chlorambucil alone. Moreover, [177Lu]Lu-labeled-Rituximab-CMB (15.67 MBq/mg) exhibited higher radiotoxicity (37.08 ± 1.40% cell death) compared to [177Lu]Lu-labeled-Rituximab (83.99 MBq/mg) (25.25 ± 0.8% cell death) when administered at similar radioactivity doses. Ex vivo experiments indicated that coinjecting cold Rituximab with the radiolabeled formulations significantly improved tumor accumulation and reduced nontarget organ uptake. SPECT-CT imaging results supported these findings, further confirming the enhanced tumor-targeting and biodistribution of the radiolabeled ADC.
Collapse
Affiliation(s)
- Naveen Kumar
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Shishu Kant Suman
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Mohini Guleria
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Soumi Kolay
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | | | - Avik Chakraborty
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
- Radiation Medicine Centre, Parel, Mumbai 400012, India
| | - Sutapa Rakshit
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
- Radiation Medicine Centre, Parel, Mumbai 400012, India
| | - Archana Mukherjee
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Tapas Das
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
3
|
Kumar N, Sharma AK, Guleria M, Shelar SB, Chakraborty A, Rakshit S, Kolay S, Satpati D, Das T. Nuclear Localization Signal Enhances the Targeting and Therapeutic Efficacy of a Porphyrin-Based Molecular Cargo: A Systemic In Vitro and Ex Vivo Evaluation. Mol Pharm 2024; 21:2351-2364. [PMID: 38477252 DOI: 10.1021/acs.molpharmaceut.3c01152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
The objective of the present work was to evaluate the potential of a nuclear localization signal (NLS) toward facilitating intracellular delivery and enhancement in the therapeutic efficacy of the molecular cargo. Toward this, an in-house synthesized porphyrin derivative, namely, 5-carboxymethyelene-oxyphenyl-10,15,20-tris(4-methoxyphenyl) porphyrin (UTriMA), was utilized for conjugation with the NLS sequence [PKKKRKV]. The three compounds synthesized during the course of the present work, namely DOTA-Lys-NLS, DOTA-UTriMA-Lys-NLS, and DOTA-Lys-UTriMA, were evaluated for cellular toxicity in cancer cell lines (HT1080), wherein all exhibited minimal dark toxicity. However, during photocytotoxicity studies with DOTA-Lys-UTriMA and DOTA-UTriMA-Lys-NLS conjugates in the same cell line, the latter exhibited significantly higher light-dependent toxicity compared to the former. Furthermore, the photocytotoxicity for DOTA-UTriMA-Lys-NLS in a healthy cell line (WI26VA4) was found to be significantly lower than that observed in the cancer cells. Fluorescence cell imaging studies carried out in HT1080 cancer cells revealed intracellular accumulation for the NLS-conjugated porphyrin (DOTA-UTriMA-Lys-NLS), whereas unconjugated porphyrin (DOTA-Lys-UTriMA) failed to do so. To evaluate the radiotherapeutic effects of the synthesized conjugates, all three compounds were radiolabeled with 177Lu, a well-known therapeutic radionuclide with high radiochemical purity (>95%). During in vitro studies, the [177Lu]Lu-DOTA-UTriMA-Lys-NLS complex exhibited the highest cell binding as well as internalization among the three radiolabeled complexes. Biological distribution studies for the radiolabeled compounds were performed in a fibrosarcoma-bearing small animal model, wherein significantly higher accumulation and prolonged retention of [177Lu]Lu-DOTA-UTriMA-Lys-NLS (9.32 ± 1.27% IA/g at 24 h p.i.) in the tumorous lesion compared to [177Lu]Lu-UTriMA-Lys-DOTA (2.3 ± 0.13% IA/g at 24 h p.i.) and [177Lu]Lu-DOTA-Lys-NLS complexes (0.26 ± 0.17% IA/g at 24 h p.i.) were observed. The results of the biodistribution studies were further corroborated by recording serial SPECT-CT images of fibrosarcoma-bearing Swiss mice administered with [177Lu]Lu-DOTA-UTriMA-Lys-NLS at different time points. Tumor regression studies performed with [177Lu]Lu-DOTA-UTriMA-Lys-NLS in the same animal model with two different doses [250 μCi (9.25 MBq) and 500 μCi (18.5 MBq)] resulted in a significant reduction in tumor mass in the treated group of animals. The above results revealed a definite enhancement in the targeting ability of molecular cargo upon conjugation with NLS and hence indicated that this strategy may be helpful for the preparation of drug-NLS conjugates as multimodal agents.
Collapse
Affiliation(s)
- Naveen Kumar
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Amit K Sharma
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Mohini Guleria
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Sandeep B Shelar
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Avik Chakraborty
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Parel, Mumbai 400012, India
| | - Sutapa Rakshit
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Parel, Mumbai 400012, India
| | - Soumi Kolay
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Drishty Satpati
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Tapas Das
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
4
|
Mercanoglu G, Alcın G, Ozturkmen Y, Cermik T. Formulation and In-vivo Characterization of 177Lu-tin-colloid as a Radiosynovectomy Agent. Curr Radiopharm 2024; 17:68-76. [PMID: 37937551 DOI: 10.2174/0118744710252994231024064842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 07/29/2023] [Accepted: 09/07/2023] [Indexed: 11/09/2023]
Abstract
INTRODUCTION Arthritis is an inflammatory disorder that affects one or more joints of the body for various reasons, including autoimmune disorders, trauma, or infection. In many cases, traditional long-term treatment with various drug combinations (NSAIDs, diseasemodifying antirheumatic drugs, systemic corticosteroids, etc.) can provide relief, but many joints require additional local treatment. Radiosynovectomy (RSV) is an alternative method to current treatment options. Both the global supply shortage of 90Y in recent years and the increasing use of 177Lu-labeled radiopharmaceuticals in the field of nuclear medicine have made it possible to develop 177Lu-labeled microparticles and test them in small groups as RSV agents. This study aimed to develop the 177Lu labeled tin colloid formulation and demonstrate its invivo characterization. MATERIALS AND METHODS Particle size, shape, and labelling efficiency of the four formulations developed were determined. The formula with the highest labelling efficiency was selected for further studies. The quality of the formulation was evaluated based on radionuclidic, radiochemical, and microbial purity. In-vitro stability was evaluated by determining the labelling efficiency. In-vitro stability was tested in PBS and synovial fluid. The biological characterization was assessed using SPECT/CT after injecting the formulation into the normal knee joints of the rabbits. RESULTS Aggregated colloidal particles were spherical with a particle size of <5 μm. Labelling efficiency and radiochemical purity were >95 and 97.65% (Rf=0.2), respectively. The formulation was stable in vitro for up to 72 hours, both in PBS and synovial fluid. The formulation was homogeneously distributed in the joint at 0 and 1 hour after injection, and radioactivity- related involvement and inguinal lymph node involvement due to possible leakage were not detected in the late period. No pyrogenic/allergic side effects were observed during this period. CONCLUSION 177Lu-tin-colloid was successfully prepared under optimized reaction conditions with high binding efficiency and radiochemical purity. The radiolabeled colloid was found to be stable in-vitro both in PBS and synovial fluid at room temperature. Serial PCET/CT images revealed that the activity was completely retained within the synovial cavity, with no activity leakage out of the joint until 48 hours after the injection. With the support of the results from further clinical studies, it may be possible for the formulation to enter clinical use.
Collapse
Affiliation(s)
- Guldem Mercanoglu
- Department of Pharmacology, Hamidiye Pharmacy Faculty, University of Health Sciences, Istanbul, Turkey
| | - Goksel Alcın
- Department of Nuclear Medicine, University of Health Sciences, Istanbul Research and Training Hospital, Istanbul, Turkey
| | - Yusuf Ozturkmen
- Department of Orthopaedics and Traumatology, Istanbul Research and Training Hospital, University of Health Sciences, Istanbul, Turkey
| | - Tevfik Cermik
- Department of Nuclear Medicine, University of Health Sciences, Istanbul Research and Training Hospital, Istanbul, Turkey
| |
Collapse
|
5
|
Majumder A, Pulhani AK, Ghosh A, Singh P, Maiti N. Need for enrichment of lutetium isotope and design of a laser based separator module. Appl Radiat Isot 2023; 202:111038. [PMID: 37812857 DOI: 10.1016/j.apradiso.2023.111038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 10/11/2023]
Abstract
Lutetium-177 radio-pharmaceutical has become an important theranostic candidate in cancer treatment. Its availability from bench-to-bed requires strategic implementation of isotope-enrichment, neutron-irradiation and radio-chemical techniques. In this paper, the need for enrichment of lutetium-176 is emphasized by estimating specific activity of lutetium-177 as a function of enrichment percentage for typical neutron flux available at Dhruva reactor, India. A novel Atomic Vapour Laser Isotope Separation (AVLIS) module for lutetium-176 enrichment is designed to meet the above requirement. The paper documents its characteristics and production estimates. The design is carried out after critical assessment and evaluation of available AVLIS-infrastructure in the country. Outline of lutetium-177 enrichment, capable of producing non-carrier-added lutetium is also provided. This work concludes that India has taken a step forward towards self-reliance (Atmanirbhar Bharat) in securing the supply chain of lutetium-177.
Collapse
Affiliation(s)
- A Majumder
- Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.
| | - A K Pulhani
- Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - A Ghosh
- Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India; Homi Bhabha National Institute, Mumbai, 400085, India
| | - P Singh
- Homi Bhabha National Institute, Mumbai, 400085, India
| | - N Maiti
- Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India; Homi Bhabha National Institute, Mumbai, 400085, India
| |
Collapse
|
6
|
Xiao L, Li Y, Geng R, Chen L, Yang P, Li M, Luo X, Yang Y, Li L, Cai H. Polymer composite microspheres loading 177Lu radionuclide for interventional radioembolization therapy and real-time SPECT imaging of hepatic cancer. Biomater Res 2023; 27:110. [PMID: 37925456 PMCID: PMC10625707 DOI: 10.1186/s40824-023-00455-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/24/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND Transarterial radioembolization (TARE) with 90Y-labeled glass and resin microspheres is one of the primary treatment strategies for advanced-stage primary and metastatic hepatocellular carcinoma (HCC). However, difficulties of real-time monitoring post administration and embolic hypoxia influence treatment prognosis. In this study, we developed a new biodegradable polymer microsphere that can simultaneously load 177Lu and MgO nanoparticle, and evaluated the TARE therapeutic efficacy and biosafety of 177Lu-PDA-CS-MgO microspheres for HCC treatment. METHODS Chitosan microspheres were synthesized through emulsification crosslink reaction and then conducted surface modification with polydopamine (PDA). The 177Lu and nano MgO were conjugated to microspheres using active chemical groups of PDA. The characteristics of radionuclide loading efficiency, biodegradability, blood compatibility, and anti-tumor effectwere evaluated both in vitro and in vivo. SPECT/CT imaging was performed to monitor bio-distribution and bio-stability of 177Lu-PDA-CS-MgO after TARE treatment. The survival duration of each rat was monitored. HE analysis, TUNEL analysis, immunohistochemical analysis, and western blot analysis were conducted to explore the anti-tumor effect and mechanism of composited microspheres. Body weight, liver function, blood routine examination were monitored at different time points to evaluate the bio-safety of microspheres. RESULTS The composite 177Lu-PDA-CS-MgO microsphere indicated satisfactory degradability, biocompatibility, radionuclide loading efficiency and radiochemical stability in vitro. Cellular evaluation showed that 177Lu-PDA-CS-MgO had significant anti-tumor effect and blocked tumor cell cycles in S phase. Surgical TARE treatment with 177Lu-PDA-CS-MgO significantly prolonged the medial survival time from 49 d to 105 d, and effectively inhibited primary tumor growth and small metastases spreading. Moreover, these microspheres indicated ideal in vivo stability and allowed real-time SPECT/CT monitoring for up to 8 weeks. Immunostaining and immunoblotting results also confirmed that 177Lu-PDA-CS-MgO had potential in suppressing tumor invasion and angiogenesis, and improved embolic hypoxia in HCC tissues. Further evaluations of body weight, blood test, and pathological analysis indicated good biosafety of 177Lu-PDA-CS-MgO microspheres in vivo. CONCLUSION Our study demonstrated that 177Lu-PDA-CS-MgO microsphere hold great potential as interventional brachytherapy candidate for HCC therapy. Polymer composite microspheres loading 177Lu radionuclide and MgO nanoparticles for interventional radioembolization therapy and real-time SPECT imaging of hepatic cancer.
