1
|
Fu H, Rong J, Chen Z, Zhou J, Collier T, Liang SH. Positron Emission Tomography (PET) Imaging Tracers for Serotonin Receptors. J Med Chem 2022; 65:10755-10808. [PMID: 35939391 DOI: 10.1021/acs.jmedchem.2c00633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) and 5-HT receptors (5-HTRs) have crucial roles in various neuropsychiatric disorders and neurodegenerative diseases, making them attractive diagnostic and therapeutic targets. Positron emission tomography (PET) is a noninvasive nuclear molecular imaging technique and is an essential tool in clinical diagnosis and drug discovery. In this context, numerous PET ligands have been developed for "visualizing" 5-HTRs in the brain and translated into human use to study disease mechanisms and/or support drug development. Herein, we present a comprehensive repertoire of 5-HTR PET ligands by focusing on their chemotypes and performance in PET imaging studies. Furthermore, this Perspective summarizes recent 5-HTR-focused drug discovery, including biased agonists and allosteric modulators, which would stimulate the development of more potent and subtype-selective 5-HTR PET ligands and thus further our understanding of 5-HTR biology.
Collapse
Affiliation(s)
- Hualong Fu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Jian Rong
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, Massachusetts 02114, United States.,Department of Radiology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Zhen Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jingyin Zhou
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Thomas Collier
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, Massachusetts 02114, United States.,Department of Radiology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Steven H Liang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, Massachusetts 02114, United States.,Department of Radiology, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
2
|
Colom M, Vidal B, Zimmer L. Is There a Role for GPCR Agonist Radiotracers in PET Neuroimaging? Front Mol Neurosci 2019; 12:255. [PMID: 31680859 PMCID: PMC6813225 DOI: 10.3389/fnmol.2019.00255] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/02/2019] [Indexed: 12/30/2022] Open
Abstract
Positron emission tomography (PET) is a molecular imaging modality that enables in vivo exploration of metabolic processes and especially the pharmacology of neuroreceptors. G protein-coupled receptors (GPCRs) play an important role in numerous pathophysiologic disorders of the central nervous system. Thus, they are targets of choice in PET imaging to bring proof concept of change in density in pathological conditions or in pharmacological challenge. At present, most radiotracers are antagonist ligands. In vitro data suggest that properties differ between GPCR agonists and antagonists: antagonists bind to receptors with a single affinity, whereas agonists are characterized by two different affinities: high affinity for receptors that undergo functional coupling to G-proteins, and low affinity for those that are not coupled. In this context, agonist radiotracers may be useful tools to give functional images of GPCRs in the brain, with high sensitivity to neurotransmitter release. Here, we review all existing PET radiotracers used from animals to humans and their role for understanding the ligand-receptor paradigm of GPCR in comparison with corresponding antagonist radiotracers.
Collapse
Affiliation(s)
- Matthieu Colom
- Lyon Neuroscience Research Center, INSERM, CNRS, Université de Lyon, Lyon, France.,CERMEP, Hospices Civils de Lyon, Bron, France
| | - Benjamin Vidal
- Lyon Neuroscience Research Center, INSERM, CNRS, Université de Lyon, Lyon, France
| | - Luc Zimmer
- Lyon Neuroscience Research Center, INSERM, CNRS, Université de Lyon, Lyon, France.,CERMEP, Hospices Civils de Lyon, Bron, France.,Institut National des Sciences et Techniques Nucléaires, CEA Saclay, Gif-sur-Yvette, France
| |
Collapse
|
3
|
Lemoine L, Becker G, Vacher B, Billard T, Lancelot S, Newman-Tancredi A, Zimmer L. Radiosynthesis and Preclinical Evaluation of 18F-F13714 as a Fluorinated 5-HT1A Receptor Agonist Radioligand for PET Neuroimaging. J Nucl Med 2012; 53:969-76. [DOI: 10.2967/jnumed.111.101212] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
4
|
In vivo evaluation of alpha7 nicotinic acetylcholine receptor agonists [11C]A-582941 and [11C]A-844606 in mice and conscious monkeys. PLoS One 2010; 5:e8961. [PMID: 20126539 PMCID: PMC2813863 DOI: 10.1371/journal.pone.0008961] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Accepted: 01/12/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The alpha7 nicotinic acetylcholine receptors (nAChRs) play an important role in the pathophysiology of neuropsychiatric diseases such as schizophrenia and Alzheimer's disease. The goal of this study was to evaluate the two carbon-11-labeled alpha7 nAChR agonists [(11)C]A-582941 and [(11)C]A-844606 for their potential as novel positron emission tomography (PET) tracers. METHODOLOGY/PRINCIPAL FINDINGS The two tracers were synthesized by methylation of the corresponding desmethyl precursors using [(11)C]methyl triflate. Effects of receptor blockade in mice were determined by coinjection of either tracer along with a carrier or an excess amount of a selective alpha7 nAChR agonist (SSR180711). Metabolic stability was investigated using radio-HPLC. Dynamic PET scans were performed in conscious monkeys with/without SSR180711-treatment. [(11)C]A-582941 and [(11)C]A-844606 showed high uptake in the mouse brain. Most radioactive compounds in the brain were detected as an unchanged form. However, regional selectivity and selective receptor blockade were not clearly observed for either compound in the mouse brain. On the other hand, the total distribution volume of [(11)C]A-582941 and [(11)C]A-844606 was high in the hippocampus and thalamus but low in the cerebellum in the conscious monkey brain, and reduced by pretreatment with SSR180711. CONCLUSIONS/SIGNIFICANCE A nonhuman primate study suggests that [(11)C]A-582941 and [(11)C]A-844606 would be potential PET ligands for imaging alpha7 nAChRs in the human brain.
