1
|
Qi Y, Zeng J, Tao J, Liu R, Fu R, Yan C, Liu X, Liu N, Hao Y. Unraveling the mechanisms behind sodium persulphate-induced changes in petroleum-contaminated aquifers' biogeochemical parameters and microbial communities. CHEMOSPHERE 2024; 351:141174. [PMID: 38218242 DOI: 10.1016/j.chemosphere.2024.141174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 12/04/2023] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
Sodium persulphate (PS) is a highly effective oxidising agent widely used in groundwater remediation and wastewater treatment. Although numerous studies have examined the impact of PS with respect to the removal efficiency of organic pollutants, the residual effects of PS exposure on the biogeochemical parameters and microbial ecosystems of contaminated aquifers are not well understood. This study investigates the effects of exposure to different concentrations of PS on the biogeochemical parameters of petroleum-contaminated aquifers using microcosm batch experiments. The results demonstrate that PS exposure increases the oxidation-reduction potential (ORP) and electrical conductivity (EC), while decreasing total organic carbon (TOC), dehydrogenase (DE), and polyphenol oxidase (PO) in the aquifer. Three-dimensional excitation-emission matrix (3D-EEM) analysis indicates PS is effective at reducing fulvic acid-like and humic acid-like substances and promoting microbial metabolic activity. In addition, PS exposure reduces the abundance of bacterial community species and the diversity index of evolutionary distance, with a more pronounced effect at high PS concentrations (31.25 mmol/L). Long-term (90 d) PS exposure results in an increase in the abundance of microorganisms with environmental resistance, organic matter degradation, and the ability to promote functional genes related to biological processes such as basal metabolism, transmission of genetic information, and cell motility of microorganisms. Structural equation modeling (SEM) further confirms that ORP and TOC are important drivers of change in the abundance of dominant phyla and functional genes. These results suggest exposure to different concentrations of PS has both direct and indirect effects on the dominant phyla and functional genes by influencing the geochemical parameters and enzymatic activity of the aquifer. This study provides a valuable reference for the application of PS in ecological engineering.
Collapse
Affiliation(s)
- Yuqi Qi
- Institute for Environmental and Climate Research, Jinan University, Guangzhou, 511443, Guangdong, China
| | - Jun Zeng
- School of Environment, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Junshi Tao
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Guangzhou, 510655, Guangdong, China
| | - Rentao Liu
- School of Environment, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Renchuan Fu
- School of Environment, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Chao Yan
- School of Environment, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Xiao Liu
- Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Na Liu
- Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, China.
| | - Yanru Hao
- Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, China.
| |
Collapse
|
2
|
Mathur J, Panwar R. Synergistic effect of pyrene and heavy metals (Zn, Pb, and Cd) on phytoremediation potential of Medicago sativa L. (alfalfa) in multi-contaminated soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:21012-21027. [PMID: 38383928 DOI: 10.1007/s11356-024-32499-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 02/12/2024] [Indexed: 02/23/2024]
Abstract
The environment in India is contaminated with polycyclic aromatic hydrocarbons (PAHs) due to the occurrence of large anthropogenic activities, i.e., fuel combustion, mineral roasting, and biomass burning. Hence, 13 toxic PAHs were detected: phenanthrene, anthracene, fluoranthene, pyrene, and benz(a) anthracene, ben-zo; (b) fluoranthene, benzo(k) fluoranthene, benzo(a) pyrene, benzo(ghi)perylene, dibenz (ah) anthracene, indeno1,2,3-(cd) pyrene, coronene and coronene in the environment (i.e., ambient particulate matter, road dust, sludge, and sewage) of the most industrialized area. Pollutants such as heavy metals and polycyclic aromatic hydrocarbons co-contaminate the soil and pose a significant hazard to the ecosystem because these pollutants are harmful to both humans and the environment. Phytoremediation is an economical plant-based natural approach for soil clean-up that has no negative impact on ecosystems. The aim of this study was to investigate the effects of pyrene (500 mg kg-1), Zn (150 mg kg-1), Pb (150 mg kg-1), and Cd (150 mg kg-1) alone and in combination on the phytoextraction efficiency of Medicago sativa growing in contaminated soil. Plant biomass, biochemical activities, translocation factors, accumulation of heavy metals, and pyrene removal were determined. After 60 days of planting, compared with those of the control plants, the growth parameters, biomass, and chlorophyll content of the M. sativa plants were significantly lower, and the reactive oxygen species activity, such as proline and polyphenol content and metallothionein protein content, was markedly greater in the pyrene and heavy metal-polluted soils. Furthermore, the combined toxicity of pyrene and all three metals on M. sativa growth and biochemical parameters was significantly greater than that of pyrene, Zn, Pb, or Cd alone, indicating the synergistic effect of pyrene and heavy metals on cytotoxicity. Pyrene stress increased Cd accumulation in M. sativa. After pyrene exposure alone or in combination with Zn-pyrene, a greater pyrene removal rate (85.5-81.44%) was observed than that in Pb-pyrene, Cd-pyrene, and Zn-Pb-Cd-pyrene polluted soils (62.78-71.27%), indicating that zinc can enhance the removal of pyrene from contaminated soil. The resulting hypotheses demonstrated that Medicago sativa can be used as a promising phytoremediation agent for co-contaminated soil.
Collapse
Affiliation(s)
- Jyoti Mathur
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan, India.
| | - Ritu Panwar
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan, India
| |
Collapse
|
3
|
Feng B, Mao Z, Yu J, Wang Y, Zhang Z, Xu L, Lu D. The remediation of polycyclic aromatic hydrocarbon contaminated soil by immobilized microorganisms using distiller's grains. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:21415-21429. [PMID: 38393558 DOI: 10.1007/s11356-024-32399-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/03/2024] [Indexed: 02/25/2024]
Abstract
Polycyclic aromatic hydrocarbons are a persistent organic pollutant, and their biodegradation in the soil is often limited due to the limited degradation ability of indigenous bacteria and the low activity of exogenous PAH degrading bacteria. Immobilized microbial technology can protect microorganisms from the impact of harsh environments, and distiller's grains have the potential as carriers for microbial immobilization. This study aims to use distiller's grains as a microbial carrier, investigate the feasibility of immobilized microorganisms using distiller's grains for remediation of PAH contaminated soil; explore the relationship between soil nutrient content, consumption, and PAH degradation rate; and reveal the mechanism of bioremediation from the perspective of soil enzyme activity and microbial community composition. The results showed that after 72 days of remediation, the removal rates of phenanthrene and pyrene in the treatment of immobilized microorganisms in distiller grains reached 91.78% and 58.59%, respectively. Distiller grains can serve as a carrier for microorganisms, providing them with shelter and nutrients to enhance their chance of survival. Additionally, they can regulate the composition of soil particles and improve aeration, thereby increasing the efficiency of PAH degradation in soil.