Collapse
Affiliation(s)
- Liu Xiao
- Department of Nuclear Medicine & Laboratary of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Yuhao Li
- Department of Nuclear Medicine & Laboratary of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Ruiman Geng
- Department of Biochemistry & Molecular Biology, West China School of Basic Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Lihong Chen
- Department of Biochemistry & Molecular Biology, West China School of Basic Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Peng Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P.R. China
| | - Mingyu Li
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, P.R. China
| | - Xia Luo
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, P.R. China
| | - Yuchuan Yang
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, 621900, P.R. China
| | - Lin Li
- Department of Nuclear Medicine & Laboratary of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China.
| | - Huawei Cai
- Department of Nuclear Medicine & Laboratary of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China.
| |
Collapse
|
7
|
Patra S, Kancharlapalli S, Chakraborty A, Singh K, Kumar C, Guleria A, Rakshit S, Damle A, Chakravarty R, Chakraborty S. Chelator-Free Radiolabeling with Theoretical Insights and Preclinical Evaluation of Citrate-Functionalized Hydroxyapatite Nanospheres for Potential Use as Radionanomedicine. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c04378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Sourav Patra
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | | | - Avik Chakraborty
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Parel, Mumbai 400012, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Khajan Singh
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Chandan Kumar
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Apurav Guleria
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Parel, Mumbai 400012, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Sutapa Rakshit
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Parel, Mumbai 400012, India
| | - Archana Damle
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Parel, Mumbai 400012, India
| | - Rubel Chakravarty
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Sudipta Chakraborty
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
8
|
Bellamy M, Chu B, Serencsits B, Quinn B, Prasad K, Altamirano J, Williamson M, Miodownik D, Abrahams N, Chen F, Bierman D, Wutkowski M, Dauer L. SUBSTANTIAL EXTERNAL DOSE RATE VARIABILITY OBSERVED IN A COHORT OF LU-177 PATIENTS INDEPENDENT OF BMI AND SEX. RADIATION PROTECTION DOSIMETRY 2022; 198:1476-1482. [PMID: 36138119 PMCID: PMC9667277 DOI: 10.1093/rpd/ncac187] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 07/06/2022] [Accepted: 08/23/2022] [Indexed: 06/16/2023]
Abstract
External dose rates were measured 1 m away from 230 Lu-177 patients to characterise the variability in normalised dose rates as a function of administered activity, body mass index (BMI) and sex. The largest dose rate observed was 0.07 mSv/h associated with an administered activity of 7.2 GBq. Substantial variability was found in the distribution of the normalised dose rate associated that had an average of 0.0037 mSv/h per GBq and a 95% confidence interval of 0.0024-0.0058 mSv/h per GBq. Based on this study, estimating the patient dose rate based on the Lu-177 gamma exposure factor overestimates the dose rate by a factor of 2. A statistically significant inverse relationship was found between the patient dose rate and patient BMI and an empirically derived equation relating these two quantities was reported. On average, male patient dose rates were 3.5% lower than female dose rates, which may be attributed to the larger average BMI of the male patient group.
Collapse
Affiliation(s)
| | - Bae Chu
- Department of Medical Physics, Memorial Sloan Kettering, 1275 York Avenue, New York, NY 10065, USA
| | - Brian Serencsits
- Department of Medical Physics, Memorial Sloan Kettering, 1275 York Avenue, New York, NY 10065, USA
| | - Brian Quinn
- Department of Medical Physics, Memorial Sloan Kettering, 1275 York Avenue, New York, NY 10065, USA
| | - K Prasad
- Department of Medical Physics, Memorial Sloan Kettering, 1275 York Avenue, New York, NY 10065, USA
| | - J Altamirano
- Department of Medical Physics, Memorial Sloan Kettering, 1275 York Avenue, New York, NY 10065, USA
| | - Matthew Williamson
- Department of Medical Physics, Memorial Sloan Kettering, 1275 York Avenue, New York, NY 10065, USA
| | - Daniel Miodownik
- Department of Medical Physics, Memorial Sloan Kettering, 1275 York Avenue, New York, NY 10065, USA
| | - Natalie Abrahams
- Siena College, 515 Loudon Road, Loudonville, New York, NY 12211, USA
| | - Fanny Chen
- Department of Medical Physics, Memorial Sloan Kettering, 1275 York Avenue, New York, NY 10065, USA
| | - David Bierman
- Department of Medical Physics, Memorial Sloan Kettering, 1275 York Avenue, New York, NY 10065, USA
| | - M Wutkowski
- Department of Medical Physics, Memorial Sloan Kettering, 1275 York Avenue, New York, NY 10065, USA
| | - Lawrence Dauer
- Department of Medical Physics, Memorial Sloan Kettering, 1275 York Avenue, New York, NY 10065, USA
| |
Collapse
|
9
|
Jokar N, Moradhaseli F, Ahmadzadehfar H, Jafari E, Nikeghbalian S, Rasekhi AR, Assadi M. Theranostic approach in liver cancer: an emerging paradigm to optimize personalized medicine. Clin Transl Imaging 2022. [DOI: 10.1007/s40336-022-00525-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Simón M, Jørgensen JT, Khare HA, Christensen C, Nielsen CH, Kjaer A. Combination of [ 177Lu]Lu-DOTA-TATE Targeted Radionuclide Therapy and Photothermal Therapy as a Promising Approach for Cancer Treatment: In Vivo Studies in a Human Xenograft Mouse Model. Pharmaceutics 2022; 14:pharmaceutics14061284. [PMID: 35745856 PMCID: PMC9227845 DOI: 10.3390/pharmaceutics14061284] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 11/16/2022] Open
Abstract
Peptide receptor radionuclide therapy (PRRT) relies on α- and β-emitting radionuclides bound to a peptide that commonly targets somatostatin receptors (SSTRs) for the localized killing of tumors through ionizing radiation. A Lutetium-177 (177Lu)-based probe linked to the somatostatin analog octreotate ([177Lu]Lu-DOTA-TATE) is approved for the treatment of certain SSTR-expressing tumors and has been shown to improve survival. However, a limiting factor of PRRT is the potential toxicity derived from the high doses needed to kill the tumor. This could be circumvented by combining PRRT with other treatments for an enhanced anti-tumor effect. Photothermal therapy (PTT) relies on nanoparticle-induced hyperthermia for cancer treatment and could be a useful add-on to PRRT. Here, we investigate a strategy combining [177Lu]Lu-DOTA-TATE PRRT and nanoshell (NS)-based PTT for the treatment of SSTR-expressing small-cell lung tumors in mice. Our results showed that the combination treatment improved survival compared to PRRT alone, but only when PTT was performed one day after [177Lu]Lu-DOTA-TATE injection (one of the timepoints examined), showcasing the effect of treatment timing in relation to outcome. Furthermore, the combination treatment was well-tolerated in the mice. This indicates that strategies involving NS-based PTT as an add-on to PRRT could be promising and should be investigated further.
Collapse
Affiliation(s)
- Marina Simón
- Department of Clinical Physiology and Nuclear Medicine & Cluster for Molecular Imaging, Copenhagen University Hospital—Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark; (M.S.); (J.T.J.); (H.A.K.); (C.C.); (C.H.N.)
| | - Jesper Tranekjær Jørgensen
- Department of Clinical Physiology and Nuclear Medicine & Cluster for Molecular Imaging, Copenhagen University Hospital—Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark; (M.S.); (J.T.J.); (H.A.K.); (C.C.); (C.H.N.)
| | - Harshvardhan A. Khare
- Department of Clinical Physiology and Nuclear Medicine & Cluster for Molecular Imaging, Copenhagen University Hospital—Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark; (M.S.); (J.T.J.); (H.A.K.); (C.C.); (C.H.N.)
| | - Camilla Christensen
- Department of Clinical Physiology and Nuclear Medicine & Cluster for Molecular Imaging, Copenhagen University Hospital—Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark; (M.S.); (J.T.J.); (H.A.K.); (C.C.); (C.H.N.)
- Minerva Imaging, 3650 Ølstykke, Denmark
| | - Carsten Haagen Nielsen
- Department of Clinical Physiology and Nuclear Medicine & Cluster for Molecular Imaging, Copenhagen University Hospital—Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark; (M.S.); (J.T.J.); (H.A.K.); (C.C.); (C.H.N.)
- Minerva Imaging, 3650 Ølstykke, Denmark
| | - Andreas Kjaer
- Department of Clinical Physiology and Nuclear Medicine & Cluster for Molecular Imaging, Copenhagen University Hospital—Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark; (M.S.); (J.T.J.); (H.A.K.); (C.C.); (C.H.N.)
- Correspondence:
| |
Collapse
|
11
|
Hu X, Li D, Fu Y, Zheng J, Feng Z, Cai J, Wang P. Advances in the Application of Radionuclide-Labeled HER2 Affibody for the Diagnosis and Treatment of Ovarian Cancer. Front Oncol 2022; 12:917439. [PMID: 35785201 PMCID: PMC9240272 DOI: 10.3389/fonc.2022.917439] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/20/2022] [Indexed: 12/19/2022] Open
Abstract
Human epidermal growth factor receptor 2 (HER2) is a highly expressed tumor marker in epithelial ovarian cancer, and its overexpression is considered to be a potential factor of poor prognosis. Therefore, monitoring the expression of HER2 receptor in tumor tissue provides favorable conditions for accurate localization, diagnosis, targeted therapy, and prognosis evaluation of cancer foci. Affibody has the advantages of high affinity, small molecular weight, and stable biochemical properties. The molecular probes of radionuclide-labeled HER2 affibody have recently shown broad application prospects in the diagnosis and treatment of ovarian cancer; the aim is to introduce radionuclides into the cancer foci, display systemic lesions, and kill tumor cells through the radioactivity of the radionuclides. This process seamlessly integrates the diagnosis and treatment of ovarian cancer. Current research and development of new molecular probes of radionuclide-labeled HER2 affibody should focus on overcoming the deficiencies of non-specific uptake in the kidney, bone marrow, liver, and gastrointestinal tract, and on reducing the background of the image to improve image quality. By modifying the amino acid sequence; changing the hydrophilicity, surface charge, and lipid solubility of the affibody molecule; and using different radionuclides, chelating agents, and labeling conditions to optimize the labeling method of molecular probes, the specific uptake of molecular probes at tumor sites will be improved, while reducing radioactive retention in non-target organs and obtaining the best target/non-target value. These measures will enable the clinical use of radionuclide-labeled HER2 affibody molecular probes as soon as possible, providing a new clinical path for tumor-specific diagnosis, targeted therapy, and efficacy evaluation. The purpose of this review is to describe the application of radionuclide-labeled HER2 affibody in the imaging and treatment of ovarian cancer, including its potential clinical value and dilemmas.