Collapse
|
5
|
Abstract
The serotonin 5-HT(1A) receptor is implicated in the pathophysiology of major neuropsychiatric disorders, including depression, suicidal behavior, panic disorder, epilepsy, bulimia, schizophrenia, Parkinson's disease, and Alzheimer's disease and is, therefore, an important target for drug therapy. 5-HT(1A) receptors are expressed as somatodendritic autoreceptors in serotonin neurons of the raphé nuclei (presynaptic) and as postsynaptic receptors in cortical and subcortical serotonin terminal fields in the brain. Due to the higher concentration and heterogeneous distribution of this receptor, it is an attractive target for quantification in vivo using positron emission tomography (PET) and single photon emission tomography (SPECT). Here, we review the PET radioligands employed for imaging 5-HT(1A) receptors in living brain.
Collapse
Affiliation(s)
- J S Dileep Kumar
- Department of Psychiatry, Columbia University College of Physicians and Surgeons & New York State Psychiatric Institute, New York, NY 10032, United States.
| | | |
Collapse
|
6
|
Kumar JSD, Prabhakaran J, Majo VJ, Milak MS, Hsiung SC, Tamir H, Simpson NR, Van Heertum RL, Mann JJ, Parsey RV. Synthesis and in vivo evaluation of a novel 5-HT1A receptor agonist radioligand [O-methyl-11C]2-(4-(4-(2-methoxyphenyl)piperazin-1-yl)butyl)-4-methyl-1,2,4-triazine-3,5(2H,4H)dione in nonhuman primates. Eur J Nucl Med Mol Imaging 2007; 34:1050-60. [PMID: 17221184 DOI: 10.1007/s00259-006-0324-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Accepted: 11/05/2006] [Indexed: 12/25/2022]
Abstract
PURPOSE Serotonin1A (5-HT1A) receptors exist in high- and low-affinity states, and agonist ligands bind preferentially to the high-affinity state of the receptor and provide a measure of functional 5-HT1A receptors. Although the antagonist tracers are established PET ligands in clinical studies, a successful 5-HT1A receptor agonist radiotracer in living brain has not been reported. [11C]MPT, our first-generation agonist radiotracer, shows in vivo specificity in baboons; however, its utility is limited owing to slow washout and immeasurable plasma free fraction. Hence we performed structure-activity relationship studies of MPT to optimize a radiotracer that will permit valid quantification of 5-HT1A receptor binding. We now report the synthesis and evaluation of [11C]MMP as an agonist PET tracer for 5-HT1A receptors in baboons. METHODS In vitro binding assays were performed in bovine hippocampal membranes and membranes of CHO cells expressing 5-HT1A receptors. [11C] labeling of MMP was performed by reacting desmethyl-MMP with [11C]CH(3)OTf. In vivo studies were performed in baboons, and blocking studies were conducted by pretreatment with 5-HT1A receptor ligands WAY-100635 and (+/-)-8-OH-DPAT. RESULTS MMP is a selective 5-HT1A receptor agonist (Ki 0.15 nM). Radiosynthesis of [11C]MMP was achieved in 30 +/- 5% (n = 15) yield at EOS with a specific activity of 2,600 +/- 500 Ci/mmol (n = 12). PET studies in baboons demonstrated specific binding of [11C]MMP to 5-HT1A receptor-enriched brain regions, as confirmed by blockade with WAY-100635 and (+/-)-8-OH-DPAT. CONCLUSION We identified [11C]MMP as an optimal agonist PET tracer that shows quantifiable, specific binding in vivo to 5-HT1A receptors in baboons.
