1
|
Huang J, Sun Z, Gu Y, Lin A, Pan X, Li J. Rapid and convenient screening method based on single-chain variable fragments for the detection of restricted monensin in chicken muscle. Int J Biol Macromol 2024; 278:134639. [PMID: 39128758 DOI: 10.1016/j.ijbiomac.2024.134639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
A colloidal gold immunochromatographic assay (CGIA) based on single-chain variable fragments (scFvs) has been successfully developed for the detection of monensin (MON). Colloidal gold probes were conjugated to anti-MON scFvs through electrostatic interaction, with the conjugated objects serving as the visual signals. The detection lines were formed by capturing the antibody with MON-OVA. This assay offers a rapid detection time of 15 min, a wide linear range from 2.19 to 10.76 ng mL-1, and boasts high accuracy, precision, and an absence of cross-reactivity. By homology modeling and molecular docking, we predicted the interaction patterns between the scFv and monensin, and the amino acid residues involved in the recognition of MON by the antibody were analyzed. These key amino acid sites are presumed integral to ligand recognition per current interaction models. This hypothesis was confirmed by computer-aided alanine scanning mutation, MM/P(G)BSA molecular dynamics simulation, and in vitro binding experiments. In this study, we successfully developed the scFvs-based CGIA system for rapid and easy quantification of monensin, providing a simple, efficient routine detection of chicken muscle samples.
Collapse
Affiliation(s)
- Jingjie Huang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Technology Innovation Center for Food Safety Surveillance and Detection, Sanya Institute of China Agricultural University, Hainan 572000, China
| | - Zhixuan Sun
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yani Gu
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Ao Lin
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xiaoyle Pan
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Technology Innovation Center for Food Safety Surveillance and Detection, Sanya Institute of China Agricultural University, Hainan 572000, China
| | - Jiancheng Li
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Technology Innovation Center for Food Safety Surveillance and Detection, Sanya Institute of China Agricultural University, Hainan 572000, China.
| |
Collapse
|
2
|
Hanamoto S, Minami Y, Hnin SST, Yao D. Localized pollution of veterinary antibiotics in watersheds receiving treated effluents from swine farms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166211. [PMID: 37567304 DOI: 10.1016/j.scitotenv.2023.166211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Swine excrement is discharged into surface waters mainly as effluent in Asian countries. As swine production consumes more antibiotics and less water than humans, a mismatch of the size of swine farms and that of the rivers receiving their effluent could create severe pollution by antibiotics. However, little is known about the occurrence of antibiotics in such rivers. We therefore monitored seven veterinary drugs, six human drugs (including a metabolite), three drugs for both use (including a metabolite), and major water qualities at 30 sites in Japanese watersheds where swine outnumber humans and where their excrement is largely treated on-site by aerobic biological wastewater processes. The compositions of veterinary drugs differed substantially among sites, unlike human drugs, indicating various patterns of use among swine farms. Median concentrations at the 30 sites were <1 ng/L for seven out of the ten drugs used in livestock, whereas maximum concentrations were >1000 ng/L for three and 100-1000 ng/L for four of them, giving median-maximum among the sites of >3 log for two and 2-3 log for six of them. The spatial distribution ranges of concentrations of veterinary drugs were wider than those of human drugs (mostly <1.5 log) and other analytes (mostly <1 log), despite the correlation between those of total veterinary drugs and nitrogen, attributable to fewer swine farms than households, the intensive animal husbandry, and the various drug-use patterns among the farms. The range of maximum concentrations of veterinary drugs in the watersheds was comparable to those reported in other Asian watersheds with less strict management of swine excrement, attributable to their slow decay in conventional wastewater treatment on swine farms. Thus, attention should be paid to hot-spot pollution of antibiotics on large Asian swine farms adjacent to streams with limited dilution capacity.
Collapse
Affiliation(s)
- Seiya Hanamoto
- Environment Preservation Center, Kanazawa University, Kakumamachi, Kanazawa, Ishikawa 920-1192, Japan.