Collapse
Affiliation(s)
- Bo Feng
- School of Environmental Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China
| | - Zhen Mao
- School of Environmental Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China.
| | - Jinbiao Yu
- School of Environmental Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China
| | - Yuqian Wang
- School of Environmental Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China
| | - Zheyu Zhang
- School of Environmental Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China
| | - Liang Xu
- School of Environmental Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China
| | - Dongqiang Lu
- School of Environmental Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China
| |
Collapse
|
4
|
Panwar R, Mathur J. Microbial-assisted phytodegradation for the amelioration of pyrene-contaminated soil using Pseudomonas aeruginosa and Aspergillus oryzae with alfalfa and sunflower. 3 Biotech 2023; 13:251. [PMID: 37388857 PMCID: PMC10299988 DOI: 10.1007/s13205-023-03664-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 06/06/2023] [Indexed: 07/01/2023] Open
Abstract
Environmental pollution caused by polycyclic aromatic hydrocarbons (PAHs) jeopardizes nature. PAHs are the most toxic, mutagenic, and carcinogenic pollutants and their cleanup is important for the environment. In the current research, to assess and evaluate three remediation strategies for pyrene removal from the soil, a pot experiment was performed: (a) bioremediation with Pseudomonas aeruginosa and Aspergillus oryzae, (b) phytoremediation with sunflower (Helianthus annuus) and alfalfa (Medicago sativa L.) and (c) microbial-assisted phytoremediation for the treatment of pyrene (700 mg kg-1). Results depict that P. aeruginosa significantly promoted the growth and tolerance of taken plants and reduced pyrene concentration in soil. Compared with those planted in pyrene-contaminated soil without inoculation. The highest percentage of pyrene removal was observed in P. aeruginosa inoculated alfalfa (91%), alfalfa inoculated with A. oryzae (83.96%), and without inoculation (78.20%). Moreover, alfalfa planted in P. aeruginosa augmented soil had the highest dehydrogenase activity (37.83 μg TPF g-1 soil h-1), and fluorescein diacetate hydrolysis (91.67 μg fluorescein g-1 dry soil). DHA and FDA are the indicators of bioaugmentation influence on the indigenous microbial activity of contaminated soil. As a result of the findings, the rhizospheric association of plants and microbes is beneficial for pyrene removal. Therefore, P. aeruginosa-assisted phytodegradation might be a more successful remediation technique for pyrene-contaminated soil than bioremediation and phytodegradation solely.
Collapse
Affiliation(s)
- Ritu Panwar
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Banasthali, Rajasthan 304022 India
| | - Jyoti Mathur
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Banasthali, Rajasthan 304022 India
| |
Collapse
|
5
|
Guo G, Liu C, Tian F, Ding K, Wang H, Zhang C, Yang F, Xu J. Bioaugmentation treatment of polycyclic aromatic hydrocarbon-polluted soil in a slurry bioreactor with a bacterial consortium and hydroxypropyl-β-cyclodextrin. ENVIRONMENTAL TECHNOLOGY 2022; 43:3231-3238. [PMID: 33945429 DOI: 10.1080/09593330.2021.1921042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 04/16/2021] [Indexed: 06/12/2023]
Abstract
The aim of the study was to verify the effect of bioaugmentation by the bacterial consortium YS with hydroxypropyl-β-cyclodextrin (HPCD) in a soil slurry. The bacterial consortium YS was enriched from a petroleum-polluted soil using pyrene as sole carbon resource. After 3 weeks, the degradation rate of phenanthrene in CK increased from 22.58% to 55.23 and 78.21% in bioaugmentation (B) and HPCD + bioaugmentation (MB) respectively. The degradation rate of pyrene in CK increased from 17.33% to 51.10% and 60.32% in B and MB respectively in the slurry. The augmented YS persisted in the slurry as monitored by 16S rRNA gene high-throughput sequencing and outcompeted some indigenous bacteria. Enhanced polycyclic aromatic hydrocarbon (PAH) degradation was observed in the addition of HPCD due to the enhanced bioavailability of phenanthrene and pyrene. Additionally, the amount of PAH-degrading bacteria and enzymatic activity in bioaugmentation with HPCD were higher than that in the CK group. The results indicated that bioaugmentation with a bacterial consortium and HPCD is an environmentally friendly method for the bioremediation of PAH-polluted soil.
Collapse
Affiliation(s)
- Guang Guo
- College of Environmental Engineering, Nanjing Institute of Technology, Nanjing, People's Republic of China
| | - Chong Liu
- Chinese Academy of Agricultural Sciences, Institute of Environment and Sustainable Development in Agriculture, Beijing, People's Republic of China
| | - Fang Tian
- College of Environmental Engineering, Nanjing Institute of Technology, Nanjing, People's Republic of China
| | - Keqiang Ding
- College of Environmental Engineering, Nanjing Institute of Technology, Nanjing, People's Republic of China
| | - Huiya Wang
- College of Environmental Engineering, Nanjing Institute of Technology, Nanjing, People's Republic of China
| | - Can Zhang
- Center for Disease Prevention and Control of Chinese PLA, Beijing, People's Republic of China
| | - Feng Yang
- College of Environmental Engineering, Nanjing Institute of Technology, Nanjing, People's Republic of China
| | - Jin Xu
- College of Environmental Engineering, Nanjing Institute of Technology, Nanjing, People's Republic of China
| |
Collapse
|
6
|
Duan FA, Wang J, Ismail S, Sung S, Cui Z, Ni SQ. Hydroxypropyl-β-cyclodextrin improves the removal of polycyclic aromatic hydrocarbons by aerobic granular sludge. ENVIRONMENTAL TECHNOLOGY 2022; 43:3262-3268. [PMID: 33944678 DOI: 10.1080/09593330.2021.1921045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/16/2021] [Indexed: 06/12/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) as polar organic pollutants, their potential harm to the environment has caused widespread concern. This study describes a simple method to prepare modified aerobic granular sludge (AGS) by hydroxypropyl-β-cyclodextrin (HP-β-CD). Using HP-β-CD modified AGS as the adsorbent, the removal of specific PAHs: Fluoranthene (Fla) reached 95% comparing to 80% of the unmodified AGS. The removal of Fla was related to initial concentration, temperature and ion concentration (Na+, Mg2+). The removal efficiency of Fla reached 96.27%, 94.26% and 93.69%, when initial concentration of Fla was 10, 15 and 20 μmol/L. At temperatures of 15°C, 30°C and 45°C, the removal efficiency of Fla (15 μmol/L) gradually improved from 87.20% to 94.84% and 95.73%. The presence of Na+ and Mg2+ ions led to the deterioration of PAHs removal. With the increase of Na+ and Mg2+ concentrations, the removal efficiency of modified AGS on PAHs decreased by 3.9% and 6.5%, respectively. These findings indicate the potential application of cyclodextrins as the active sites of a complex modified polymer network for PAHs wastewater treatment.
Collapse
Affiliation(s)
- Fu-Ang Duan
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, People's Republic of China
| | - Juan Wang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, People's Republic of China
| | - Sherif Ismail
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, People's Republic of China
- Environmental Engineering Department, Zagazig University, Zagazig, Egypt
| | - Shihwu Sung
- College of Agriculture, Forestry and Natural Resource Management, University of Hawaii at Hilo, Hilo, HI, USA
| | - Zhaojie Cui
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, People's Republic of China
| | - Shou-Qing Ni
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, People's Republic of China
| |
Collapse
|
7
|
Morillo E, Madrid F, Lara-Moreno A, Villaverde J. Soil bioremediation by cyclodextrins. A review. Int J Pharm 2020; 591:119943. [DOI: 10.1016/j.ijpharm.2020.119943] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 01/12/2023]
|
8
|
Tang W, Zou C, Da C, Cao Y, Peng H. A review on the recent development of cyclodextrin-based materials used in oilfield applications. Carbohydr Polym 2020; 240:116321. [DOI: 10.1016/j.carbpol.2020.116321] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 01/01/2023]
|
9
|
Dai Y, Liu R, Zhou Y, Li N, Hou L, Ma Q, Gao B. Fire Phoenix facilitates phytoremediation of PAH-Cd co-contaminated soil through promotion of beneficial rhizosphere bacterial communities. ENVIRONMENT INTERNATIONAL 2020; 136:105421. [PMID: 31884414 DOI: 10.1016/j.envint.2019.105421] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/10/2019] [Accepted: 12/13/2019] [Indexed: 05/13/2023]
Abstract
Pot experiments were conducted in a growth chamber to evaluate the phytoremediation efficiency and rhizosphere regulation mechanism of Fire Phoenix (a mixture of Festuca L.) in polycyclic aromatic hydrocarbon-cadmium (PAH-Cd) co-contaminated soils. Plant biomass, removal rates of PAHs and Cd, soil enzyme activity, and soil bacterial community were determined. After 150 days of planting, the removal rates of the total 4 PAHs and Cd reached 64.57% and 40.93% in co-contaminated soils with low-PAH (104.79-144.87 mg·kg-1), and 68.29% and 25.40% in co-contaminated soils with high-PAH (169.17-197.44 mg·kg-1), respectively. The polyphenol oxidase (PPO) activity decreased in soils having Fire Phoenix, while the dehydrogenase (DHO) activity increased as the changes of DHO activity had a strong positive correlation with the removal rates of PAHs and Cd in the low-PAH soils (r = 0.862 (P < 0.006) and 0.913 (P < 0.002), respectively). Meanwhile, successional changes in the bacterial communities were detected using high-throughput 454 Gs-FLX pyrosequencing of the 16S rRNA, and these changes were especially apparent for the co-contaminated soils with the low PAH concentration. The Fire Phoenix could promote the growth of Mycobacterium, Dokdonella, Gordonia and Kaistobacter, which played important roles in PAHs degradation or Cd dissipation. These results indicated that Fire Phoenix could effectively motivate the soil enzyme and bacterial community and enhance the potential for phytoremediation of PAH-Cd co-contaminated soils.