Collapse
Affiliation(s)
- Xianwen Hu
- Department of Nuclear Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Dandan Li
- Department of Obstetrics, Zunyi Hospital of Traditional Chinese Medicine, Zunyi, China
| | - Yujie Fu
- Research and Development Department, Jiangsu Yuanben Biotechnology Co., Ltd., Zunyi, China
| | - Jiashen Zheng
- Department of Nuclear Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zelong Feng
- Department of Nuclear Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jiong Cai
- Department of Nuclear Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- *Correspondence: Jiong Cai, ; Pan Wang,
| | - Pan Wang
- Department of Nuclear Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- *Correspondence: Jiong Cai, ; Pan Wang,
| |
Collapse
|
12
|
Menon SR, Mitra A, Chakraborty A, Tawate M, Sahu S, Rakshit S, Gaikwad S, Dhotre G, Damle A, Banerjee S. Clinical Dose Preparation of [ 177Lu]Lu-DOTA-Pertuzumab Using Medium Specific Activity [ 177Lu]LuCl 3 for Radioimmunotherapy of Breast and Epithelial Ovarian Cancers, with HER2 Receptor Overexpression. Cancer Biother Radiopharm 2022; 37:384-402. [PMID: 35575711 DOI: 10.1089/cbr.2021.0230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: The overexpression of human epidermal growth factor receptor 2 (HER2) is commonly associated with metastatic breast cancer and epithelial ovarian cancer. The U.S. Food and Drug Administration (FDA) has approved Trastuzumab as an anti-HER2 agent for the metastatic breast and epithelial ovarian cancer. However, Trastuzumab has severe limitations in the treatment of metastatic breast cancer associated with ligand-dependent dimerization of HER2 receptor at the extracellular domain-II (ECD-II) region. The therapeutic approach in combination of pertuzumab and trastuzumab is found to be effective in preventing HER2 dimerization at the ECD-II region. The radioimmunotherapeutic approach, utilizing both these anti-HER2 agents (trastuzumab/pertuzumab), radiolabeled with [177Lu]Lu3+, has proved to be clinically efficacious with promising potential. Toward this, the formulation for clinical doses of [177Lu]Lu-DOTA-pertuzumab has been optimized using medium specific activity (0.81 GBq/μg) [177Lu]LuCl3. Materials and Methods: Preconcentrated pertuzumab was conjugated with p-NCS-benzyl-DOTA. Purified DOTA-benzyl-pertuzumab conjugate was radiolabeled with carrier-added [177Lu]LuCl3. Quality control parameters were evaluated for the [177Lu]Lu-DOTA-pertuzumab. In vivo biodistribution was carried out at different time points postadministration. Specific cell binding, immunoreactivity, and internalization were investigated by using SKOV3 and SKBR3 cells. Results: In this study, the authors reported a consistent and reproducible protocol for clinical dose formulations of [177Lu]Lu-DOTA-pertuzumab, with a radiochemical yield of 86.67% ± 1.03% and radiochemical purity (RCP) of 99.36% ± 0.36% (n = 10). Preclinical cell binding studies of [177Lu]Lu-DOTA-pertuzumab revealed specific binding with SKOV3 and SKBR3 cells up to 24.4% ± 1.4% and 23.2% ± 0.8%, respectively. The uptakes in SKOV3- and SKBR3-xenografted tumor in severe combined immunodeficiency mice were observed to be 25.9% ± 0.8% and 25.2% ± 1.2% ID/g at 48 and 120 h postinjection, respectively. Conclusions: A protocol was optimized for the preparation of ready-to-use clinical dose of [177Lu]Lu-DOTA-pertuzumab, in hospital radiopharmacy settings. The retention of RCP of the radiopharmaceutical, on storage in saline and serum, at -20°C, up to 120 h postradiolabeling, confirmed its in vitro stability.
Collapse
Affiliation(s)
- Sreeja Raj Menon
- Health Physics Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | - Arpit Mitra
- Medical Cyclotron Facility, Board of Radiation and Isotope Technology, Mumbai, India
| | - Avik Chakraborty
- Homi Bhabha National Institute, Mumbai, India.,Radiation Medicine Centre, Bhabha Atomic Research Centre, Mumbai, India
| | - Megha Tawate
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Mumbai, India
| | - Sudeep Sahu
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Mumbai, India
| | - Sutapa Rakshit
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Mumbai, India
| | - Sujay Gaikwad
- Homi Bhabha National Institute, Mumbai, India.,Radiation Medicine Centre, Bhabha Atomic Research Centre, Mumbai, India
| | - Geetanjali Dhotre
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Archana Damle
- Homi Bhabha National Institute, Mumbai, India.,Radiation Medicine Centre, Bhabha Atomic Research Centre, Mumbai, India
| | - Sharmila Banerjee
- Homi Bhabha National Institute, Mumbai, India.,Radiological Research Unit, Advance Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
| |
Collapse
|
13
|
Sahafi-Pour SA, Shirmardi SP, Saeedzadeh E, Baradaran S, Sadeghi M. Internal dosimetry studies of 177Lu-BBN-GABA-DOTA, as a cancer therapy agent, in human tissues based on animal data. Appl Radiat Isot 2022; 186:110273. [PMID: 35594697 DOI: 10.1016/j.apradiso.2022.110273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/03/2022] [Indexed: 11/02/2022]
Abstract
The goal of using radiopharmaceuticals for therapeutic purposes is twofold: first, the most damage to cancer cells and, second, the most negligible dose transfers to healthy tissues. As 177Lu has the potential to cure a wide range of malignancies due to its varied range of beta energies, 177Lu-BBN-GABA-DOTA has been developed for therapeutic applications. In addition, 177Lu-BBN-GABA-DOTA can be over-expressed on gastrin-releasing peptide (GRP) receptors of the prostate, breast, small cell lung cancer, gastric, and colon tumors. The purpose of this study was to calculate the amount of dose absorption in human body organs using medical internal radiation dose (MIRD) and GATE code methods, after animal injection. In this study, the amount of absorbed dose in different organs (spleen, kidney, Lung, Pancreas, Heart, Adrenal, Intestine, Stomach, and Liver) were calculated for 1-MBq accumulation of 177Lu-BBN-GABA-DOTA in source organs (spleen, kidney, Lung, Pancreas, Heart, Adrenal, Intestine, Stomach, and Liver) using Monte Carlo Simulation (GATE code) with Zubal phantom. Moreover, compared with MIRD method, the results of the simulation showed considerable consistency. It was estimated that a 1-MBq administration of 177Lu-BBN-GABA-DOTA to the human body would result in an absorbed dose of 1.07E-02 mGy and 4.97E-02 (MIRD method) and 1.26E-02 mGy and 5.19E-02 (Gate code) in the Pancreas and adrenal 120 h after injection, respectively. The highest and lowest percentage differences between MIRD and Gate results are related to the Pancreas and spleen, respectively. Finally, the results showed that there is a good agreement between MIRD method and Gate code simulation for absorbed dose estimation.
Collapse
Affiliation(s)
- S A Sahafi-Pour
- Department of Radiomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - S P Shirmardi
- Nuclear Science and Technology Research Institute (NSTRI), Iran.
| | - E Saeedzadeh
- Department of Radiomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - S Baradaran
- Nuclear Science and Technology Research Institute (NSTRI), Iran
| | - M Sadeghi
- Medical Physics Department, School of Medicine, Iran University of Medical Science, Tehran, Iran
| |
Collapse
|
14
|
Deep K, Wanage G, Loharkar S, Das T, Basu S, Banerjee S. Estimation of Absorbed Doses of Indigenously Produced "Direct-route" Lutetium-177-Labeled DOTA-TATE PRRT in Normal Organs and Tumor Lesions in Patients of Metastatic Neuroendocrine Tumors: Comparison with No-Carrier-Added [ 177Lu]Lu-DOTA-TATE and the Trend with Multiple Cycles. Cancer Biother Radiopharm 2021; 37:214-225. [PMID: 34910891 DOI: 10.1089/cbr.2021.0340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: Lutetium-177-labeled somatostatin analogue, [177Lu]Lu-DOTA-TATE is most commonly used across the world for peptide receptor radionuclide therapy (PRRT) of neuroendocrine tumors (NETs). The primary objective of this study was to estimate the absorbed doses in organs and tumor lesions in NET patients treated with indigenously produced "direct-route" [177Lu]Lu-labeled DOTA-TATE and impact of multiple treatment cycles on absorbed doses, and compare with those treated with no-carrier-added [177Lu]Lu-labeled DOTA-TATE. Materials and Methods: Sixty patients of NET were enrolled in this prospective study. These patients received up to 6 cycles of PRRT with [177Lu]Lu-DOTA-TATE (total 232 cycles) at 10- to 12-week intervals between the two successive therapy cycles. The patients were administered 5.55-7.4 GBq (150-200 mCi) of [177Lu]Lu-DOTA-TATE in 100 mL of normal saline over a period of 30 min. Postadministration whole-body planar scintigraphy were acquired at five time points 0.5 (prevoid), 2, 12, 24, and 72 h (postvoid) and one SPECT scan at 24 h (postvoid). Number of disintegrations was determined from time-activity curves generated by drawing regions of interests (ROIs) on the images. Tumor masses were derived from computed tomography (CT) data. The absorbed doses for normal organs and tumor lesions were calculated using OLINDA 2.1.1 software. The same were also estimated in a group of 22 patients who were treated with no-carrier-added [177Lu]Lu-labeled DOTA-TATE. Results: The mean absorbed organ doses (mean ± SD) in Gy/GBq received by normal organs were as follows: kidneys 0.64 ± 0.21, liver 0.10 ± 0.05, spleen 0.88 ± 0.35, bone marrow 0.04 ± 0.02, urinary bladder 0.26 ± 0.06, heart wall 0.04 ± 0.02, and whole-body 0.06 ± 0.02. Tumor dosimetry was performed in a total of 410 tumor lesions, the mean absorbed dose to the tumor lesions was 4.79 ± 4.23 Gy/GBq. Large variations were observed in absorbed doses received by these lesions (range: 0.15-21.26 Gy/GBq). With no-carrier-added [177Lu]Lu-DOTA-TATE, the mean absorbed organ doses (mean ± SD) in Gy/GBq received by normal organs were as follows: kidneys 0.76 ± 0.16, liver 0.10 ± 0.05, spleen 1.14 ± 0.31, bone marrow 0.05 ± 0.02, urinary bladder 0.27 ± 0.05, heart wall 0.06 ± 0.02, whole-body 0.07 ± 0.02, and tumor dose 5.87 ± 5.74. Conclusions: There was no statistically significant difference in the dosimetry data of patients treated with no-carrier-added (indirect route) [177Lu]Lu-labeled DOTA-TATE and the dosimetry data of patients treated with [177Lu]Lu-labeled with DOTA-TATE formulated using 177Lu produced through "Direct-route" and were comparable with the data reported.
Collapse
Affiliation(s)
- Kamal Deep
- Health Physics Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | - Gaurav Wanage
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Mumbai, India
| | - Sarvesh Loharkar
- Homi Bhabha National Institute, Mumbai, India.,Radiation Medicine Centre, Bhabha Atomic Research Centre, Mumbai, India
| | - Tapas Das
- Homi Bhabha National Institute, Mumbai, India.,Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Sandip Basu
- Homi Bhabha National Institute, Mumbai, India.,Radiation Medicine Centre, Bhabha Atomic Research Centre, Mumbai, India
| | - Sharmila Banerjee
- Homi Bhabha National Institute, Mumbai, India.,Radiation Medicine Centre, Bhabha Atomic Research Centre, Mumbai, India
| |
Collapse
|
15
|
Preparation of 177Lu-PSMA-617 in Hospital Radiopharmacy: Convenient Formulation of a Clinical Dose Using a Single-Vial Freeze-Dried PSMA-617 Kit Developed In-House. BIOMED RESEARCH INTERNATIONAL 2021; 2021:1555712. [PMID: 34845436 PMCID: PMC8627353 DOI: 10.1155/2021/1555712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/10/2021] [Accepted: 10/21/2021] [Indexed: 12/24/2022]
Abstract
Objective In the recent time, endoradionuclide therapy for metastatic castration-resistant prostate carcinoma employing 177Lu-PSMA-617 has yielded encouraging results and several clinical trials with the agent are currently ongoing. Routine preparation of 177Lu-PSMA-617 patient doses can be made simpler and convenient, if the ingredients essential for radiolabeling are made available in a ready-to-use lyophilized form. Methods PSMA-617 freeze-dried kit was formulated and used for the preparation of 177Lu-PSMA-617 clinical dose with high radiochemical purity using low/medium specific activity 177Lu. Detailed radiochemical studies were performed to determine the maximum activity and volume of 177LuCl3, which can be added in the kit for the formulation of 177Lu-PSMA-617. Studies were also performed to determine the shelf life of the kit to ensure its long-term usage. Studies were performed in buffer as well as human serum medium to determine the stability of the 177Lu-PSMA-617 complex after storing in respective media up to 7 days postpreparation. About ten patient doses of 177Lu-PSMA-617 were administered, and posttherapy scans were acquired. Results The formulated freeze-dried kit of PSMA-617 could be radiolabeled with an average percentage radiochemical purity > 98.53 ± 0.38. The freeze-dried kit was found suitable for tolerating up to 0.5 mL of 177LuCl3 (in 0.01 N HCl) and specific activity of 555 MBq/μg (15 mCi/μg) for the preparation of the patient dose of 177Lu-PSMA-617. The 177Lu-PSMA-617 complex prepared using the freeze-dried kit of PSMA-617 was observed to maintain % radiochemical purity (RCP) of 96.74 ± 0.87 and 94.81 ± 2.66, respectively, even after storing up to 7 days in buffer and human serum, respectively. 177Lu-PSMA-617 prepared using the in-house formulated freeze-dried kit of PSMA-617 exhibited accumulation in metastatic lesions picked up in a pretherapy PET scan. Reduction in number as well as size of lesions was observed in posttherapy scans acquired after two months of administering the first therapeutic dose of 177Lu-PSMA-617. Conclusions The freeze-dried kit of PSMA-617 could be used for the preparation of 177Lu-PSMA-617 with high radiochemical purity (>98%) in a reproducible manner. 177Lu-PSMA-617 prepared using the developed kit was successfully evaluated in patients suffering from metastatic prostate cancer.
