1
|
Li F, Gao Y, Jin C, Wen X, Geng H, Cheng Y, Qu H, Liu X, Feng S, Zhang F, Ruan J, Yang C, Zhang L, Wang J. The chromosome-level genome of Gypsophila paniculata reveals the molecular mechanism of floral development and ethylene insensitivity. HORTICULTURE RESEARCH 2022; 9:uhac176. [PMID: 36204200 PMCID: PMC9533222 DOI: 10.1093/hr/uhac176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/02/2022] [Indexed: 06/16/2023]
Abstract
Gypsophila paniculata, belonging to the Caryophyllaceae of the Caryophyllales, is one of the most famous worldwide cut flowers. It is commonly used as dried flowers, whereas the underlying mechanism of flower senescence has not yet been addressed. Here, we present a chromosome-scale genome assembly for G. paniculata with a total size of 749.58 Mb. Whole-genome duplication signatures unveil two major duplication events in its evolutionary history: an ancient one occurring before the divergence of Caryophyllaceae and a more recent one shared with Dianthus caryophyllus. The integrative analyses combining genomic and transcriptomic data reveal the mechanisms regulating floral development and ethylene response of G. paniculata. The reduction of AGAMOUS expression probably caused by sequence polymorphism and the mutation in miR172 binding site of PETALOSA are associated with the double flower formation in G. paniculata. The low expression of ETHYLENE RESPONSE SENSOR (ERS) and the reduction of downstream ETHYLENE RESPONSE FACTOR (ERF) gene copy number collectively lead to the ethylene insensitivity of G. paniculata, affecting flower senescence and making it capable of making dried flowers. This study provides a cornerstone for understanding the underlying principles governing floral development and flower senescence, which could accelerate the molecular breeding of the Caryophyllaceae species.
Collapse
Affiliation(s)
- Fan Li
- Corresponding authors. E-mail: ; ;
| | | | | | | | - Huaiting Geng
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, 650200, Kunming, China
- School of Agriculture, Yunnan University, 650504, Kunming, China
| | - Ying Cheng
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, 650200, Kunming, China
- School of Agriculture, Yunnan University, 650504, Kunming, China
| | - Haoyue Qu
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Xing Liu
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Shan Feng
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
- National R&D Center for Citrus Postharvest Technology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Fan Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
- National R&D Center for Citrus Postharvest Technology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Jiwei Ruan
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, 650200, Kunming, China
| | - Chunmei Yang
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, 650200, Kunming, China
| | | | | |
Collapse
|
3
|
Agarwal G, Choudhary D, Singh VP, Arora A. Role of ethylene receptors during senescence and ripening in horticultural crops. PLANT SIGNALING & BEHAVIOR 2012; 7:827-46. [PMID: 22751331 PMCID: PMC3583974 DOI: 10.4161/psb.20321] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The past two decades have been rewarding in terms of deciphering the ethylene signal transduction and functional validation of the ethylene receptor and downstream genes involved in the cascade. Our knowledge of ethylene receptors and its signal transduction pathway provides us a robust platform where we can think of manipulating and regulating ethylene sensitivity by the use of genetic engineering and making transgenic. This review focuses on ethylene perception, receptor mediated regulation of ethylene biosynthesis, role of ethylene receptors in flower senescence, fruit ripening and other effects induced by ethylene. The expression behavior of the receptor and downstream molecules in climacteric and non climacteric crops is also elaborated upon. Possible strategies and recent advances in altering the ethylene sensitivity of plants using ethylene receptor genes in an attempt to modulate the regulation and sensitivity to ethylene have also been discussed. Not only will these transgenic plants be a boon to post-harvest physiology and crop improvement but, it will also help us in discovering the mechanism of regulation of ethylene sensitivity.