Collapse
Affiliation(s)
- Yuanyuan Dai
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, Liaoning, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Liu
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, Liaoning, China.
| | - Yuemei Zhou
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, Liaoning, China
| | - Na Li
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, Liaoning, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liqun Hou
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, Liaoning, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Ma
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, Liaoning, China
| | - Bin Gao
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
10
|
Liu X, Ge W, Zhang X, Chai C, Wu J, Xiang D, Chen X. Biodegradation of aged polycyclic aromatic hydrocarbons in agricultural soil by Paracoccus sp. LXC combined with humic acid and spent mushroom substrate. JOURNAL OF HAZARDOUS MATERIALS 2019; 379:120820. [PMID: 31271936 DOI: 10.1016/j.jhazmat.2019.120820] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 04/30/2019] [Accepted: 06/24/2019] [Indexed: 06/09/2023]
Abstract
Paracoccus sp. LXC combined with humic acid (HA) and spent mushroom substrate (SMS) obtained from Auricularia auricular and Sarcomyxa edulis was tested for the remediation of agricultural soil contaminated with aged polycyclic aromatic hydrocarbons (PAHs). The biomass and diversity of bacteria and fungi and the soil enzyme activity were analyzed. PAH removal and dissipation kinetics were examined. The highest degradation rate of PAHs was 56.5% when soil was amended with Paracoccus sp. LXC combined with HA and unsterilized SMS from A. auricular. The half-life of PAHs decreased from 2323.3 days in natural attenuation to 66.6-277.2 days in amended treatments. Soil treated with Paracoccus sp. LXC combined with HA and SMS from A. auricular acquired high contents of organic matter and nutrients. HA and SMS aided the growth of PAH-degrading bacteria and promoted the diversity of bacteria but not of fungi. The degradation rate of PAHs was mainly correlated positively with soil laccase activity. Low- and middle-molecular-weight PAHs were significantly removed by Paracoccus sp. LXC, HA and SMS. High-molecular-weight PAHs were removed by SMS but not by Paracoccus sp. LXC. Biodegradation by Paracoccus sp. LXC combined with HA and SMS is a promising choice for remediating aged PAH-contaminated agricultural soils.
Collapse
Affiliation(s)
- Xiuchu Liu
- Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wei Ge
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiaomei Zhang
- Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chao Chai
- Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Juan Wu
- Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Dan Xiang
- Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiaoyu Chen
- Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao, 266109, China
| |
Collapse
|
11
|
Borowik A, Wyszkowska J, Gałązka A, Kucharski J. Role of Festuca rubra and Festuca arundinacea in determinig the functional and genetic diversity of microorganisms and of the enzymatic activity in the soil polluted with diesel oil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:27738-27751. [PMID: 31338761 PMCID: PMC6791909 DOI: 10.1007/s11356-019-05888-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/01/2019] [Indexed: 05/29/2023]
Abstract
The objective of this study was to analyze the effect of two grass species, i.e. red fescue (Festuca rubra) and tall fescue (F. arundinacea), on the functional and genetic diversity of soil-dwelling microorganisms and on the enzymatic activity of soil not polluted and polluted with diesel oil. Grasses were examined for their effectiveness in accelerating degradation of PAHs introduced into soil with diesel oil. A growing experiment was conducted in Kick-Brauckman pots. The soil not polluted and polluted with diesel oil (7 cm3 kg-1 d.m.) was determined for the count of bacteria, colony development index, ecophysiological diversity index, functional diversity (using Biolog system), genetic diversity of bacteria (using NGS), enzymatic activity, and content of hydrocarbons. Study results demonstrated disturbed homeostasis of soil. The toxic effect of diesel oil on grasses alleviate with time since soil pollution. The yield of the first swath of red fescue decreased by 98% and that of tall fescue by 92%, whereas the yields of the second swath decreased by 82% and 89%, and these of the third swath by 50% and 47%, respectively. Diesel oil diminished also the functional and genetic diversity of bacteria. The use of grasses significantly decreased contents of C6-C12 (gasoline total), C12-C35 mineral oils, BTEX (volatile aromatic hydrocarbons), and PAHs in the soil, as well as enabled restoring the microbiological equilibrium in the soil, and increased functional and genetic diversity of bacteria. For this reason, both analyzed grass species, i.e. Festuca rubra and F. arundinacea, may be recommended for the remediation of soil polluted with diesel oil.
Collapse
Affiliation(s)
- Agata Borowik
- Department of Microbiology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727, Olsztyn, Poland
| | - Jadwiga Wyszkowska
- Department of Microbiology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727, Olsztyn, Poland.
| | - Anna Gałązka
- Institute of Soil Science and Plant Cultivation - State Research Institute, ul. Czartoryskich 8, 24-100, Puławy, Poland
| | - Jan Kucharski
- Department of Microbiology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727, Olsztyn, Poland
| |
Collapse
|
12
|
Wang C, Gu L, Ge S, Liu X, Zhang X, Chen X. Remediation potential of immobilized bacterial consortium with biochar as carrier in pyrene-Cr(VI) co-contaminated soil. ENVIRONMENTAL TECHNOLOGY 2019; 40:2345-2353. [PMID: 29465023 DOI: 10.1080/09593330.2018.1441328] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 02/10/2018] [Indexed: 06/08/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) and potentially toxic trace elements (PTEs) soil contamination have become areas of concern. Bioaugmentation is regarded as an effective bioremediation method, however it is difficult to simultaneously degrade organic compounds and remove PTEs with individual microbial strains. Therefore, the objective of this study was to evaluate the feasibility of using immobilized microbial consortia, including two PAH-degrading bacterial strains (W1 and W2) and a Cr(VI)-reducing bacterium (Y2), for the remediation of pyrene-Cr(VI) co-contaminated soil. Three immobilization methods were investigated: (1) bacterial consortium adsorption onto biochar (BC), (2) bacterial consortium entrapment in alginate beads (AC), (3) bacterial consortium adsorption on biochar and sequential entrapment in alginate beads (BAC). In addition, a free bacterial consortium (FC) was also used for comparison. Ten treatments were designed to illustrate the bioremediation efficiency of the free and immobilized consortia. The results show that treatments AC and BAC resulted in more efficient Cr(VI) removal compared with BC and FC. Pyrene levels in AC and BAC microcosms were reduced from 42.33 ± 3.82 to 11.56 ± 1.37 and 7.48 ± 0.39 mg kg-1, respectively. Bioavailable Cr (VI) in AC and BAC was significantly lower than that in other microcosms after 28 days' incubation. Both AC and BAC microcosms exhibited a higher level of dehydrogenase and fluorescein diacetate hydrolysis activity. Furthermore, soil microbial diversity was higher in AC and BAC microcosms compared with the others. Thus, the entrapped consortia may be useful for bioremediation of pyrene and Cr (VI) without compromising soil ecology.