Collapse
|
16
|
He P, Guan S, Ren E, Chen H, Chen H, Peng Y, Luo B, Xiong Y, Li B, Li J, Mao J, Liu G. Precision Interventional Brachytherapy: A Promising Strategy Toward Treatment of Malignant Tumors. Front Oncol 2021; 11:753286. [PMID: 34692537 PMCID: PMC8531520 DOI: 10.3389/fonc.2021.753286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/23/2021] [Indexed: 01/22/2023] Open
Abstract
Precision interventional brachytherapy is a radiotherapy technique that combines radiation therapy medicine with computer network technology, physics, etc. It can solve the limitations of conventional brachytherapy. Radioactive drugs and their carriers change with each passing day, and major research institutions and enterprises worldwide have conducted extensive research on them. In addition, the capabilities of interventional robotic systems are also rapidly developing to meet clinical needs for the precise delivery of radiopharmaceuticals in interventional radiotherapy. This study reviews the main radiopharmaceuticals, drug carriers, dispensing and fixation technologies, and interventional robotic precision delivery systems used in precision brachytherapy of malignant tumors. We then discuss the current needs in the field and future development prospects in high-precision interventional brachytherapy.
Collapse
Affiliation(s)
- Pan He
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Siwen Guan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - En Ren
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Hongwei Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Hu Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Yisheng Peng
- Department of General Surgery (Hepatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Bin Luo
- Department of General Surgery (Hepatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yongfu Xiong
- Institute of Hepato-Biliary-Intestinal Disease, Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Bo Li
- Department of General Surgery (Hepatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jingdong Li
- Institute of Hepato-Biliary-Intestinal Disease, Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jingsong Mao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
- Department of Radiology, Xiang’an Hospital of Xiamen University, Xiamen, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| |
Collapse
|
17
|
Naseri F, Charkhi A, Salek N, Vosoughi S. The radio-europium impurities in [153Sm]-EDTMP production: a review of isolation methods. Nucl Med Commun 2021; 42:951-963. [PMID: 34001824 DOI: 10.1097/mnm.0000000000001419] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Many human cancers predominantly metastasize to the bone which causes bone pain and other symptoms. However, the management of bone metastases is challenging. Radionuclide therapy using low-energy beta-emitting radionuclides has yielded encouraging results. The aim of this therapy is to deliver the maximum dose to the metastatic sites but a minimal dose to the normal tissue. Samarium-153 [153Sm]Sm-Ethylenediamine tetramethylene phosphonate (EDTMP) is an FDA and European Medicine Agency approved (Quadramet) radionuclide and is widely used for bone pain palliation. 153Sm is reactor produced, and the presence of europium impurities is thus unavoidable. This in turn causes an increase in the hospital radioactive waste burden and in radiation absorbed doses to the patients, and therefore it is a concern. The effective removal of these impurities is thus highly desirable before its administration to the patients. In this article, we present a detailed review of the various methods described in the literature for separation of 153Sm and Eu, that is solvent extraction, ion-exchange chromatography, electrochromatography, electrochemical separation and supported ionic liquid phase.
Collapse
Affiliation(s)
| | | | | | - Sara Vosoughi
- Radiation Application Research School, Nuclear Science and Technology Research Institute (NSTRI), Tehran, Iran
| |
Collapse
|
18
|
A facile strategy for synthesis of a broad palette of intrinsically radiolabeled chitosan nanoparticles for potential use in cancer theranostics. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102485] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Guleria M, Sharma R, Amirdhanayagam J, Sarma HD, Rangarajan V, Dash A, Das T. Formulation and clinical translation of [ 177Lu]Lu-trastuzumab for radioimmunotheranostics of metastatic breast cancer. RSC Med Chem 2021; 12:263-277. [PMID: 34046615 PMCID: PMC8128050 DOI: 10.1039/d0md00319k] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 10/14/2020] [Indexed: 11/21/2022] Open
Abstract
Trastuzumab (Herceptin®) is an approved immunotherapeutic agent used for the treatment of metastatic breast cancer over-expressing HER2 antigen receptors. The aim of the present work is to standardize the formulation protocol of [177Lu]Lu-trastuzumab addressing various reaction parameters, evaluating the efficacy of the radiolabeled product by in vitro investigations, scaling-up the preparation for administration in patients and performing preliminary clinical studies in patients suffering from metastatic breast cancer. Trastuzumab was conjugated with a suitable bi-functional chelating agent namely, p-NCS-benzyl-DOTA. On average 6.15 ± 0.92 p-NCS-benzyl-DOTA molecules were observed to be attached to each trastuzumab moiety. [177Lu]Lu-trastuzumab could be prepared with >95% radiochemical purity (% RCP) employing the optimized radiolabeling procedure. In vitro studies revealed the affinity of [177Lu]Lu-trastuzumab towards HER2 +ve cancer cell lines as well as against HER2 protein (K d = 13.61 nM and 11.36 nM, respectively). The value for percentage immunoreactive fraction (% IRF) for [177Lu]Lu-trastuzumab was observed to be 76.92 ± 2.80. Bio-distribution studies in Swiss mice revealed non-specific uptake in the blood, liver, lungs and heart followed by gradual clearance of activity predominantly through the hepatobiliary route. Preliminary clinical studies carried out in 8 cancer patients with immunohistochemically proven HER2 positive metastatic breast cancer revealed preferential localization of [177Lu]Lu-trastuzumab in breast cancer lesions, which was in concordance with [18F]FDG-PET scans recorded earlier in the same patient indicating the potential of the agent towards radioimmunotheranostic applications.
Collapse
Affiliation(s)
- Mohini Guleria
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre Trombay Mumbai - 400085 India +91 22 2550 5151 +91 22 2559 0613
| | - Rohit Sharma
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre Trombay Mumbai - 400085 India +91 22 2550 5151 +91 22 2559 0613
| | - Jeyachitra Amirdhanayagam
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre Trombay Mumbai - 400085 India +91 22 2550 5151 +91 22 2559 0613
| | - Haladhar D Sarma
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre Trombay Mumbai - 400085 India
| | - Venkatesh Rangarajan
- Department of Nuclear Medicine and Molecular Imaging, Tata Memorial Hospital Parel Mumbai - 400012 India
| | - Ashutosh Dash
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre Trombay Mumbai - 400085 India +91 22 2550 5151 +91 22 2559 0613
- Homi Bhabha National Institute Anushaktinagar Mumbai - 400094 India
| | - Tapas Das
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre Trombay Mumbai - 400085 India +91 22 2550 5151 +91 22 2559 0613
- Homi Bhabha National Institute Anushaktinagar Mumbai - 400094 India
| |
Collapse
|
20
|
Hao G, Mastren T, Silvers W, Hassan G, Öz OK, Sun X. Copper-67 radioimmunotheranostics for simultaneous immunotherapy and immuno-SPECT. Sci Rep 2021; 11:3622. [PMID: 33574346 PMCID: PMC7878802 DOI: 10.1038/s41598-021-82812-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 01/22/2021] [Indexed: 02/01/2023] Open
Abstract
Copper-67 (t1/2 = 2.58 days) decays by β- ([Formula: see text]: 562 keV) and γ-rays (93 keV and 185 keV) rendering it with potential for both radionuclide therapy and single-photon emission computed tomography (SPECT) imaging. Prompted by the recent breakthrough of 67Cu production with high specific activity, high radionuclidic purity, and sufficient quantities, the interest in the theranostic potential of 67Cu has been rekindled. This work addresses the practicability of developing 67Cu-labeled antibodies with substantially improved quality for cancer radioimmunotheranostics. Proof of concept is demonstrated with pertuzumab, a US-FDA-approved monoclonal antibody for combination therapies of HER2-positive breast cancer. With an average number of 1.9 chelators coupled to each antibody, we achieved a two-order of magnitude increase in radiolabeling efficiency compared to literature reports. In a preclinical therapeutic study, mice (n = 4-7/group) bearing HER2+ xenografts exhibited a 67Cu-dose dependent tumor-growth inhibition from 67Cu-labeled-Pertuzumab co-administered with trastuzumab. Furthermore, greater tumor size reduction was observed with 67Cu-labeled-pertuzumab formulations of higher specific activity. The potential of SPECT imaging with 67Cu radiopharmaceuticals was tested after 67Cu-labeled-Pertuzumab administration. Impressively, all tumors were clearly visualized by SPECT imaging with 67Cu-labeled-Pertuzumab even at day 5 post injection. This work demonstrates it is practical to use 67Cu radioimmunoconjugates for cancer radioimmunotheranostics.
Collapse
Affiliation(s)
- Guiyang Hao
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Tara Mastren
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - William Silvers
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Gedaa Hassan
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Orhan K Öz
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Xiankai Sun
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
21
|
Vosoughi S, Salek N, Arani SS, Samani AB, Maragheh MG. Investigation of radiolabeling efficacy by enhancement of the chemical form of no carrier added 177Lu isolated by electro amalgamation process. Curr Radiopharm 2021; 15:56-62. [PMID: 33480353 DOI: 10.2174/1874471014666210122150134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Due to the suitable nuclear decay characteristics, 177Lu is an attractive radionuclide for various therapeutic applications. The non-carrier added form of 177Lu has drawn many attention because of its high specific activity needed in radiolabeling studies. There have been several separation methods for NCA 177Lu production. OBJECTIVES Among the various separation methods, the electro-amalgamation separation method has got a large potential for large scale production. Li presence is a significant problem in this separation method, which seriously affects the radiolabeling efficiency. METHOD In this study, Li was separated from the final product of electro-amalgamation separation by adding an ion-exchange chromatography column to the separation process. RESULTS NCA 177Lu was obtained by 84.09% ELM separation yield, 99.9% radionuclide purity and, 65 Ci/g specific activity. Then, 177Lu (177LuCl3 chemical form) was separated from Li using the ion exchange chromatography method by a separation yield of 94%. The obtained results of the radiolabeling efficacy studies showed that the radiochemical purity and radio-complex stability were significantly increased by separating of NCA 177Lu from Li. CONCLUSION This new separation setup consisting of two steps allows using 177Lu of such a favorable quality for labeling studies.