Collapse
Affiliation(s)
| | | | - Virendra P. Singh
- Division of Plant Physiology; Indian Agricultural Research Institute; PUSA Campus; New Delhi, India
| | - Ajay Arora
- Division of Plant Physiology; Indian Agricultural Research Institute; PUSA Campus; New Delhi, India
| |
Collapse
|
4
|
Trivellini A, Ferrante A, Vernieri P, Serra G. Effects of abscisic acid on ethylene biosynthesis and perception in Hibiscus rosa-sinensis L. flower development. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:5437-52. [PMID: 21841180 PMCID: PMC3223042 DOI: 10.1093/jxb/err218] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 05/23/2011] [Accepted: 06/15/2011] [Indexed: 05/04/2023]
Abstract
The effect of the complex relationship between ethylene and abscisic acid (ABA) on flower development and senescence in Hibiscus rosa-sinensis L. was investigated. Ethylene biosynthetic (HrsACS and HrsACO) and receptor (HrsETR and HrsERS) genes were isolated and their expression evaluated in three different floral tissues (petals, style-stigma plus stamens, and ovaries) of detached buds and open flowers. This was achieved through treatment with 0.1 mM 1-aminocyclopropane-1-carboxylic acid (ACC) solution, 500 nl l(-1) methylcyclopropene (1-MCP), and 0.1 mM ABA solution. Treatment with ACC and 1-MCP confirmed that flower senescence in hibiscus is ethylene dependent, and treatment with exogenous ABA suggested that ABA may play a role in this process. The 1-MCP impeded petal in-rolling and decreased ABA content in detached open flowers after 9 h. This was preceded by an earlier and sequential increase in ABA content in 1-MCP-treated petals and style-stigma plus stamens between 1 h and 6 h. ACC treatment markedly accelerated flower senescence and increased ethylene production after 6 h and 9 h, particularly in style-stigma plus stamens. Ethylene evolution was positively correlated in these floral tissues with the induction of the gene expression of ethylene biosynthetic and receptor genes. Finally, ABA negatively affected the ethylene biosynthetic pathway and tissue sensitivity in all flower tissues. Transcript abundance of HrsACS, HrsACO, HrsETR, and HrsERS was reduced by exogenous ABA treatment. This research underlines the regulatory effect of ABA on the ethylene biosynthetic and perception machinery at a physiological and molecular level when inhibitors or promoters of senescence are exogenously applied.
Collapse
Affiliation(s)
- Alice Trivellini
- Department of Crop Biology, Università degli Studi di Pisa, Viale delle Piagge 24, 56124 Pisa, Italy
| | - Antonio Ferrante
- Department of Plant Production, Università degli Studi di Milano, 20133 Milano, Italy
| | - Paolo Vernieri
- Department of Crop Biology, Università degli Studi di Pisa, Viale delle Piagge 24, 56124 Pisa, Italy
| | | |
Collapse
|
5
|
Tanase K, Ichimura K. Expression of ethylene receptors Dl-ERS1-3 and Dl-ERS2, and ethylene response during flower senescence in Delphinium. JOURNAL OF PLANT PHYSIOLOGY 2006; 163:1159-66. [PMID: 16500725 DOI: 10.1016/j.jplph.2005.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2005] [Accepted: 12/16/2005] [Indexed: 05/06/2023]
Abstract
To clarify the relationships of flower senescence, especially sepal abscission, and ethylene receptor gene expression in different flower parts, we isolated two cDNAs encoding ethylene receptors Dl-ERS1-3 and Dl-ERS2 from Delphinium flowers. Deduced polypeptides possessed no response regulator domain, indicating that they belong to a family of ethylene response sensor (ERS) ethylene receptors. Dl-ERS1-3 and Dl-ERS2 exhibited constitutive levels during flower senescence. Exogenous ethylene increased transcript levels in sepals, which are influenced by ethylene but not in gynoecia and receptacles, which produce ethylene. It was suggested that expression of ethylene receptor genes under ethylene exposure was differentially regulated in each organ of the flower.