Collapse
Affiliation(s)
- Chuanhua Wang
- a College of Life and Environment Science, Wenzhou University , Wenzhou , People's Republic of China
| | - Lingfeng Gu
- b College of Environment and Chemical Engineering, Shanghai University , Shanghai , People's Republic of China
| | - Shimei Ge
- a College of Life and Environment Science, Wenzhou University , Wenzhou , People's Republic of China
| | - Xiaoyan Liu
- b College of Environment and Chemical Engineering, Shanghai University , Shanghai , People's Republic of China
| | - Xinying Zhang
- b College of Environment and Chemical Engineering, Shanghai University , Shanghai , People's Republic of China
| | - Xiao Chen
- b College of Environment and Chemical Engineering, Shanghai University , Shanghai , People's Republic of China
| |
Collapse
|
13
|
Wu N, Li X, Huang G, Pan P, Wang C, Liu X, Zeng M. Adsorption and biodegradation functions of novel microbial embedding polyvinyl alcohol gel beads modified with cyclodextrin: a case study of benzene. ENVIRONMENTAL TECHNOLOGY 2019; 40:1948-1958. [PMID: 29384017 DOI: 10.1080/09593330.2018.1435727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 01/27/2018] [Indexed: 06/07/2023]
Abstract
A novel microorganism embedding material was developed to enhance the benzene removal through adsorption and biodegradation, by introducing β-cyclodextrin (CD) to traditional polyvinyl alcohol gel beads. Results show that the optimal ratio of sucrose/benzene was 1.25 for co-metabolism biodegradation of benzene, and the maximum exogenous microbial respiration rate was 260.13 mgO2/(gVSS h) for gel beads with CD. The positive effects of CD on benzene removal mainly resulted from the adsorption characteristics of CD as well as the stimulation of CD on microbial activity. Adsorption tests indicate that CD addition increased the adsorption function of gel beads to benzene with its dispersion coefficient of 5.1 × 10-7 cm2/s. Respiration tests show that gel beads with CD possessed the highest maximum specific exogenous respiration rates. Moreover, a high-throughput sequencing analysis confirms that CD addition could obviously enhance microbial diversity with domain microbial of Zoogloea (17.0%). Finally, microbial embedding gel beads could remove certain benzene after lyophilization and storage for one month. Overall, the novel microbial embedding gel beads modified with CD (a favorable additional agent to traditional embedding materials) have been proved as an efficient method for removing benzene under suitable sucrose/benzene ratio.
Collapse
Affiliation(s)
- Nan Wu
- a College of Engineering and Technology, Tianjin Agricultural University , Tianjin , People's Republic of China
| | - Xiaofang Li
- b College of Marine and Environmental Science, Tianjin University of Science &Technology , Tianjin , People's Republic of China
| | - Guoshuai Huang
- b College of Marine and Environmental Science, Tianjin University of Science &Technology , Tianjin , People's Republic of China
| | - Peng Pan
- b College of Marine and Environmental Science, Tianjin University of Science &Technology , Tianjin , People's Republic of China
| | - Chang Wang
- b College of Marine and Environmental Science, Tianjin University of Science &Technology , Tianjin , People's Republic of China
| | - Xinyuan Liu
- a College of Engineering and Technology, Tianjin Agricultural University , Tianjin , People's Republic of China
| | - Ming Zeng
- b College of Marine and Environmental Science, Tianjin University of Science &Technology , Tianjin , People's Republic of China
| |
Collapse
|
14
|
Hu X, Ke Y, Zhao Y, Lu S, Deng Q, Yu C, Peng F. Synthesis, characterization and solution properties of β-cyclodextrin-functionalized polyacrylamide/montmorillonite nanocomposites. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2018.10.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
15
|
Báez ME, Espinoza J, Fuentes E. Degradation kinetics of chlorpyrifos and diazinon in volcanic and non-volcanic soils: influence of cyclodextrins. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:25020-25035. [PMID: 29934831 DOI: 10.1007/s11356-018-2559-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 06/13/2018] [Indexed: 05/24/2023]
Abstract
The intensive use of insecticides such as chlorpyrifos (CPF) and diazinon (DZN) in the agricultural activities worldwide has produced contamination of soils and/or transport to non-target areas including their distribution to surface and groundwaters. Cyclodextrins (CDs) have been proposed as an alternative in remediation technologies based on the separation of contaminants from soils because they could allow a higher bioavailability for their degradation with a low environmental impact. In this work, the degradation pattern of CPF and DZN and the formation and dissipation of the major degradation products 3,5,6-trichloro-2-pyridinol (TCP) and 2-isopropyl-6-methyl-4-pyrimidinol (IMPH) was established in four agricultural volcanic and non-volcanic soils belonging to Andisol, Ultisol, and Mollisol orders. Both pesticides were highly adsorbed in these soils, consequently, with a greater probability of contaminating them. In contrast, the adsorption of their two main metabolites was low or null; therefore, they are potential groundwater contaminants. The degradation processes were studied in the natural and amended soils with β-cyclodextrin (β-CD) and methyl-β-cyclodextrin (Mβ-CD) for CPF and DZN, respectively. A slow degradation of CPF and DZN was obtained for volcanic soils with observable residues until the end of the incubation time (150-180 days). In Mollisols, the higher degradation rate of CPF was favored by the neutral to basic pH, and for DZN it was related to the lower adsorption and higher bioavailability. The amendment of soils with CDs produced slower degradation rates which led to a greater concentration of the compounds at the end of the incubation time. This effect was more pronounced for DZN. The exception was the Andisol, with no significant changes for both compounds regarding the unamended soil. No residues of TCP were observed for this soil in both conditions during the whole incubation time; nevertheless, the accumulation of TCP was significant in the Ultisol and Mollisols, but the concentrations were lower for the amended soils. The accumulation of IMPH was important in Mollisol amended soils; however, their residues were observed in the volcanic soils during the whole incubation period in the natural and amended soils. An important enhancement of the microbial activity occurred in the system β-CD/CPF in Mollisols, without a more effective degradation of the insecticide. The opposite effect was observed in the system Mβ-CD/DZN mainly in the oxidative activity in all soils. The higher degradation of DZN and IMPH in natural Mollisols was related to the higher hydrolytic and oxidative activities. The stability of the inclusion complexes formed could play an important role for explaining the results obtained with the amendments.