Collapse
Affiliation(s)
- Sara Vosoughi
- Radiation Application Research School, Nuclear Science and Technology Research Institute (NSTRI),Tehran. Iran
| | - Nafise Salek
- Nuclear Fuel Research School, Nuclear Science and Technology Research Institute (NSTRI). Iran
| | | | - Ali Bahrami Samani
- Nuclear Fuel Research School, Nuclear Science and Technology Research Institute (NSTRI). Iran
| | | |
Collapse
|
22
|
Analysis of lutetium-177 production at the WWR-K research reactor. Appl Radiat Isot 2020; 169:109561. [PMID: 33360502 DOI: 10.1016/j.apradiso.2020.109561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/06/2020] [Accepted: 12/07/2020] [Indexed: 11/23/2022]
Abstract
Production of lutetium-177 using direct nuclear reaction 176Lu(n,γ)177Lu by WWR-K reactor neutrons on enriched LuCl3 (up to 82% of 176Lu) is described. Calculations were performed by MCNP6 transport code. Two different irradiation positions of the WWR-K research reactor were considered. Estimates of the maximum specific activity of the luthetium-177 are obtained for the reactor irradiation positions located: (a) in the reactor core centre, (b) in the core periphery. In these positions, thermal neutron flux is two times different. Experimental data was shown that k-factor is 1.5 for considered irradiation positions. The study shows that for the position located in the core center, the estimated maximum specific activity of lutetium-177 is 819 GBq/mg, is to be achieved after 15 days of irradiation. For the position located in the core periphery, specific activity of lutetium-177 is 561 GBq/mg, is to be achieved after 20 days of irradiation. Ratio of Lu-177m to Lu-177 specific activity is not more than 0.025 for both irradiation positions.
Collapse
|
23
|
Tan HY, Yeong CH, Wong YH, McKenzie M, Kasbollah A, Md Shah MN, Perkins AC. Neutron-activated theranostic radionuclides for nuclear medicine. Nucl Med Biol 2020; 90-91:55-68. [PMID: 33039974 DOI: 10.1016/j.nucmedbio.2020.09.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/08/2020] [Accepted: 09/22/2020] [Indexed: 12/14/2022]
Abstract
Theranostics in nuclear medicine refers to personalized patient management that involves targeted therapy and diagnostic imaging using a single or combination of radionuclide (s). The radionuclides emit both alpha (α) or beta (β-) particles and gamma (γ) rays which possess therapeutic and diagnostic capabilities, respectively. However, the production of these radionuclides often faces difficulties due to high cost, complexity of preparation methods and that the products are often sourced far from the healthcare facilities, hence losing activity due to radioactive decay during transportation. Subject to the availability of a nuclear reactor within an accessible distance from healthcare facilities, neutron activation is the most practical and cost-effective route to produce radionuclides suitable for theranostic purposes. Holmium-166 (166Ho), Lutetium-177 (177Lu), Rhenium-186 (186Re), Rhenium-188 (188Re) and Samarium-153 (153Sm) are some of the most promising neutron-activated radionuclides that are currently in clinical practice and undergoing clinical research for theranostic applications. The aim of this paper is to review the physical characteristics, current clinical applications and future prospects of these neutron activated radionuclides in theranostics. The production, physical properties, validated clinical applications and clinical studies for each neutron-activated radionuclide suitable for theranostic use in nuclear medicine are reviewed in this paper.
Collapse
Affiliation(s)
- Hun Yee Tan
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia
| | - Chai Hong Yeong
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia
| | - Yin How Wong
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia
| | - Molly McKenzie
- School of Life Sciences, University of Dundee, DD1 4HN, United Kingdom
| | - Azahari Kasbollah
- Medical Technology Division, Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor, Malaysia
| | - Mohamad Nazri Md Shah
- Department of Biomedical Imaging, University of Malaya Medical Centre, 59100 Kuala Lumpur, Malaysia
| | - Alan Christopher Perkins
- Radiological Sciences, School of Medicine, University of Nottingham, Nottingham NG7 2UH, United Kingdom.
| |
Collapse
|
24
|
Yadav MP, Ballal S, Meckel M, Roesch F, Bal C. [ 177Lu]Lu-DOTA-ZOL bone pain palliation in patients with skeletal metastases from various cancers: efficacy and safety results. EJNMMI Res 2020; 10:130. [PMID: 33113035 PMCID: PMC7593375 DOI: 10.1186/s13550-020-00709-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/21/2020] [Indexed: 12/29/2022] Open
Abstract
Background [177Lu]Lu-DOTA-ZOL has shown promising results from the dosimetry and preclinical aspects, but data on its role in the clinical efficacy are limited. The objective of this study is to evaluate the efficacy and safety of [177Lu]Lu-DOTA-ZOL as a bone pain palliation agent in patients experiencing pain due to skeletal metastases from various cancers. Methods In total, 40 patients experiencing bone pain due to skeletal metastases were enrolled in this study. The patients were treated with a mean cumulative dose of 2.1 ± 0.6 GBq (1.3–2.7 GBq) [177Lu]Lu-DOTA-ZOL in a median follow-up duration of 10 months (IQR 8–14 months). The primary outcome endpoint was response assessment according to the visual analogue score (VAS). Secondary endpoints included analgesic score (AS), global pain assessment score, Eastern Cooperative Oncology Group Assessment performance status (ECOG), Karnofsky performance status, overall survival, and safety assessment by the National Cancer Institute’s Common Toxicity Criteria V5.0. Results In total, 40 patients (15 males and 25 females) with a mean age of 46.6 ± 15.08 years (range 24–78 years) were treated with either 1 (N = 15) or 2 (N = 25) cycles of [177Lu]Lu-DOTA-ZOL. According to the VAS response assessment criteria, complete, partial, and minimal responses were observed in 11 (27.5%), 20 (50%), and 5 patients (12.5%), respectively with an overall response rate of 90%. Global pain assessment criteria revealed complete, partial, minimal, and no response in 2 (5%), 25 (62.5%), 9 (22.5%), and 4 (10%) patients, respectively. Twenty-eight patients died and the estimated median overall survival was 13 months (95% CI 10–14 months). A significant improvement was observed in the VAS, AS, and ECOG status when compared to baseline. None of the patients experienced grade III/IV haematological, kidney, or hepatotoxicity due to [177Lu]Lu-DOTA-ZOL therapy. Conclusion [177Lu]Lu-DOTA-ZOL shows promising results and is an effective radiopharmaceutical in the treatment of bone pain due to skeletal metastases from various cancers.
Collapse
Affiliation(s)
- Madhav Prasad Yadav
- Department of Nuclear Medicine, Room No: 59-A, Thyroid Clinic, All India Institute of Medical Sciences (AIIMS), Ansari Nagar, New Delhi, 110029, India
| | - Sanjana Ballal
- Department of Nuclear Medicine, Room No: 59-A, Thyroid Clinic, All India Institute of Medical Sciences (AIIMS), Ansari Nagar, New Delhi, 110029, India
| | - Marian Meckel
- Department of Nuclear Chemistry, Johannes Gutenberg University, Fritz-Strassmann-Weg 2, 55126, Mainz, Germany
| | - Frank Roesch
- Department of Nuclear Chemistry, Johannes Gutenberg University, Fritz-Strassmann-Weg 2, 55126, Mainz, Germany
| | - Chandrasekhar Bal
- Department of Nuclear Medicine, Room No: 59-A, Thyroid Clinic, All India Institute of Medical Sciences (AIIMS), Ansari Nagar, New Delhi, 110029, India.
| |
Collapse
|
25
|
Sulieman A, Mayhoub FH, Salah H, Al-Mohammed HI, Alkhorayef M, Moftah B, Al Rowaily M, Bradley DA. Occupational and ambient radiation exposures from Lu-177 DOTATATE during targeted therapy. Appl Radiat Isot 2020; 164:109240. [PMID: 32819499 DOI: 10.1016/j.apradiso.2020.109240] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 04/22/2020] [Accepted: 05/19/2020] [Indexed: 11/16/2022]
Abstract
Lutetium-177 (DOTATATE) (177Lu; T1/2 6.7 days), a labelled β- and Auger-electron emitter, is widely used in treatment of neuroendocrine tumours. During performance of the procedure, staff and other patients can potentially receive significant doses in interception of the gamma emissions [113 keV (6.4%) and 208 keV (11%)] that are associated with the particle decays. While radiation protection and safety assessment are required in seeking to ensure practices comply with international guidelines, only limited published studies are available. The objectives of present study are to evaluate patient and occupational exposures, measuring ambient doses and estimating the radiation risk. The results, obtained from studies carried out in Riyadh over an 11 month period, at King Faisal Specialist Hospital and Research Center, concerned a total of 33 177Lu therapy patients. Patient exposures were estimated using a calibrated Victoreen 451P survey meter (Fluke Biomedical), for separations of 30 cm, 100 cm and 300 cm, also behind a bed shield that was used during hospitalization of the therapy patients. Occupational and ambient doses were also measured through use of calibrated thermoluminescent dosimeters and an automatic TLD reader (Harshaw 6600). The mean and range of administered activity (in MBq)) was 7115.2 ± 917.2 (4329-7955). The ambient dose at corridors outside of therapy isolation rooms was 1.2 mSv over the 11 month period, that at the nursing station was below the limit of detection and annual occupational doses were below the annual dose limit of 20 mSv. Special concern needs to be paid to comforters (carers) and family members during the early stage of radioisotope administration.
Collapse
Affiliation(s)
- A Sulieman
- Prince Sattam Bin Abdulaziz University, College of Applied Medical Sciences, Radiology and Medical Imaging Department, P.O.Box 422, Alkharj, 11942, Saudi Arabia.
| | - Fareed H Mayhoub
- King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Hassan Salah
- INAYA Medical Collage, Nuclear Medicine Department, Riyadh, 13541, Saudi Arabia; College of Medical Radiologic Science, Sudan University of Science and Technology, P.O.Box 1908, Khartoum, 11111, Sudan
| | - H I Al-Mohammed
- Department of Radiological Sciences, College of Health and Rehabilitation Sciences, Princess Nourah Bint Abdulrahman University, P.O Box 84428, Riyadh, 11671, Saudi Arabia
| | - M Alkhorayef
- Department of Radiological Sciences, College of Applied Medical Sciences, King Saud University, P.O Box 10219, Riyadh, 11433, Saudi Arabia; Centre for Nuclear and Radiation Physics, Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH, UK
| | - B Moftah
- King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - M Al Rowaily
- King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - D A Bradley
- Centre for Nuclear and Radiation Physics, Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH, UK; Centre for Biomedical Physics, School of Healthcare and Medical Sciences, Sunway University, 47500, Bandar Sunway, Selangor, Malaysia
| |
Collapse
|
26
|
Targeted Tumor Therapy with Radiolabeled DNA Intercalator: A Possibility? Preclinical Investigations with 177Lu-Acridine. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9514357. [PMID: 32775454 PMCID: PMC7397433 DOI: 10.1155/2020/9514357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/25/2020] [Accepted: 06/29/2020] [Indexed: 01/12/2023]
Abstract
Objective A DNA intercalating agent reversibly stacks between the adjacent base pairs of DNA and thus is expected to exhibit preferential localization in the tumorous lesions as tumors are associated with enhanced DNA replication. Therefore, radiolabeled DNA intercalators are supposed to have potential to be used in targeted tumor therapy. Working in this direction, an attempt was made to radiolabel 9-aminoacridine, a DNA intercalator, with 177Lu, one of the most useful therapeutic radionuclides, and study the potential of 177Lu-acridine in targeted tumor therapy. Experiments. 9-Aminoacridine was coupled with p-NCS-benzyl-DOTA to facilitate radiolabeling, and the conjugate was radiolabeled with 177Lu. Different reaction parameters were optimized in order to obtain 177Lu-acridine complex with maximum radiochemical purity. In vitro stability of the radiolabeled complex was studied in normal saline and human blood serum. Biological behavior of the radiolabeled agent was studied both in vitro and in vivo using the Raji cell line and fibrosarcoma tumor-bearing Swiss mice, respectively. Results 177Lu-acridine complex was obtained with ~100% radiochemical purity under the optimized reaction conditions involving incubation of 1.5 mg/mL of ligand with 177Lu (1 mCi, 37 MBq) at 100°C at pH ~5 for 45 minutes. The complex maintained a radiochemical purity of >85% in saline at 6 d and >70% in human serum at 2 d postpreparation. In vitro cellular study showed uptake of the radiotracer (5.3 ± 0.13%) in the Raji cells along with significant cytotoxicity (78.06 ± 2.31% after 6 d). Biodistribution study revealed considerable accumulation of the radiotracer in tumor 9.98 ± 0.13 %ID/g within 1 h postadministration and retention therein till 6 d postadministration 4.00 ± 0.16 %ID/g with encouraging tumor to nontarget organ uptake ratios. Conclusions The present study, although preliminary, indicates the potential of 177Lu-acridine and thus radiolabeled DNA intercalators in targeted tumor therapy. However, further detailed evaluation is required to explore the actual potential of such agents in targeted tumor therapy.