Collapse
Affiliation(s)
- Koji Tanase
- National Institute of Floricultural Science, National Agriculture and Bio-oriented Research Organization, Fujimoto 2-1, Tsukuba 305-8519, Ibaraki, Japan.
| | | |
Collapse
|
6
|
Meir S, Hunter DA, Chen JC, Halaly V, Reid MS. Molecular changes occurring during acquisition of abscission competence following auxin depletion in Mirabilis jalapa. PLANT PHYSIOLOGY 2006; 141:1604-16. [PMID: 16778017 PMCID: PMC1533941 DOI: 10.1104/pp.106.079277] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2006] [Revised: 06/02/2006] [Accepted: 06/05/2006] [Indexed: 05/10/2023]
Abstract
To understand how auxin regulates sensitivity of abscission zone (AZ) tissues to ethylene, we used a polymerase chain reaction-based subtractive approach to identify gene transcripts in Mirabilis jalapa AZs that changed in abundance during the time the zones became competent to abscise in response to exogenous ethylene. Transcript expression was then examined in leaf and stem AZs over the period they became ethylene competent following indole-3-acetic acid (IAA) depletion either by leaf deblading, treatment with the IAA transport inhibitor naphthylphthalamic acid, or cutting the stem above a node (decapitation). Transcripts down-regulated by deblading/decapitation included Mj-Aux/IAA1 and Mj-Aux/IAA2, encoding Aux/IAA proteins, and three other transcripts showing highest identity to a polygalacturonase inhibitor protein, a beta-expansin, and a beta-tubulin. Application of IAA to the cut end of petioles or stumps inhibited abscission, and prevented the decline in the levels of transcripts in both AZs. Transcripts up-regulated in the AZ following deblading/decapitation or treatment with naphthylphthalamic acid were isolated from plants pretreated with 1-methylcyclopropene before deblading to help select against ethylene-induced genes. Some of the up-regulated transcripts showed identity to proteins associated with ethylene or stress responses, while others did not show homology to known sequences. Sucrose infiltration of stem stumps enhanced abscission following ethylene treatment and also enhanced the induction of some of the up-regulated genes. Our results demonstrate a correlation between acquisition of competence to respond to ethylene in both leaf and stem AZs, and decline in abundance of auxin regulatory gene transcripts.
Collapse
Affiliation(s)
- Shimon Meir
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The Volcani Center, Bet Dagan 50250, Israel.
| | | | | | | | | |
Collapse
|
7
|
Kuroda S, Hirose Y, Shiraishi M, Davies E, Abe S. Co-expression of an ethylene receptor gene, ERS1, and ethylene signaling regulator gene, CTR1, in Delphinium during abscission of florets. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2004; 42:745-51. [PMID: 15474381 DOI: 10.1016/j.plaphy.2004.07.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2004] [Accepted: 07/15/2004] [Indexed: 04/30/2023]
Abstract
We are trying to determine the mechanisms responsible for ethylene-induced floret abscission in cut flowers of Delphinium and recently identified an ethylene receptor gene, ERS1, and studied its response to ethylene treatment. In order to identify additional components of the ethylene response network in Delphinium, we performed 3' and 5' rapid amplification of cDNA ends (RACE) using the consensus sequence of the serine/threonine kinase domain of the ethylene signaling regulator gene (CTR1) involved in the constitutive triple response (CTR) to ethylene. The full-length cDNA (2754 nt) encoded a protein of 800 amino acids, which contained the expected serine/threonine kinase domain, the consensus ATP-binding site, and the serine/threonine kinase catalytic site. The protein had quite high (>50%) overall identity to CTR1 from Arabidopsis and tomato, and 70-75% identity in the catalytic site. The amount of mRNA encoding both CTR1 and ERS1 more than doubled within 6 h in cut florets incubated in the presence of exogenous ethylene. Similarly, the amount of ERS1 transcript doubled in florets within 6 d of harvesting, presumably in response to endogenous ethylene, while CTR1 mRNA increased to about 40% over the same period. However, in the presence of silver thiosulfate (STS), an ethylene inhibitor, the level of both transcripts remained essentially unchanged for the first 8 d before declining to very low levels. Florets on the control plants had almost completely abscised by 6 d, but the florets on STS-treated plants had not abscised by 20 d, by which time the flowers were almost dead. The data are consistent with the hypothesis that endogenous ethylene evokes the accumulation of both these transcripts (and their encoded proteins), thereby speeding up abscission and reducing the useful shelf life of the cut flowers.
Collapse
Affiliation(s)
- Satoshi Kuroda
- Laboratory of Molecular Cell Biology, Department of Biological Resources, Faculty of Agriculture, Ehime University, Matsuyama 7908566, Japan
| | | | | | | | | |
Collapse
|