Collapse
Affiliation(s)
- María E Báez
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Sergio Livingstone Pohlhammer 1007, 8380000, Santiago, Chile.
| | - Jeannette Espinoza
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Sergio Livingstone Pohlhammer 1007, 8380000, Santiago, Chile
| | - Edwar Fuentes
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Sergio Livingstone Pohlhammer 1007, 8380000, Santiago, Chile
| |
Collapse
|
16
|
Cecotti M, Coppotelli BM, Mora VC, Viera M, Morelli IS. Efficiency of surfactant-enhanced bioremediation of aged polycyclic aromatic hydrocarbon-contaminated soil: Link with bioavailability and the dynamics of the bacterial community. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 634:224-234. [PMID: 29627545 DOI: 10.1016/j.scitotenv.2018.03.303] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/18/2018] [Accepted: 03/24/2018] [Indexed: 06/08/2023]
Abstract
Shifts in the bacterial-community dynamics, bioavailability, and biodegradation of polycyclic aromatic hydrocarbons (PAHs) of chronically contaminated soil were analyzed in Triton X-100-treated microcosms at the critical micelle concentration (T-CMC) and at two sub-CMC doses. Only the sub-CMC-dose microcosms reached sorbed-PAH concentrations significantly lower than the control: 166±32 and 135±4mgkg-1 dry soil versus 266±51mgkg-1; consequently an increase in high- and low-molecular-weight PAHs biodegradation was observed. After 63days of incubation pyrosequencing data evidenced differences in diversity and composition between the surfactant-modified microcosms and the control, with those with sub-CMC doses containing a predominance of the orders Sphingomonadales, Acidobacteriales, and Gemmatimonadales (groups of known PAHs-degrading capability). The T-CMC microcosm exhibited a lower richness and diversity index with a marked predominance of the order Xanthomonadales, mainly represented by the Stenotrophomonas genus, a PAHs- and Triton X-100-degrading bacterium. In the T-CMC microcosm, whereas the initial surface tension was 35mNm-1, after 63days of incubation an increase up to 40mNm-1 was registered. The previous observation and the gas-chromatography data indicated that the surfactant may have been degraded at the CMC by a highly selective bacterial community with a consequent negative impact on PAHs biodegradation. This work obtained strong evidence for the involvement of physicochemical and biologic influences determining the different behaviors of the studied microcosms. The results reported here contribute significantly to an optimization of, surfactant-enhanced bioremediation strategies for chronically contaminated soil since the application of doses below the CMC would reduce the overall costs.
Collapse
Affiliation(s)
- Martina Cecotti
- Centro de Investigación y Desarrollo en Fermentaciones Industriales, CINDEFI (UNLP; CCT-La Plata, CONICET), La Plata, Argentina
| | - Bibiana M Coppotelli
- Centro de Investigación y Desarrollo en Fermentaciones Industriales, CINDEFI (UNLP; CCT-La Plata, CONICET), La Plata, Argentina
| | - Verónica C Mora
- Centro de Investigación y Desarrollo en Fermentaciones Industriales, CINDEFI (UNLP; CCT-La Plata, CONICET), La Plata, Argentina
| | - Marisa Viera
- Centro de Investigación y Desarrollo en Tecnología de Pinturas, CIDEPINT (CICPBA, CCT-La Plata, CONICET), La Plata, Argentina
| | - Irma S Morelli
- Centro de Investigación y Desarrollo en Fermentaciones Industriales, CINDEFI (UNLP; CCT-La Plata, CONICET), La Plata, Argentina; Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, La Plata, Argentina.
| |
Collapse
|
17
|
Wołejko E, Wydro U, Jabłońska-Trypuć A, Butarewicz A, Łoboda T. The effect of sewage sludge fertilization on the concentration of PAHs in urban soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 232:347-357. [PMID: 28986083 DOI: 10.1016/j.envpol.2017.08.120] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 08/30/2017] [Accepted: 08/31/2017] [Indexed: 06/07/2023]
Abstract
This paper analyses sources of sixteen PAHs - polycyclic aromatic hydrocarbons in urbanized areas by using selected diagnostic ratios. Simultaneously, an attempt was made to determine how sewage sludge changes PAHs content in urbanized areas soils. In the experiment three lawns along the main roads in Bialystok with different traffic intensity, three doses of sewage sludge and two years of study were considered. There was no effect of fertilization with sewage sludge on the sum of 16 PAHs in urban soil samples, nevertheless, the sum of 16 PAHs was reduced from 2.6 in 2011 to 2.3 mg/kg in 2012. Among 16 tested PAHs compounds, benzo[a]pyrene was the most dominant compound in samples collected in both years - about 15% of all PAHs. The results suggest that application of sludge into the soil did not influence the concentration of 2-3-ring, 4-ring and 5-6-ring PAHs. For the objects fertilized with a dose 150.0 Mg/ha, of sludge the total sum of potentially carcinogenic PAHs in the urban soil lowered by approximately 68% in comparison with the control plots. PAHs contamination of the urban soil samples resulted from the influence of coal, petroleum and biomass combustion. Moreover, PAHs can enter soil via at mospheric deposition.
Collapse
Affiliation(s)
- Elżbieta Wołejko
- Bialystok University of Technology, Department of Sanitary Biology and Biotechnology, Wiejska 45A Street, 15-351, Białystok, Poland.
| | - Urszula Wydro
- Bialystok University of Technology, Department of Sanitary Biology and Biotechnology, Wiejska 45A Street, 15-351, Białystok, Poland
| | - Agata Jabłońska-Trypuć
- Bialystok University of Technology, Department of Sanitary Biology and Biotechnology, Wiejska 45A Street, 15-351, Białystok, Poland
| | - Andrzej Butarewicz
- Bialystok University of Technology, Department of Sanitary Biology and Biotechnology, Wiejska 45A Street, 15-351, Białystok, Poland
| | - Tadeusz Łoboda
- Bialystok University of Technology, Department of Sanitary Biology and Biotechnology, Wiejska 45A Street, 15-351, Białystok, Poland
| |
Collapse
|
18
|
Ma L, Deng F, Yang C, Guo C, Dang Z. Bioremediation of PAH-contaminated farmland: field experiment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:64-72. [PMID: 27838911 DOI: 10.1007/s11356-016-7906-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 10/11/2016] [Indexed: 06/06/2023]
Abstract
The agricultural soil contaminated by polycyclic aromatic hydrocarbons (PAHs) is gradually emerging and becoming serious in China with the rapid development of economy. To reduce the risk of PAHs in agricultural soil and guarantee the food safety, the biological agent that Mycobacterium gilvum immobilized on modified peanut shell powder enhanced remediation of polycyclic aromatic hydrocarbon-contaminated vegetable farmland was investigated under the conditions of the field experiment. The results indicated that adding biological agent could promote PAH degradation in the soil, especially high-ring PAHs. The degradation rates of PAHs in the soil could be further improved to 16.5-43.5 %, respectively, compared with the soil without the biological agent. Adding the biological agent could significantly improve soil dehydrogenase activity and microbial diversity. It also could reduce the enrichment of PAHs in mustard planted in the polluted field, which indicated that the biological treatments might be less ecological risk. The work suggested that adding the biological agent might be a promising in situ bioremediation strategy for PAH-contaminated farmland field.
Collapse
Affiliation(s)
- Lin Ma
- College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Fucai Deng
- College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
- School of Environmental and Biological Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, China
| | - Chen Yang
- College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China.