Collapse
Affiliation(s)
- J S Dileep Kumar
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Kumar JSD, Majo VJ, Hsiung SC, Millak MS, Liu KP, Tamir H, Prabhakaran J, Simpson NR, Van Heertum RL, Mann JJ, Parsey RV. Synthesis and in Vivo Validation of [O-Methyl-11C]2-{4-[4-(7-methoxynaphthalen-1-yl)piperazin- 1-yl]butyl}-4-methyl-2H-[1,2,4]triazine-3,5-dione: A Novel 5-HT1A Receptor Agonist Positron Emission Tomography Ligand. J Med Chem 2005; 49:125-34. [PMID: 16392798 DOI: 10.1021/jm050725j] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Antagonist 5-HT(1A) PET ligands are available, but an agonist ligand would give more information about signal transduction capacity. Synthesis and in vivo evaluation of [O-methyl-(11)C]2-{4-[4-(7-methoxynaphthalen-1-yl)piperazin-1-yl]butyl}-4-methyl-2H-[1,2,4]triazine-3,5-dione (10), a potential high affinity (K(i) = 1.36 nM) 5-HT(1A) agonist PET tracer is described. Piperazine 10 is a 5-HT(1A) agonist with an EC(50) comparable to serotonin, based on cAMP formation and GTP(gamma)S binding assays. Radiosynthesis of [(11)C]10 has been achieved by reacting 2-{4-[4-(7-hydroxynaphthalen-1-yl)piperazin-1-yl]butyl}-4-methyl-2H-[1,2,4]triazine-3,5-dione (9) and [(11)C]CH(3)OTf in 25 +/- 5% (n = 15) yield at the end of synthesis (EOS). The chemical and radiochemical purities of [(11)C]10 were >99% with a specific activity 1500 +/- 300 Ci/mmol (n =15). PET studies in anesthetized baboon demonstrate [(11)C]10 specific binding in brain regions rich in 5-HT(1A) receptors. Binding of [(11)C]10 was blocked by WAY100635 and 8-OH-DPAT. The regional brain volumes of distribution (V(T)) of [(11)C]10 in baboon correlate with [(11)C]WAY100635 V(T) in baboons. These data provide evidence that [(11)C]10 is the first promising agonist PET tracer for the 5-HT(1A) receptors.
Collapse
Affiliation(s)
- J S Dileep Kumar
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Garcia R, Xavier C, Paulo A, Santos I, Kniess T, Bergmann R, Wüst F. Synthesis and biological evaluation ofS-[11C]methylated mercaptoimidazole piperazinyl derivatives as potential radioligands for imaging 5-HT1Areceptors by positron emission tomography (PET). J Labelled Comp Radiopharm 2005. [DOI: 10.1002/jlcr.924] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
Ishiwata K, Kawamura K, Wang WF, Tsukada H, Harada N, Mochizuki H, Kimura Y, Ishii K, Iwata R, Yanai K. Evaluation of in vivo selective binding of [11C]doxepin to histamine H1 receptors in five animal species. Nucl Med Biol 2004; 31:493-502. [PMID: 15093820 DOI: 10.1016/j.nucmedbio.2003.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2003] [Revised: 11/18/2003] [Accepted: 11/27/2003] [Indexed: 10/26/2022]
Abstract
The specific binding of [(11)C]doxepin, which has been used as a radioligand for mapping histamine H(1) receptors in human brain by positron emission tomography, was evaluated in five animal species. In mice the [(11)C]doxepin uptake was reduced by treatment with cold doxepin and two H(1) receptor antagonists, but not with H(2)/H(3) antagonists. The specific binding evaluated with treatment with (+)-chlorpheniramine (H(1) antagonist) was in the range of 10-30% in mouse, rat, rabbit, and monkey, but was not detected in guinea pig.
Collapse
Affiliation(s)
- Kiichi Ishiwata
- Positron Medical Center, Tokyo Metropolitan Institute of Gerontology, 1-1 Naka-cho, Itabashi-ku, Tokyo 173-0022, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Kawamura K, Ishiwata K. Improved synthesis of [11C]SA4503, [11C]MPDX and [11C]TMSX by use of [11C]methyl triflate. Ann Nucl Med 2004; 18:165-8. [PMID: 15195766 DOI: 10.1007/bf02985109] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Recently we have clinically used three new radioligands, [11C]SA4503, [11C]MPDX, and [11C]TMSX, for mapping sigma1, adenosine A1, and adenosine A2A receptors, respectively, in the human brain by positron emission tomography. These radioligands are synthesized by methylation of the respective demethyl precursor with [11C]methyl iodide. Here we demonstrate the improved syntheses of these compounds by use of [11C]methyl triflate, a highly reactive alternative to [11C]methyl iodide.
Collapse
Affiliation(s)
- Kazunori Kawamura
- Positron Medical Center, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan.
| | | |
Collapse
|