Collapse
|
27
|
Praena J, Garcia-Infantes F, Rivera R, Fernandez-Maza L, Arias de Saavedra F, Porras I. Radioisotope production at the IFMIF-DONES facility. EPJ WEB OF CONFERENCES 2020. [DOI: 10.1051/epjconf/202023923001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The International Fusion Materials Irradiation Facility - Demo Oriented NEutron Source (IFMIF-DONES) is a single-sited novel Research Infrastructure for testing, validation and qualification of the materials to be used in a fusion reactor. Recently, IFMIF-DONES has been declared of interest by ESFRI (European Strategy Forum on Research Infrastructures) and its European host city would be Granada (Spain). In spite the first and most important application of IFMIF-DONES related to fusion technology, the unprecedented neutron flux available could be exploited without modifying the routine operation of IFMIF-DONES. Thus, it is already planned an experimental hall for a complementary program with neutrons. Also, a complementary program on the use of the deuteron beam could help IFMIF-DONES to be more sustainable. In the present work, we study radioisotope production with deuterons of 177Lu. The results show the viability of IFMIF-DONES for such production in terms of the needs of a territory of small-medium size. Also the study suggests that new nuclear data at higher deuteron energies are mandatory for an accurate study in this field.
Collapse
|
28
|
Preparation of [ 177Lu]Lu-DOTA-Ahx-Lys40-Exendin-4 for radiotherapy of insulinoma: a detailed insight into the radiochemical intricacies. Nucl Med Biol 2019; 78-79:31-40. [PMID: 31731177 DOI: 10.1016/j.nucmedbio.2019.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/11/2019] [Accepted: 11/07/2019] [Indexed: 01/05/2023]
Abstract
INTRODUCTION [177Lu]Lu-DOTA-Ahx-Lys40-Exendin-4 ([177Lu]Lu-DOTA-Exendin-4) is a potential agent for radiotherapy of insulinomas owing to its specificity towards GLP-1 (Glucagon like peptide-1) receptors over-expressed on such cancers. The objective of the present study is to optimize the various radiochemistry parameters for the consistent formulation of the agent with high radiolabeling yield using carrier added [177Lu]LuCl3 and also to evaluate its biological behaviour in small animal model. METHODS In order to optimize the radiolabeling parameters, DOTA-Exendin-4 was radiolabeled with [177Lu]LuCl3 in two different buffer systems (sodium acetate and HEPES) at three different temperatures (45, 65 and 95 °C) using three different ligand to metal ratios (3:1, 4:1 and 5:1). The radiolabeled peptide was characterized by both paper chromatography and HPLC. The effect of addition of three different radio-protectors on complexation yield was also studied. Bio-distribution studies were carried out in healthy Swiss mice to evaluate the pharmacokinetic behaviour of the radiolabeled peptide as well as to determine the in vivo specificity of the radiotracer towards GLP-1 receptors (blocking studies). Urine and kidney lysate of the animals were analyzed at various post-administration time-points in order to determine the in vivo stability of the radiolabeled peptide. RESULTS The [177Lu]Lu-DOTA-Exendin-4 complex could be prepared consistently with >95% radiolabeling yield using the optimized reaction conditions. Bio-distribution studies revealed early accumulation of [177Lu]Lu-DOTA-Exendin-4 in pancreas along with fast clearance via renal pathway. Significantly high accumulation of the radiotracer was observed in kidneys. Analyses of urine and kidney lysate of the animals revealed in vivo stability of [177Lu]Lu-DOTA-Exendin-4. Blocking studies showed displacement of significant amount of radiotracer from GLP-1 receptor-positive organs such as, pancreas and lungs (p <0.05) in presence of unlabeled peptide, indicating the specificity of the radiolabeled preparation towards GLP-1 receptors. CONCLUSIONS Present study shows that [177Lu]Lu-DOTA-Exendin-4 could be formulated for radiotherapeutic application with high radiochemical purity and adequate in vivo stability using [177Lu]LuCl3 produced via direct neutron irradiation. ADVANCES IN KNOWLEDGE AND IMPLICATIONS FOR PATIENT CARE Findings of the present study will be helpful in preparing the patient dose of [177Lu]Lu-labeled Exendin for radiotherapy of insulinoma using carrier added [177Lu]LuCl3, produced in a medium flux reactor, without the requirement of post-labeling purification.
Collapse
|
29
|
Kuznetsov RA, Bobrovskaya KS, Svetukhin VV, Fomin AN, Zhukov AV. Production of Lutetium-177: Process Aspects. RADIOCHEMISTRY 2019. [DOI: 10.1134/s1066362219040015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Pandey U, Subramanian S, Shaikh S, Gamre N, Kumar S, Dash A. Synthesis and Preliminary Biological Evaluation of 177Lu-Labeled Polyhydroxamic Acid Microparticles Toward Therapy of Hepatocellular Carcinoma. Cancer Biother Radiopharm 2019; 34:306-315. [PMID: 31188652 DOI: 10.1089/cbr.2018.2747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background: Transarterial radioembolization (TARE) represents an effective targeted therapeutic option for hepatocellular carcinoma (HCC), a cancer with high mortality and poor prognosis. The aim of this study was the preparation and preliminary biological evaluation of 177Lu-labeled polyhydroxamic acid (PHA) microparticles toward possible use in the therapy of HCC. Materials and Methods: PHA microparticles were synthesized starting from polyacrylamide. They were characterized by Fourier-transform infrared spectroscopy (FT-IR), visual color test, and laser diffraction particle size analysis. Experimental variables such as reaction pH, amount of PHA microparticles, carrier Lu content, and incubation time were optimized for maximum uptake of 177Lu on PHA microparticles. Stability of 177Lu-PHA microparticles was tested in the presence of competing Fe(III) ions in solution. In vitro stability of 177Lu-PHA microparticles was evaluated in 0.05 M sodium phosphate solution (pH 7.5), saline, and serum. Bioevaluation studies were performed in normal Wistar rats by intrahepatic artery injection of the 177Lu-PHA microparticles. Results: Successful synthesis of PHA microparticles could be confirmed from the results of FT-IR analysis and visual color test. Laser diffraction-based particle size analysis confirmed median particle size to be 54 μm, suitable for TARE. Under the optimized conditions, >99% loading of 177Lu on PHA microparticles could be achieved. Even in the presence of high concentration of Fe(III) ions, 177Lu binding to PHA microparticles was stable. 177Lu-PHA microparticles exhibited excellent in vitro stability in sodium phosphate solution, saline, and serum up to 5 d at 37°C. In the bioevaluation studies performed in normal Wistar rats, 92.8% ± 3.1% of 177Lu-PHA microparticles were retained in the liver at 96 h postinjection without any significant leakage to other organs. Conclusion: This preliminary study demonstrates the potential of synthesized PHA microparticles as carriers of therapeutic radioisotopes such as 177Lu for treatment of HCC.
Collapse
Affiliation(s)
- Usha Pandey
- 1 Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India.,2 Homi Bhabha National Institute, Mumbai, India
| | - Suresh Subramanian
- 1 Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India.,2 Homi Bhabha National Institute, Mumbai, India
| | - Samina Shaikh
- 2 Homi Bhabha National Institute, Mumbai, India.,3 Analytical Chemistry Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Naresh Gamre
- 1 Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Sanjukta Kumar
- 2 Homi Bhabha National Institute, Mumbai, India.,3 Analytical Chemistry Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Ashutosh Dash
- 1 Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India.,2 Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
31
|
Mishiro K, Hanaoka H, Yamaguchi A, Ogawa K. Radiotheranostics with radiolanthanides: Design, development strategies, and medical applications. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2018.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
32
|
Radiochemical processing of nuclear-reactor-produced radiolanthanides for medical applications. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2018.11.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
33
|
Dash A, Das T, Knapp FFR. Targeted Radionuclide Therapy of Painful Bone Metastases: Past Developments, Current Status, Recent Advances and Future Directions. Curr Med Chem 2019; 27:3187-3249. [PMID: 30714520 DOI: 10.2174/0929867326666190201142814] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 10/29/2018] [Accepted: 12/06/2018] [Indexed: 12/13/2022]
Abstract
Bone pain arising from secondary skeletal malignancy constitutes one of the most common types of chronic pain among patients with cancer which can lead to rapid deterioration of the quality of life. Radionuclide therapy using bone-seeking radiopharmaceuticals based on the concept of localization of the agent at bone metastases sites to deliver focal cytotoxic levels of radiation emerged as an effective treatment modality for the palliation of symptomatic bone metastases. Bone-seeking radiopharmaceuticals not only provide palliative benefit but also improve clinical outcomes in terms of overall and progression-free survival. There is a steadily expanding list of therapeutic radionuclides which are used or can potentially be used in either ionic form or in combination with carrier molecules for the management of bone metastases. This article offers a narrative review of the armamentarium of bone-targeting radiopharmaceuticals based on currently approved investigational and potentially useful radionuclides and examines their efficacy for the treatment of painful skeletal metastases. In addition, the article also highlights the processes, opportunities, and challenges involved in the development of bone-seeking radiopharmaceuticals. Radium-223 is the first agent in this class to show an overall survival advantage in Castration-Resistant Prostate Cancer (CRPC) patients with bone metastases. This review summarizes recent advances, current clinical practice using radiopharmaceuticals for bone pain palliation, and the expected future prospects in this field.
Collapse
Affiliation(s)
- Ashutosh Dash
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Tapas Das
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Furn F Russ Knapp
- Medical Isotopes Program, Isotope Development Group, MS 6229, Bldg. 4501, Oak Ridge National Laboratory, PO Box 2008, 1 Bethel Valley Road, Oak Ridge, TN 37831, United States
| |
Collapse
|
34
|
Abstract
Radiometals possess an exceptional breadth of decay properties and have been applied to medicine with great success for several decades. The majority of current clinical use involves diagnostic procedures, which use either positron-emission tomography (PET) or single-photon imaging to detect anatomic abnormalities that are difficult to visualize using conventional imaging techniques (e.g., MRI and X-ray). The potential of therapeutic radiometals has more recently been realized and relies on ionizing radiation to induce irreversible DNA damage, resulting in cell death. In both cases, radiopharmaceutical development has been largely geared toward the field of oncology; thus, selective tumor targeting is often essential for efficacious drug use. To this end, the rational design of four-component radiopharmaceuticals has become popularized. This Review introduces fundamental concepts of drug design and applications, with particular emphasis on bifunctional chelators (BFCs), which ensure secure consolidation of the radiometal and targeting vector and are integral for optimal drug performance. Also presented are detailed accounts of production, chelation chemistry, and biological use of selected main group and rare earth radiometals.