| | - Chuling Guo
- College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Zhi Dang
- College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| |
Collapse
|
19
|
Tian F, Guo G, Ding K, Wang L, Liu T, Yang F. Effect of Bioaugmentation by Bacterial Consortium and Methyl-β-cyclodextrin on Soil Functional Diversity and Removal of Polycyclic Aromatic Hydrocarbons. Polycycl Aromat Compd 2017. [DOI: 10.1080/10406638.2017.1326952] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Fang Tian
- Department of Environmental Engineering, Nanjing Institute of Technology, Nanjing, P. R. China
| | - Guang Guo
- Department of Environmental Engineering, Nanjing Institute of Technology, Nanjing, P. R. China
| | - Keqiang Ding
- Department of Environmental Engineering, Nanjing Institute of Technology, Nanjing, P. R. China
| | - Lihong Wang
- Department of Environmental Engineering, Hohai University, Nanjing, P. R. China
| | - Tingfeng Liu
- Department of Environmental Engineering, Nanjing Institute of Technology, Nanjing, P. R. China
| | - Feng Yang
- Department of Environmental Engineering, Nanjing Institute of Technology, Nanjing, P. R. China
| |
Collapse
|
20
|
Wang B, Xu X, Chen X, Ji F, Hu B. Extraction techniques using isopropanol and Tenax to characterize polycyclic aromatic hydrocarbons bioavailability in sediment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 579:238-244. [PMID: 27890410 DOI: 10.1016/j.scitotenv.2016.11.128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 11/17/2016] [Accepted: 11/18/2016] [Indexed: 06/06/2023]
Abstract
Polycyclic aromatic hydrocarbon (PAH)-degrading bacterium strain J1-q (Sphingomonas pseudosanguinis strain J1-q) was isolated from Yangtze River surface sediment in the downtown area of Chongqing in a previous study. Isopropanol and Tenax extraction techniques were used to characterize the bioavailability of target PAH compounds. Phenanthrene (Phe) and fluoranthene (Fluo) were the target PAHs due to their significant background concentrations in surface sediment samples. Isopropanol solutions at concentrations of 50-100% and residual Phe and Fluo concentrations in sediment were correlated, with R2 values of 0.9846 and 0.9649, respectively. The quantities of the Phe and Fluo fractions extracted for 3days with isopropanol from sediment were closely related with the corresponding quantities of PAHs degraded by bacterial strain J1-q when the extracting concentrations were 55% and 80%, respectively. The quantity of Phe extracted by Tenax agreed with the total quantity biodegraded when the Tenax: sediment mass ratio was 0.25 and the target PAHs were degraded for 30d, whereas the extracted quantity of Fluo accounted for 93.30% of the total quantity biodegraded by the bacterium. The triphasic model was appropriate to simulate the consecutive Phe and Fluo extraction process using Tenax at various Tenax: sediment ratios, and all simulated correlation coefficients were >0.9151. A 24-h extraction period was adequate to estimate the rapidly desorbing fractions when they were extracted with Tenax. Isopropanol extraction was preferable to characterize Phe and Fluo bioavailability under the experimental conditions, whereas Tenax extraction was useful to predict bioavailability of the two target PAHs with particular selectivity.
Collapse
Affiliation(s)
- Bin Wang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing 400045, China
| | - Xiaoyi Xu
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing 400045, China.
| | - Xi Chen
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing 400045, China
| | - Fangying Ji
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing 400045, China
| | - Bibo Hu
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing 400045, China
| |
Collapse
|
21
|
Madrid F, Rubio-Bellido M, Villaverde J, Tejada M, Morillo E. Natural attenuation of fluorene and pyrene in contaminated soils and assisted with hydroxypropyl-β-cyclodextrin. Effect of co-contamination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 571:42-49. [PMID: 27454573 DOI: 10.1016/j.scitotenv.2016.07.110] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/15/2016] [Accepted: 07/15/2016] [Indexed: 06/06/2023]
Abstract
The objectives of this study were to investigate the mutual effect of the PAHs fluorene and pyrene on their respective biodegradation and dissipation processes in an agricultural soil, and to determine the effect of hydroxypropyl-β-cyclodextrin (HPBCD), used to increase the bioavailability of PAHs, on such processes. Fluorene dissipation was primarily due to abiotic processes, although a small contribution from biodegradation was also observed. Therefore, fluorene dissipation did not increase with HPBCD and its presence did not significantly alter the dehydrogenase activity. In contrast to fluorene, pyrene dissipation depended primarily on biotic factors, with endogenous soil microorganisms capable of degrading pyrene, with large increases in dehydrogenase activity. HPBCD increased biodegradation rate of pyrene. The co-contamination of soil with both PAHs did not affect fluorene evolution, but significantly inhibited pyrene biodegradation. The different abilities of soil bacterial consortia to catabolize these PAHs are discussed. Additionally, the possibility that the abiotic loss of fluorene through volatilization had a significant effect on the microbial community biodegradation of both fluorene and pyrene is examined.
Collapse
Affiliation(s)
- F Madrid
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS-CSIC), Apdo. 1052, 41080 Seville, Spain
| | - M Rubio-Bellido
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS-CSIC), Apdo. 1052, 41080 Seville, Spain
| | - J Villaverde
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS-CSIC), Apdo. 1052, 41080 Seville, Spain
| | - M Tejada
- Departamento de Cristalografía, Mineralogía y Química Agrícola, Escuela Técnica Superior de Ingeniería Agronómica, Universidad de Sevilla, Ctr. Utrera km. 1, 41013 Seville, Spain
| | - E Morillo
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS-CSIC), Apdo. 1052, 41080 Seville, Spain.
| |
Collapse
|
22
|
Liu T, Wei L, Qiao M, Zou D, Yang X, Lin A. Mineralization of pyrene induced by interaction between Ochrobactrum sp. PW and ryegrass in spiked soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 133:290-296. [PMID: 27479773 DOI: 10.1016/j.ecoenv.2016.07.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/22/2016] [Accepted: 07/22/2016] [Indexed: 06/06/2023]
Abstract
This study was conducted to investigate the capability of pyrene-degrading bacterium Ochrobactrum sp. PW and ryegrass (Lolium multiflorum) grown alone and in combination on the degradation of pyrene in soil. After 60 days of ryegrass growth, plant biomass, pyrene-degrading microbial mass, soil enzyme activity (catalase activity and polyphenol oxidase activity) and residual concentration of pyrene in soils were determined. Higher dissipation rates were observed in PW inoculation treatments: ryegrass+PW rhizosphere soil (RP-r) and ryegrass+PW non-rhizosphere soil (RP-nr), than planting of ryegrass alone, rhizosphere (R-r) or non-rhizosphere (R-nr). The inoculation with PW significantly (p<0.05) increased the dry weight of ryegrass root and shoot, nearly 2.8 and 3.3 times higher than ryegrass treatment. The pyrene-degrading microbial mass indicated that a much larger mass of bacteria, actinobacteria were present in RP treatment. The catalase activity in all different treatments were significantly (p<0.05) higher than in with treatment R-nr, and the polyphenol oxidase activity was also significantly (p<0.05) increased by inoculation with PW, leading to enhanced mineralization of pyrene from soil. Our results suggest that adding of PAHs-degrading bacteria to soil can enhance remediation of PAHs contaminated soil, while improving plant growth.
Collapse
Affiliation(s)
- Tuo Liu
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Lianshuang Wei
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Min Qiao
- Department of Soil Environmental Sciences, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Dexun Zou
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Xiaojin Yang
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Aijun Lin
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China; Beijing City Environmental Pollution Control and Resource Reuse Engineering Research Center, Beijing University of Chemical Technology, Beijing 100029, PR China.
| |
Collapse
|
23
|
Cao Y, Yang B, Song Z, Wang H, He F, Han X. Wheat straw biochar amendments on the removal of polycyclic aromatic hydrocarbons (PAHs) in contaminated soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 130:248-255. [PMID: 27151675 DOI: 10.1016/j.ecoenv.2016.04.033] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 04/25/2016] [Accepted: 04/25/2016] [Indexed: 06/05/2023]
Abstract
Soil amendments of wheat straw biochar (BC), lignocellulosic substrate (LS), BC+LS, and BC+LS+BR (surfactant Brij30) were investigated for the first time in order to remedy polycyclic aromatic hydrocarbons (PAHs)-polluted soil using pilot scale microcosm incubation. We hypothesized that the removal of PAHs could be inhibited due to the adsorption and immobilization of biochar and the inhibition depends on the molecular-weight of PAHs. The removal rates of phenanthrene (PHE) and Benzo[a]pyrene (BaP) ranked as C=BC>LS=LS+BC=LS+BC+BR and C=BC=LS+BC+BR>LS=LS+BC. Wheat straw biochar inhibited the removal of PHE and accelerated BaP removal. The activity of Dehydrogenase (DH) was depressed by the addition of the biochar while the activity of polyphenol oxidase (PPO) was stimulated. Lignocellulose and surfactant are favourable to sustain soil microbiological activity and the removal of PAHs although the diversity of bacterial community was not significantly changed. The findings implied that the components of PAHs are necessary to consider when the amendments are implemented by associated biochar in PAH-polluted soil.