| | - Yuki Minami
- Environment Preservation Center, Kanazawa University, Kakumamachi, Kanazawa, Ishikawa 920-1192, Japan
| | - Su Su Thet Hnin
- Graduate School of Natural Science and Technology, Kanazawa University, Kakumamachi, Kanazawa, Ishikawa 920-1192, Japan
| | - Dingwen Yao
- Graduate School of Natural Science and Technology, Kanazawa University, Kakumamachi, Kanazawa, Ishikawa 920-1192, Japan
| |
Collapse
|
3
|
Pérez DJ, Okada E, Iturburu FG, De Gerónimo E, Cantón G, Aparicio VC, Costa JL, Menone ML. Monensin occurrence in surface water and its impact on aquatic biota in a stream of the southeast Pampas, Argentina. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:8530-8538. [PMID: 33063213 DOI: 10.1007/s11356-020-11009-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
Monensin is an ionophore antibiotic used as a feed additive and growth promoter in cattle production worldwide. The occurrence of monensin in aquatic surficial ecosystems is of concern due to its possible detrimental effects on human health and native biota. Argentina is one of the most important cattle beef producers worldwide; however, there is little knowledge on the environmental occurrence of monensin and the associated risks to aquatic biota. In this study, we developed a method for the extraction and quantification of monensin in surface water; then, we evaluated the occurrence of monensin in a stream impacted by different animal husbandry's operations, and then, we analyzed the ecological implications of monensin residues on aquatic organisms using the risk quotient (RQ) method. Sampling was carried out on August 2017 from the headwaters to the floodplain of the El Pantanoso stream, Buenos Aires province, Argentina. Monensin detection frequency was 75% (n = 20). The median level was 0.40 μg/L and the maximum concentration was 4.70 μg/L. The main input of monensin was from a cattle slaughterhouse, an activity that has not been considered before in the literature as a source of emission of veterinary pharmaceuticals into the environment. The RQ assessment showed that monensin levels could have potential negative effects on aquatic biota in the sampling site closest to the cattle slaughterhouse. The data obtained in this study shows that monensin was present in El Pantanoso surface waters at levels of high ecotoxicological risk to aquatic biota.
Collapse
Affiliation(s)
- Débora Jesabel Pérez
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Ciudad Autónoma de Buenos Aires, C1425FQB, Buenos Aires, Argentina
- INTA Centro Regional Buenos Aires Sur, Estación Experimental Agropecuaria Balcarce, Route 226 Km 73.5, 7620, Balcarce, Argentina
| | - Elena Okada
- INTA Centro Regional Buenos Aires Sur, Estación Experimental Agropecuaria Balcarce, Route 226 Km 73.5, 7620, Balcarce, Argentina.
| | - Fernando Gastón Iturburu
- Laboratorio de Ecotoxicología, Instituto de Investigaciones Marinas y Costeras (IIMyC)-CONICET, Universidad Nacional de Mar del Plata, Dean Funes 3350, 7600, Mar del Plata, Argentina
| | - Eduardo De Gerónimo
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Ciudad Autónoma de Buenos Aires, C1425FQB, Buenos Aires, Argentina
- INTA Centro Regional Buenos Aires Sur, Estación Experimental Agropecuaria Balcarce, Route 226 Km 73.5, 7620, Balcarce, Argentina
| | - Germán Cantón
- INTA Centro Regional Buenos Aires Sur, Estación Experimental Agropecuaria Balcarce, Route 226 Km 73.5, 7620, Balcarce, Argentina
| | - Virginia Carolina Aparicio
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Ciudad Autónoma de Buenos Aires, C1425FQB, Buenos Aires, Argentina
- INTA Centro Regional Buenos Aires Sur, Estación Experimental Agropecuaria Balcarce, Route 226 Km 73.5, 7620, Balcarce, Argentina
| | - José Luis Costa
- INTA Centro Regional Buenos Aires Sur, Estación Experimental Agropecuaria Balcarce, Route 226 Km 73.5, 7620, Balcarce, Argentina
| | - Mirta Lujan Menone
- Laboratorio de Ecotoxicología, Instituto de Investigaciones Marinas y Costeras (IIMyC)-CONICET, Universidad Nacional de Mar del Plata, Dean Funes 3350, 7600, Mar del Plata, Argentina
| |
Collapse
|
4
|
Hill D, Morra MJ, Stalder T, Jechalke S, Top E, Pollard AT, Popova I. Dairy manure as a potential source of crop nutrients and environmental contaminants. J Environ Sci (China) 2021; 100:117-130. [PMID: 33279025 DOI: 10.1016/j.jes.2020.07.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 06/12/2023]
Abstract
Although animal manure is applied to agricultural fields for its nutrient value, it may also contain potential contaminants. To determine the variability in such contaminants as well as in valuable nutrients, nine uncomposted manure samples from Idaho dairies collected during 2.5 years were analyzed for macro- and micro-nutrients, hormones, phytoestrogens, antibiotics, veterinary drugs, antibiotic resistance genes, and genetic elements involved in the spread of antibiotic resistance. Total N ranged from 6.8 to 30.7 (C:N of 10 to 21), P from 2.4 to 9.0, and K from 10.2 to 47.7 g/kg manure. Zn (103 - 348 mg/kg) was more abundant than Cu (56 - 127 mg/kg) in all samples. Phytoestrogens were the most prevalent contaminants detected, with concentrations fluctuating over time, reflecting animal diets. This is the first study to document the presence of flunixin, a non-steroidal anti-inflammatory drug, in solid stacked manure from regular dairy operations. Monensin was the most frequently detected antibiotic. Progesterones and sulfonamides were regularly detected. We also investigated the relative abundance of several types of plasmids involved in the spread of antibiotic resistance in clinical settings. Plasmids belonging to the IncI, IncP, and IncQ1 incompatibility groups were found in almost all manure samples. IncQ1 plasmids, class 1 integrons, and sulfonamide resistance genes were the most widespread and abundant genetic element surveyed, emphasizing their potential role in the spread of antibiotic resistance. The benefits associated with amending agricultural soils with dairy manure must be carefully weighed against the potential negative consequences of any manure contaminants.