Collapse
Affiliation(s)
- Thomas I Kostelnik
- Medicinal Inorganic Chemistry Group, Department of Chemistry , University of British Columbia , Vancouver , British Columbia V6T 1Z1 , Canada
| | - Chris Orvig
- Medicinal Inorganic Chemistry Group, Department of Chemistry , University of British Columbia , Vancouver , British Columbia V6T 1Z1 , Canada
| |
Collapse
|
35
|
Kumar C, Sharma R, Vats K, Mallia MB, Das T, Sarma HD, Dash A. Comparison of the efficacy of 177Lu-EDTMP, 177Lu-DOTMP and 188Re-HEDP towards bone osteosarcoma: an in vitro study. J Radioanal Nucl Chem 2018. [DOI: 10.1007/s10967-018-6283-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
36
|
Kumar C, Sharma R, Das T, Korde A, Sarma H, Banerjee S, Dash A. 177Lu-DOTMP induces G2/M cell cycle arrest and apoptosis in MG63 cell line. J Labelled Comp Radiopharm 2018; 61:837-846. [DOI: 10.1002/jlcr.3651] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 05/16/2018] [Accepted: 05/29/2018] [Indexed: 12/28/2022]
Affiliation(s)
- Chandan Kumar
- Radiopharmaceuticals Division; Bhabha Atomic Research Centre; Mumbai India
| | - Rohit Sharma
- Radiopharmaceuticals Division; Bhabha Atomic Research Centre; Mumbai India
| | - Tapas Das
- Radiopharmaceuticals Division; Bhabha Atomic Research Centre; Mumbai India
| | - Aruna Korde
- Radiopharmaceuticals Division; Bhabha Atomic Research Centre; Mumbai India
| | - Haladhar Sarma
- Radiation Biology & Health Sciences Division; Bhabha Atomic Research Centre; Mumbai India
| | - Sharmila Banerjee
- Radiation Medicine Centre; Bhabha Atomic Research Centre; Mumbai India
| | - Ashutosh Dash
- Radiopharmaceuticals Division; Bhabha Atomic Research Centre; Mumbai India
| |
Collapse
|
37
|
Production, quality control, biodistribution and imaging studies of 177Lu-PSMA-617 in breast adenocarcinoma model. RADIOCHIM ACTA 2018. [DOI: 10.1515/ract-2017-2874] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Abstract
177Lu-PSMA-617 therapeutic agent was prepared successfully under optimized condition of pH=4.5, molar ratio of metal to ligand 1:10, temperature of 95°C and 40 min reaction time. 177LuCl3 was obtained with specific activity of 70–80 GBq/mg by the thermal neutron irradiation (5×1013 n cm−2 s−1) of the enriched Lu2O3 (52% 176Lu) samples. The radionuclidic purity of 177LuCl3 (>99%) was checked by a HPGe detector. The radiochemical purities of 177LuCl3 solution and 177Lu-PSMA-617 compound (>98%) were checked by ITLC and HPLC techniques and stability studies were assayed in the presence of human serum. Biodistribution and imaging assessments in the breast adenocarcinoma-bearing mice showed a major accumulation of activity in the tumor and kidneys tissues, as the expression site of PSMA molecule and the main route of excretion, respectively.
Collapse
|
38
|
Massicano AVF, Marquez-Nostra BV, Lapi SE. Targeting HER2 in Nuclear Medicine for Imaging and Therapy. Mol Imaging 2018; 17:1536012117745386. [PMID: 29357745 PMCID: PMC5784567 DOI: 10.1177/1536012117745386] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 09/17/2017] [Accepted: 09/22/2017] [Indexed: 12/21/2022] Open
Abstract
Since its discovery, the human epidermal growth factor 2 (HER2) has been extensively studied. Presently, there are 2 standard diagnostic techniques to assess HER2 status in biopsies: immunohistochemistry and fluorescence in situ hybridization. While these techniques have played an important role in the treatment of patients with HER2-positive cancer, they both require invasive biopsies for analysis. Moreover, the expression of HER2 is heterogeneous in breast cancer and can change over the course of the disease. Thus, the degree of HER2 expression in the small sample size of biopsied tumors at the time of analysis may not represent the overall status of HER2 expression in the whole tumor and in between tumor foci in the metastatic setting as the disease progresses. Unlike biopsy, molecular imaging using probes against HER2 allows for a noninvasive, whole-body assessment of HER2 status in real time. This technique could potentially select patients who may benefit from HER2-directed therapy and offer alternative treatments to those who may not benefit. Several antibodies and small molecules against HER2 have been labeled with different radioisotopes for nuclear imaging and/or therapy. This review presents the most recent advances in HER2 targeting in nuclear medicine focusing on preclinical and clinical studies.
Collapse
Affiliation(s)
| | | | - Suzanne E. Lapi
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
39
|
Yordanova A, Eppard E, Kürpig S, Bundschuh RA, Schönberger S, Gonzalez-Carmona M, Feldmann G, Ahmadzadehfar H, Essler M. Theranostics in nuclear medicine practice. Onco Targets Ther 2017; 10:4821-4828. [PMID: 29042793 PMCID: PMC5633297 DOI: 10.2147/ott.s140671] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The importance of personalized medicine has been growing, mainly due to a more urgent need to avoid unnecessary and expensive treatments. In nuclear medicine, the theranostic approach is an established tool for specific molecular targeting, both for diagnostics and therapy. The visualization of potential targets can help predict if a patient will benefit from a particular treatment. Thanks to the quick development of radiopharmaceuticals and diagnostic techniques, the use of theranostic agents has been continually increasing. In this article, important milestones of nuclear therapies and diagnostics in the context of theranostics are highlighted. It begins with a well-known radioiodine therapy in patients with thyroid cancer and then progresses through various approaches for the treatment of advanced cancer with targeted therapies. The aim of this review was to provide a summary of background knowledge and current applications, and to identify the advantages of targeted therapies and imaging in nuclear medicine practices.
Collapse
Affiliation(s)
- Anna Yordanova
- Department of Nuclear Medicine (Clinical Nuclear Medicine)
| | | | | | | | | | | | - Georg Feldmann
- Department of Medicine 3, University Hospital Bonn, Bonn, Germany
| | | | - Markus Essler
- Department of Nuclear Medicine (Clinical Nuclear Medicine)
| |
Collapse
|
40
|
Naqvi SAR, Rasheed R, Ahmed MT, Zahoor AF, Khalid M, Mahmood S. Radiosynthesis and preclinical studies of 177Lu-labeled sulfadiazine: a possible theranostic agent for deep-seated bacterial infection. J Radioanal Nucl Chem 2017. [DOI: 10.1007/s10967-017-5477-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
41
|
Ghosh S, Das T, Sarma HD, Dash A. Preparation and Evaluation of 177Lu-Labeled Gemcitabine: An Effort Toward Developing Radiolabeled Chemotherapeutics for Targeted Therapy Applications. Cancer Biother Radiopharm 2017; 32:239-246. [PMID: 28876087 DOI: 10.1089/cbr.2017.2255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVE Gemcitabine, a nucleoside analogue, is used as a chemotherapeutic drug for the treatment of a wide variety of cancers. Therefore, radiolabeled gemcitabine may have potential as a radiotherapeutic agent for the treatment of various types of cancers. In the present work, an attempt has been made to radiolabel gemcitabine with 177Lu and study the preliminary biological behavior of 177Lu-labeled gemcitabine in tumor-bearing animal model. EXPERIMENTAL Gemcitabine was coupled with p-NCS-benzyl-DOTA, a bifunctional chelating agent, to facilitate radiolabeling with 177Lu. The p-NCS-benzyl-DOTA-gemcitabine conjugate was radiolabeled with 177Lu, produced in-house and characterized by high-performance liquid chromatography. Tumor targeting potential of the radiolabeled agent was determined by biodistribution studies in Swiss mice bearing fibrosarcoma tumors. RESULTS 177Lu-gemcitabine was prepared with a radiochemical purity of 95.7% ± 0.3% under the optimized reaction conditions. The radiolabeled agent showed adequate in vitro stability in normal saline as well as in human blood serum. Preliminary biological studies revealed rapid and significant accumulation of the radiotracer in the tumorous lesions along with fast clearance of activity from blood and other vital organs/tissue. Although tumor uptake gradually reduced with time, tumor to blood and tumor to muscle ratios were improved due to the comparatively faster clearance of activity from the nontarget organs/tissue. CONCLUSION The present study demonstrates the preliminary potential of 177Lu-gemcitabine for targeted radiotherapy. However, further studies are warranted to assess its potential for radiotherapeutic applications.
Collapse
Affiliation(s)
- Subhajit Ghosh
- 1 Radiopharmaceuticals Division, Bhabha Atomic Research Centre , Mumbai, India .,2 Homi Bhabha National Institute , Anushaktinagar, Mumbai, India
| | - Tapas Das
- 1 Radiopharmaceuticals Division, Bhabha Atomic Research Centre , Mumbai, India .,2 Homi Bhabha National Institute , Anushaktinagar, Mumbai, India
| | - Haladhar D Sarma
- 3 Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre , Mumbai, India
| | - Ashutosh Dash
- 1 Radiopharmaceuticals Division, Bhabha Atomic Research Centre , Mumbai, India .,2 Homi Bhabha National Institute , Anushaktinagar, Mumbai, India
| |
Collapse
|
42
|
Mathur A, Prashant V, Sakhare N, Chakraborty S, Vimalnath K, Mohan RK, Arjun C, Karkhanis B, Seshan R, Basu S, Korde A, Banerjee S, Dash A, Sachdev SS. Bulk Scale Formulation of Therapeutic Doses of Clinical Grade Ready-to-Use 177Lu-DOTA-TATE: The Intricate Radiochemistry Aspects. Cancer Biother Radiopharm 2017. [DOI: 10.1089/cbr.2017.2208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Anupam Mathur
- Department of Atomic Energy, Radiopharmaceuticals Program, Board of Radiation and Isotope Technology, Navi Mumbai, India
| | - Vrinda Prashant
- Department of Atomic Energy, Radiopharmaceuticals Program, Board of Radiation and Isotope Technology, Navi Mumbai, India
| | - Navin Sakhare
- Department of Atomic Energy, Radiopharmaceuticals Program, Board of Radiation and Isotope Technology, Navi Mumbai, India
| | - Sudipta Chakraborty
- Department of Atomic Energy, Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India
| | - K.V. Vimalnath
- Department of Atomic Energy, Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Repaka Krishna Mohan
- Department of Atomic Energy, Radiopharmaceuticals Program, Board of Radiation and Isotope Technology, Navi Mumbai, India
| | - Chanda Arjun
- Department of Atomic Energy, Radiopharmaceuticals Program, Board of Radiation and Isotope Technology, Navi Mumbai, India
| | - Barkha Karkhanis
- Department of Atomic Energy, Radiopharmaceuticals Program, Board of Radiation and Isotope Technology, Navi Mumbai, India
| | - Ravi Seshan
- Department of Atomic Energy, Radiopharmaceuticals Program, Board of Radiation and Isotope Technology, Navi Mumbai, India
| | - Sandip Basu
- Department of Atomic Energy, Radiation Medicine Centre, Mumbai, India
| | - Aruna Korde
- Department of Atomic Energy, Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Sharmila Banerjee
- Department of Atomic Energy, Radiation Medicine Centre, Mumbai, India
| | - Ashutosh Dash
- Department of Atomic Energy, Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Satbir Singh Sachdev
- Department of Atomic Energy, Radiopharmaceuticals Program, Board of Radiation and Isotope Technology, Navi Mumbai, India
| |
Collapse
|
43
|
Müller C, van der Meulen NP, Benešová M, Schibli R. Therapeutic Radiometals Beyond 177Lu and 90Y: Production and Application of Promising α-Particle, β−-Particle, and Auger Electron Emitters. J Nucl Med 2017; 58:91S-96S. [DOI: 10.2967/jnumed.116.186825] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/13/2017] [Indexed: 12/31/2022] Open
|
44
|
Formulation and characterization of lutetium-177-labeled stannous (tin) colloid for radiosynovectomy. Nucl Med Commun 2017; 38:587-592. [PMID: 28538080 DOI: 10.1097/mnm.0000000000000684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Easy large-scale production, easy availability, cost-effectiveness, long half-life, and favorable radiation characteristics have made lutetium-177 (Lu) a preferred radionuclide for use in therapy. Lutetium-177-labeled stannous (Lu-Sn) colloid particles were formulated for application in radiosynovectomy, followed by in-vitro and in-vivo characterization. METHODS Stannous chloride (SnCl2) solution and Lu were heated together, the pH was adjusted, and the particles were recovered by centrifugation. The heating time and amount of SnCl2 were varied to optimize the labeling protocol. The labeling efficiency (LE) and radiochemical purity (RCP) of the product were determined. The size and shape of the particles were determined by means of electron microscopy. In-vitro stability was tested in PBS and synovial fluid, and in-vivo stability was tested in humans. RESULTS LE and RCP were greater than 95% and ∼99% (Rf=0-0.1), respectively. Aggregated colloidal particles were spherical (mean size: 241±47 nm). The product was stable in vitro for up to 7 days in PBS as well as in synovial fluid. Injection of the product into the infected knee joint of a patient resulted in its homogenous distribution in the intra-articular space, as seen on the scan. No leakage of activity was seen outside the knee joint even 7 days after injection, indicating good tracer binding and in-vivo stability. CONCLUSION Lu-Sn colloid was successfully prepared with a high LE (>95%) and high RCP (99%) under optimized reaction conditions. Because of the numerous benefits of Lu and the ease of preparation of tin colloid particles, Lu-Sn colloid particles are significantly superior to its currently available counterparts for use in radiosynovectomy.