Collapse
Affiliation(s)
- Yanan Cao
- School of Resources and Environment, University of Jinan, Jinan 250022, China; Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization, Jinan 250022, China
| | - Baoshan Yang
- School of Resources and Environment, University of Jinan, Jinan 250022, China; Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization, Jinan 250022, China
| | - Ziheng Song
- School of Resources and Environment, University of Jinan, Jinan 250022, China; Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization, Jinan 250022, China
| | - Hui Wang
- School of Resources and Environment, University of Jinan, Jinan 250022, China; Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization, Jinan 250022, China.
| | - Fei He
- School of Resources and Environment, University of Jinan, Jinan 250022, China; Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization, Jinan 250022, China
| | - Xuemei Han
- School of Resources and Environment, University of Jinan, Jinan 250022, China; Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization, Jinan 250022, China
| |
Collapse
|
24
|
Yi XH, Jing DD, Wan J, Ma Y, Wang Y. Temporal and spatial variations of contaminant removal, enzyme activities, and microbial community structure in a pilot horizontal subsurface flow constructed wetland purifying industrial runoff. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:8565-8576. [PMID: 26797946 DOI: 10.1007/s11356-016-6083-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 01/08/2016] [Indexed: 06/05/2023]
Abstract
A pilot-scale horizontal subsurface flow constructed wetland (HSSFCW) was operated to purify industrial runoff containing polycyclic aromatic hydrocarbons (PAHs) in Guangzhou, China. Synthetic industrial runoff was fed into the HSSFCW with continuous flow at an average loading rate of 0.128 m(3)/(m(2)/day) for about 2 years. Pollutants such as chemical oxygen demand (COD), total phosphorus (TP), and phenanthrene were mainly removed in the front quarter of the HSSFCW, and in the vertical direction, the average removal rates of COD, TP, total nitrogen (TN), ammonia, and phenanthrene of the upper layer were 64.23, 71.16, 50.81, 65.38, and 92.47 %, which were 1.23, 2.08, 1.48, 1.72, and 1.17 times higher than those of the bottom, respectively. Correlations among pollutant removal, soil environmental indexes, enzyme activities, and soil microbial community structure were evaluated. Enzyme assays (dehydrogenase, catalase, nitrate reductase, and polyphenol oxidase) showed significant associations between enzyme activities and pollutant removal (p < 0.01 and p < 0.05). Soil microbial community structure was assessed with denaturing gradient gel electrophoresis (DGGE) fingerprinting method, and results demonstrated that bacterial communities remained relatively stable in different seasons. Proteobacteria and Bacteroidetes were found to be the dominant phyla of the bacteria communities, and three clones which might be related to the biodegradation of phenanthrene were also detected. Results of the present work would broaden the knowledge of the purification mechanism of contaminants in the constructed wetlands (CWs), and identification of the treatment performances and temporal and spatial variations of biological activities of subsurface flow constructed wetlands (SSFCWs) would help to improve the operations of CWs for surface water protection.
Collapse
Affiliation(s)
- Xiao-Hui Yi
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, People's Republic of China
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, People's Republic of China
| | - Dan-Dan Jing
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, People's Republic of China
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, People's Republic of China
| | - Jinquan Wan
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, People's Republic of China.
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, People's Republic of China.
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, People's Republic of China.
| | - Yongwen Ma
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, People's Republic of China
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, People's Republic of China
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, People's Republic of China
| | - Yan Wang
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, People's Republic of China
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, People's Republic of China
| |
Collapse
|
25
|
Electrochemical preparation of uniform CuO/Cu2O heterojunction on β-cyclodextrin-modified carbon fibers. J APPL ELECTROCHEM 2016. [DOI: 10.1007/s10800-016-0926-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Zhao J, Chi Y, Liu F, Jia D, Yao K. Effects of Two Surfactants and Beta-Cyclodextrin on Beta-Cypermethrin Degradation by Bacillus licheniformis B-1. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:10729-10735. [PMID: 26615963 DOI: 10.1021/acs.jafc.5b04485] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The biodegradation efficiency of beta-cypermethrin (β-CY) is low especially at high concentrations mainly due to poor contact between this hydrophobic pesticide and microbial cells. In this study, the effects of two biodegradable surfactants (Tween-80 and Brij-35) and β-cyclodextrin (β-CD) on the growth and cell surface hydrophobicity (CSH) of Bacillus licheniformis B-1 were studied. Furthermore, their effects on the solubility, biosorption, and degradation of β-CY were investigated. The results showed that Tween-80 could slightly promote the growth of the strain while Brij-35 and β-CD exhibited little effect on its growth. The CSH of strain B-1 and the solubility of β-CY were obviously changed by using Tween-80 and Brij-35. The surfactants and β-CD could enhance β-CY biosorption and degradation by the strain, and the highest degradation was obtained in the presence of Brij-35. When the surfactant or β-CD concentration was 2.4 g/L, the degradation rate of β-CY in Brij-35, Tween-80, and β-CD treatments was 89.4%, 50.5%, and 48.1%, respectively. The half-life of β-CY by using Brij-35 was shortened by 69.1 h. Beta-CY content in the soil with both strain B-1 and Brij-35 decreased from 22.29 mg/kg to 4.41 mg/kg after incubation for 22 d. This work can provide a promising approach for the efficient degradation of pyrethroid pesticides by microorganisms.
Collapse
Affiliation(s)
- Jiayuan Zhao
- College of Light Industry, Textile & Food Engineering, Sichuan University , 610065, Chengdu, Sichuan, P. R. China
| | - Yuanlong Chi
- College of Light Industry, Textile & Food Engineering, Sichuan University , 610065, Chengdu, Sichuan, P. R. China
| | - Fangfang Liu
- College of Light Industry, Textile & Food Engineering, Sichuan University , 610065, Chengdu, Sichuan, P. R. China
| | - Dongying Jia
- College of Light Industry, Textile & Food Engineering, Sichuan University , 610065, Chengdu, Sichuan, P. R. China
| | - Kai Yao
- College of Light Industry, Textile & Food Engineering, Sichuan University , 610065, Chengdu, Sichuan, P. R. China
| |
Collapse
|
27
|
Rubio-Bellido M, Madrid F, Morillo E, Villaverde J. Assisted attenuation of a soil contaminated by diuron using hydroxypropyl-β-cyclodextrin and organic amendments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 502:699-705. [PMID: 25310830 DOI: 10.1016/j.scitotenv.2014.09.052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 09/17/2014] [Accepted: 09/17/2014] [Indexed: 06/04/2023]
Abstract
Diuron desorption and mineralisation were studied on an amended and artificially contaminated soil. The amendments used comprised two different composted organic residues i.e., sewage sludge (SS) mixed with pruning wastes, and urban solid residues (USR), and two different solutions (with inorganic salts as the micronutrients and hydroxypropyl-β-cyclodextrin (HPBCD)). After applying micronutrients to activate the soil flora, 15.5% mineralisation could be reached after 150 days, indicating that the soil has a potential capacity to mineralise the herbicide through biostimulation-assisted attenuation. Diuron mineralisation was also improved when HPBCD solutions were applied. Indeed, the extent of herbicide mineralisation reached 29.7% with this application. Moreover, both the lag phase and the half-life time (DT50) were reduced to 33 and 1,778 days, respectively, relative to the application of just micronutrients (i.e., 39 and 6297 days, respectively). Organic amendments were also applied (i.e., USR and SS) on the contaminated soil: it was found that the diuron mineralisation rate was improved as the amendment concentration increased. The joint application of all treatments investigated at the best conditions tested was conducted to obtain the best diuron mineralisation results. The micronutrient amendment plus 4% USR or SS amendment plus HPBCD solution (10-fold diuron initially spiked) caused an extent of diuron mineralisation 33.2 or 46.5%, respectively.
Collapse
Affiliation(s)
- Marina Rubio-Bellido
- Instituto de Recursos Naturales y Agrobiología (IRNAS-CSIC), Apartado 1052, 41080 Sevilla, Spain
| | - Fernando Madrid
- Instituto de Recursos Naturales y Agrobiología (IRNAS-CSIC), Apartado 1052, 41080 Sevilla, Spain
| | - Esmeralda Morillo
- Instituto de Recursos Naturales y Agrobiología (IRNAS-CSIC), Apartado 1052, 41080 Sevilla, Spain
| | - Jaime Villaverde
- Instituto de Recursos Naturales y Agrobiología (IRNAS-CSIC), Apartado 1052, 41080 Sevilla, Spain.
| |
Collapse
|
28
|
Spasojević JM, Maletić SP, Rončević SD, Radnović DV, Cučak DI, Tričković JS, Dalmacija BD. Using chemical desorption of PAHs from sediment to model biodegradation during bioavailability assessment. JOURNAL OF HAZARDOUS MATERIALS 2014; 283:60-69. [PMID: 25261761 DOI: 10.1016/j.jhazmat.2014.09.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/22/2014] [Accepted: 09/08/2014] [Indexed: 06/03/2023]
Abstract
This work compares the biodegradation potential of four polycyclic aromatic hydrocarbons (PAH) (phenanthrene, pyrene, chrysene and benzo(a)pyrene, chosen as representatives of the 3, 4 and 5 ring PAHs) with their desorption from sediment by XAD4 resin and methyl-β-cyclodextrin (MCD). The biodegradation study was conducted under various conditions (biostimulation, bioaugmentation and their combination). The results show that total PAH removal in all treatments except biostimulation gave similar results, whereby the total amount of PAHs was decreased by about 30-35%. The desorption experiment showed that XAD4 desorbed a greater fraction of phenanthrene (77% versus 52%), and benzo(a)pyrene (44% versus 25%) than MCD. The results for four ring PAHs were similar for both desorption agents (about 30%). Comparing the maximum biodegraded amount of each PAH with the rapidly desorbed XAD4 and MCD fraction, XAD4 was found to correlate better with biodegradation for the high molecular PAHs (pyrene, chrysene, benzo(a)pyrene), although it overestimated the availability of phenanthrene. In contrast, MCD showed better correlation with the biodegradation of low molecular weight PAHs.
Collapse
Affiliation(s)
- Jelena M Spasojević
- University of Novi Sad Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovica 3, 21000 Novi Sad, Serbia.
| | - Snežana P Maletić
- University of Novi Sad Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovica 3, 21000 Novi Sad, Serbia
| | - Srđan D Rončević
- University of Novi Sad Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovica 3, 21000 Novi Sad, Serbia
| | - Dragan V Radnović
- University of Novi Sad Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovica 2, 21000 Novi Sad, Serbia
| | - Dragana I Cučak
- University of Novi Sad Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovica 2, 21000 Novi Sad, Serbia
| | - Jelena S Tričković
- University of Novi Sad Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovica 3, 21000 Novi Sad, Serbia
| | - Božo D Dalmacija
- University of Novi Sad Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovica 3, 21000 Novi Sad, Serbia
| |
Collapse
|
29
|
Qin Y, Zou C, Yan X, Liu Y, Li L. Performance of cationic β-cyclodextrin as a clay stabilizer for use in enhanced oil recovery. STARCH-STARKE 2014. [DOI: 10.1002/star.201400011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yibie Qin
- School of Chemistry and Chemical Engineering; Southwest Petroleum University; Chengdu P. R. China
| | - Changjun Zou
- School of Chemistry and Chemical Engineering; Southwest Petroleum University; Chengdu P. R. China
| | - Xueling Yan
- School of Chemistry and Chemical Engineering; Southwest Petroleum University; Chengdu P. R. China
| | - Yuan Liu
- School of Chemistry and Chemical Engineering; Southwest Petroleum University; Chengdu P. R. China
| | - Lu Li
- School of Chemistry and Chemical Engineering; Southwest Petroleum University; Chengdu P. R. China
| |
Collapse
|
30
|
Ye M, Sun M, Ni N, Chen Y, Liu Z, Gu C, Bian Y, Hu F, Li H, Kengara FO, Jiang X. Role of cosubstrate and bioaccessibility played in the enhanced anaerobic biodegradation of organochlorine pesticides (OCPs) in a paddy soil by nitrate and methyl-β-cyclodextrin amendments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:7785-7796. [PMID: 24638834 DOI: 10.1007/s11356-014-2703-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 02/25/2014] [Indexed: 06/03/2023]
Abstract
The present study was conducted to investigate the anaerobic biodegradation potential of biostimulation by nitrate (KNO3) and methyl-β-cyclodextrin (MCD) addition on an aged organochlorine pesticide (OCP)-contaminated paddy soil. After 180 days of incubation, total OCP biodegradation was highest in soil receiving the addition of nitrate and MCD simultaneously and then followed by nitrate addition, MCD addition, and control. The highest biodegradation of chlordanes, hexachlorocyclohexanes, endosulfans, and total OCPs was 74.3, 63.5, 51.2, and 65.1%, respectively. Meanwhile, MCD addition significantly increased OCP bioaccessibility (p < 0.05) evaluated by Tenax TA extraction and a three-compartment model method. Moreover, the addition of nitrate and MCD also obtained the highest values of soil microbial activities, including soil microbial biomass carbon and nitrogen, ATP production, denitrifying bacteria count, and nitrate reductase activity. Such similar trend between OCP biodegradation and soil-denitrifying activities suggests a close relationship between OCP biodegradation and N cycling and the indirect/direct involvement of soil microorganisms, especially denitrifying microorganisms in the anaerobic biodegradation of OCPs.
Collapse
Affiliation(s)
- Mao Ye
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, People's Republic of China,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Sun M, Ye M, Hu F, Li H, Teng Y, Luo Y, Jiang X, Kengara FO. Tenax extraction for exploring rate-limiting factors in methyl-β-cyclodextrin enhanced anaerobic biodegradation of PAHs under denitrifying conditions in a red paddy soil. JOURNAL OF HAZARDOUS MATERIALS 2014; 264:505-513. [PMID: 24239261 DOI: 10.1016/j.jhazmat.2013.10.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 09/27/2013] [Accepted: 10/16/2013] [Indexed: 06/02/2023]
Abstract
The effectiveness of anaerobic bioremediation systems for PAH-contaminated soil may be constrained by low contaminants bioaccessibility due to limited aqueous solubility and lack of suitable electron acceptors. Information on what is the rate-limiting factor in bioremediation process is of vital importance in the decision in what measures can be taken to assist the biodegradation efficacy. In the present study, four different microcosms were set to study the effect of methyl-β-cyclodextrin (MCD) and nitrate addition (N) on PAHs biodegradation under anaerobic conditions in a red paddy soil. Meanwhile, sequential Tenax extraction combined with a first-three-compartment model was employed to evaluate the rate-limiting factors in MCD enhanced anaerobic biodegradation of PAHs. Microcosms with both 1% (w/w) MCD and 20mM N addition produced maximum biodegradation of total PAHs of up to 61.7%. It appears rate-limiting factors vary with microcosms: low activity of degrading microorganisms is the vital rate-limiting factor for control and MCD addition treatments (CK and M treatments); and lack of bioaccessible PAHs is the main rate-limiting factor for nitrate addition treatments (N and MN treatments). These results have practical implications for site risk assessment and cleanup strategies.
Collapse
Affiliation(s)
- Mingming Sun
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China; Key Laboratory of Soil Environmental and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China.
| | - Mao Ye
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Feng Hu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Huixin Li
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Ying Teng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Yongming Luo
- Yantai Institute of Costal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Xin Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | | |
Collapse
|