Collapse
|
45
|
Sharma S, Singh B, Koul A, Mittal BR. Comparative Therapeutic Efficacy of 153Sm-EDTMP and 177Lu-EDTMP for Bone Pain Palliation in Patients with Skeletal Metastases: Patients' Pain Score Analysis and Personalized Dosimetry. Front Med (Lausanne) 2017; 4:46. [PMID: 28507988 PMCID: PMC5410571 DOI: 10.3389/fmed.2017.00046] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 04/07/2017] [Indexed: 12/22/2022] Open
Abstract
Introduction The aim of the present study was to compare the therapeutic efficacy of 153Sm-EDTMP and 177Lu-EDTMP in pain palliation in cancer patients with skeletal metastases. Materials and methods Thirty patients (25 M:5 F, mean age: 66.0 ± 14.7 years) of breast/prostate cancer with documented skeletal metastases were recruited prospectively. Twenty patients were considered randomly for treatment with 153Sm-EDTMP and with 177Lu-EDTMP in 10 patients, respectively. Using fixed dose of 37.0 MBq/kg body weight of each, the mean administered doses of 153Sm-EDTMP and 177Lu-EDTMP were 2,155.2 ± 419.6 MBq (1,347–2,857) and 1,935.1 ± 559.4 MBq (1,073–2,627), respectively. Anterior and posterior whole body images were acquired at different time points following radioactivity administration. The first data set of pre-void images (acquired at 0.5 h) representing the total activity of either of 153Sm-EDTMP or 177Lu-EDTMP was considered as reference images. All the serial images were used for patients’ dosimetry analysis by using organ level internal dosimetry assessment algorithm. Reduction in pain scoring was assessed clinically over 8 weeks by using appropriate WHO criteria and correlated with the absorbed dose to the metastatic sites. Results A total of 86 metastatic lesions clearly visualized on post-therapy serial images (matching on bone scans) were evaluated for absorbed dose calculations. Both 153Sm-EDTMP and 177Lu-EDTMP delivered similar absorbed dose to the metastatic sites, i.e., 6.22 ± 4.21 and 6.92 ± 3.92 mSv/MBq, respectively. The mean absorbed doses to various other organs were found to be comparable and within the safe limits. A complete response (CR) for each radionuclide was evaluated as 80.0%. No significant alternation in blood parameters and no untoward reaction were observed. However, a mild to severe toxicity was observed in two patients (1 each with 153Sm-EDTMP and 177Lu-EDTMP). Kaplan–Meier survival analysis demonstrated that 27/30 patients had pain-free survival (CR) up to the observational period of 8 weeks. However, no statistically significant correlation could be established between the pain scoring and absorbed dose to metastatic sites. Conclusion Both the radionuclides thus offer an effective and comparable therapeutic efficacy for bone pain palliation at an affordable cost and can be used interchangeably as per the availability.
Collapse
Affiliation(s)
- Sarika Sharma
- Department of Nuclear Medicine and PET, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Baljinder Singh
- Department of Nuclear Medicine and PET, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ashwani Koul
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Bhagwant Rai Mittal
- Department of Nuclear Medicine and PET, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
46
|
Arora G, Mishra R, Kumar P, Yadav M, Ballal S, Bal C, Damle NA. Estimation of Whole Body Radiation Exposure to Nuclear Medicine Personnel During Synthesis of 177Lutetium-labeled Radiopharmaceuticals. Indian J Nucl Med 2017; 32:89-92. [PMID: 28533634 PMCID: PMC5439194 DOI: 10.4103/0972-3919.202245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
PURPOSE OF THE STUDY With rapid development in the field of nuclear medicine therapy, radiation safety of the personnel involved in synthesis of radiopharmaceuticals has become imperative. Few studies have been done on estimating the radiation exposure of personnel involved in the radio labeling of 177Lu-compounds in western countries. However, data from the Indian subcontinent are limited. We have estimated whole body radiation exposure to the radiopharmacist involved in the labeling of: 177Lu-DOTATATE, 177Lu-PSMA-617, and 177Lu-EDTMP. MATERIALS AND METHODS Background radiation was measured by keeping a pocket dosimeter around the workbench when no radioactive work was conducted. The same pocket dosimeter was given to the radiopharmacist performing the labeling of 177Lu-compounds. All radiopharmaceuticals were synthesized by the same radiopharmacist with 3, 1 and 3 year experience, respectively, in radiolabeling the above compounds. RESULTS One Curie (1 Ci) of 177Lu was received fortnightly by our department. Data were collected for 12 syntheses of 177Lu-DOTATATE, 8 syntheses of 177Lu-PSMA-617, and 3 syntheses of 177Lu-EDTMP. Mean time required to complete the synthesis was 0.81, 0.65, and 0.58 h, respectively. Mean whole body radiation exposure was 0.023 ± 0.01 mSv, 0.01 ± 0.002 mSv, and 0.002 ± 0.0006 mSv, respectively. Overall mean radiation dose for all the three 177Lu-compounds was 0.014 mSv. Highest exposure was obtained during the synthesis of 177Lu-DOTATATE. CONCLUSION Our data suggest that the manual radiolabeling of 177Lu compounds is safe, and the whole body radiation exposure to the involved personnel is well within prescribed limits.
Collapse
Affiliation(s)
- Geetanjali Arora
- Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Rajesh Mishra
- Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Praveen Kumar
- Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Madhav Yadav
- Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Sanjana Ballal
- Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Chandrasekhar Bal
- Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi, India
| | | |
Collapse
|
47
|
Bhardwaj R, van der Meer A, Das SK, de Bruin M, Gascon J, Wolterbeek HT, Denkova AG, Serra-Crespo P. Separation of nuclear isomers for cancer therapeutic radionuclides based on nuclear decay after-effects. Sci Rep 2017; 7:44242. [PMID: 28287131 PMCID: PMC5347157 DOI: 10.1038/srep44242] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 02/06/2017] [Indexed: 11/09/2022] Open
Abstract
177Lu has sprung as a promising radionuclide for targeted therapy. The low soft tissue penetration of its β- emission results in very efficient energy deposition in small-size tumours. Because of this, 177Lu is used in the treatment of neuroendocrine tumours and is also clinically approved for prostate cancer therapy. In this work, we report a separation method that achieves the challenging separation of the physically and chemically identical nuclear isomers, 177mLu and 177Lu. The separation method combines the nuclear after-effects of the nuclear decay, the use of a very stable chemical complex and a chromatographic separation. Based on this separation concept, a new type of radionuclide generator has been devised, in which the parent and the daughter radionuclides are the same elements. The 177mLu/177Lu radionuclide generator provides a new production route for the therapeutic radionuclide 177Lu and can bring significant growth in the research and development of 177Lu based pharmaceuticals.
Collapse
Affiliation(s)
- R Bhardwaj
- Radiation and Isotopes for Health, Department of Radiation Science and Technology, Faculty of Applied Sciences, Technical University Delft, Mekelweg 15, 2629 JB, Delft, The Netherlands.,Catalysis Engineering, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - A van der Meer
- Radiation and Isotopes for Health, Department of Radiation Science and Technology, Faculty of Applied Sciences, Technical University Delft, Mekelweg 15, 2629 JB, Delft, The Netherlands
| | - S K Das
- Radiation and Isotopes for Health, Department of Radiation Science and Technology, Faculty of Applied Sciences, Technical University Delft, Mekelweg 15, 2629 JB, Delft, The Netherlands
| | - M de Bruin
- Radiation and Isotopes for Health, Department of Radiation Science and Technology, Faculty of Applied Sciences, Technical University Delft, Mekelweg 15, 2629 JB, Delft, The Netherlands
| | - J Gascon
- Catalysis Engineering, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - H T Wolterbeek
- Radiation and Isotopes for Health, Department of Radiation Science and Technology, Faculty of Applied Sciences, Technical University Delft, Mekelweg 15, 2629 JB, Delft, The Netherlands
| | - A G Denkova
- Radiation and Isotopes for Health, Department of Radiation Science and Technology, Faculty of Applied Sciences, Technical University Delft, Mekelweg 15, 2629 JB, Delft, The Netherlands
| | - P Serra-Crespo
- Radiation and Isotopes for Health, Department of Radiation Science and Technology, Faculty of Applied Sciences, Technical University Delft, Mekelweg 15, 2629 JB, Delft, The Netherlands
| |
Collapse
|
48
|
Liberal FDCG, Tavares AAS, Tavares JMRS. Computational modeling of radiobiological effects in bone metastases for different radionuclides. Int J Radiat Biol 2017; 93:627-636. [PMID: 28276897 DOI: 10.1080/09553002.2017.1294274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE Computational simulation is a simple and practical way to study and to compare a variety of radioisotopes for different medical applications, including the palliative treatment of bone metastases. This study aimed to evaluate and compare cellular effects modelled for different radioisotopes currently in use or under research for treatment of bone metastases using computational methods. METHODS Computational models were used to estimate the radiation-induced cellular effects (Virtual Cell Radiobiology algorithm) post-irradiation with selected particles emitted by Strontium-89 (89Sr), Samarium-153 (153Sm), Lutetium-177 (177Lu), and Radium-223 (223Ra). RESULTS Cellular kinetics post-irradiation using 89Sr β- particles, 153Sm β- particles, 177Lu β- particles and 223Ra α particles showed that the cell response was dose- and radionuclide-dependent. 177Lu beta minus particles and, in particular, 223Ra alpha particles, yielded the lowest survival fraction of all investigated particles. CONCLUSIONS 223Ra alpha particles induced the highest cell death of all investigated particles on metastatic prostate cells in comparison to irradiation with β- radionuclides, two of the most frequently used radionuclides in the palliative treatment of bone metastases in clinical routine practice. Moreover, the data obtained suggest that the used computational methods might provide some perception about cellular effects following irradiation with different radionuclides.
Collapse
Affiliation(s)
- Francisco D C Guerra Liberal
- a Faculdade de Engenharia , Instituto de Ciência e Inovação em Engenharia Mecânica e Engenharia Industrial, Universidade do Porto , Porto , Portugal
| | - Adriana Alexandre S Tavares
- a Faculdade de Engenharia , Instituto de Ciência e Inovação em Engenharia Mecânica e Engenharia Industrial, Universidade do Porto , Porto , Portugal
| | - João Manuel R S Tavares
- a Faculdade de Engenharia , Instituto de Ciência e Inovação em Engenharia Mecânica e Engenharia Industrial, Universidade do Porto , Porto , Portugal
| |
Collapse
|
49
|
Radiopharmaceuticals for metastatic bone pain palliation: available options in the clinical domain and their comparisons. Clin Exp Metastasis 2016; 34:1-10. [DOI: 10.1007/s10585-016-9831-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 11/29/2016] [Indexed: 12/11/2022]
|
50
|
Gamma camera calibration and validation for quantitative SPECT imaging with 177Lu. Appl Radiat Isot 2016; 112:156-64. [DOI: 10.1016/j.apradiso.2016.03.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 02/09/2016] [Accepted: 03/07/2016] [Indexed: 11/21/2022]
|