Collapse
Affiliation(s)
- Danika Hill
- Department of Soil & Water Systems, University of Idaho, ID 83844-2340, USA
| | - Matthew J Morra
- Department of Soil & Water Systems, University of Idaho, ID 83844-2340, USA
| | | | - Sven Jechalke
- Justus Liebig University Giessen, Institute for Phytopathology, 35392 Gießen, Germany
| | - Eva Top
- Department of Biology, University of Idaho, ID 83844-3051, USA
| | - Anne T Pollard
- Department of Soil & Water Systems, University of Idaho, ID 83844-2340, USA
| | - Inna Popova
- Department of Soil & Water Systems, University of Idaho, ID 83844-2340, USA.
| |
Collapse
|
5
|
Charuaud L, Jarde E, Jaffrezic A, Thomas MF, Le Bot B. Veterinary pharmaceutical residues from natural water to tap water: Sales, occurrence and fate. JOURNAL OF HAZARDOUS MATERIALS 2019; 361:169-186. [PMID: 30179788 DOI: 10.1016/j.jhazmat.2018.08.075] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 07/31/2018] [Accepted: 08/22/2018] [Indexed: 05/21/2023]
Abstract
Veterinary pharmaceuticals (VPs) increasingly used in animal husbandry have led to their presence in aquatic environments -surface water (SW) or groundwater (GW) - and even in tap water. This review focuses on studies from 2007 to 2017. Sixty-eight different veterinary pharmaceutical residues (VPRs) have been quantified worldwide in natural waters at concentrations ranging from nanograms per liter (ng L-1) to several micrograms per liter (μg L-1). An extensive up-to-date on sales and tonnages of VPs worldwide has been performed. Tetracyclines (TCs) antibiotics are the most sold veterinary pharmaceuticals worldwide. An overview of VPRs degradation pathways in natural waters is provided. VPRs can be degraded or transformed by biodegradation, hydrolysis or photolysis. Photo-degradation appears to be the major degradation pathway in SW. This review then reports occurrences of VPRs found in tap water, and presents data on VPRs removal in drinking water treatment plants (DWTPs) at each step of the process. VPRs have been quantified in tap water at ng L-1 concentration levels in four studies of the eleven studies dealing with VPRs occurrence in tap water. Overall removals of VPRs in DWTPs generally exceed 90% and advanced treatment processes (oxidation processes, adsorption on activated carbon, membrane filtration) greatly contribute to these removals. However, studies performed on full-scale DWTPs are scarce. A large majority of fate studies in DWTPs have been conducted under laboratory at environmentally irrelevant conditions (high concentration of VPRs (mg L-1), use of deionized water instead of natural water, high concentration of oxidant, high contact time etc.). Also, studies on VPRs occurrence and fate in tap water focus on antibiotics. There is a scientific gap on the occurrence and fate of antiparatic drugs in tap waters.
Collapse
Affiliation(s)
- Lise Charuaud
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France.
| | - Emilie Jarde
- Univ Rennes, CNRS, Géosciences Rennes - UMR6118, 35000 Rennes, France
| | | | - Marie-Florence Thomas
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Barbara Le Bot
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| |
Collapse
|
6
|
Arikan OA, Mulbry W, Rice C. The effect of composting on the persistence of four ionophores in dairy manure and poultry litter. WASTE MANAGEMENT (NEW YORK, N.Y.) 2016; 54:110-117. [PMID: 27189139 DOI: 10.1016/j.wasman.2016.04.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 04/27/2016] [Accepted: 04/28/2016] [Indexed: 06/05/2023]
Abstract
Manure composting is a well-described approach for stabilization of nutrients and reduction of pathogens and odors. Although composting studies have shown that thermophilic temperatures and aerobic conditions can increase removal rates of selected antibiotics, comparable information is lacking for many other compounds in untreated or composted manure. The objective of this study was to determine the relative effectiveness of composting conditions to reduce concentrations of four widely used ionophore feed supplements in dairy manure and poultry litter. Replicate aliquots of fresh poultry litter and dairy manure were amended with monensin, lasalocid, salinomycin, or amprolium to 10mgkg(-1)DW. Non-amended and amended dairy manure and poultry litter aliquots were incubated at 22, 45, 55, or 65°C under moist, aerobic conditions. Residue concentrations were determined from aliquots removed after 1, 2, 4, 6, 8, and 12weeks. Results suggest that the effectiveness of composting for contaminant reduction is compound and matrix specific. Composting temperatures were not any more effective than ambient temperature in increasing the rate or extent of monensin removal in either poultry litter or dairy manure. Composting was effective for lasalocid removal in poultry litter, but is likely to be too slow to be useful in practice (8-12weeks at 65°C for >90% residue removal). Composting was effective for amprolium removal from poultry litter and salinomycin in dairy manure but both required 4-6weeks for >90% removal. However, composting did not increase the removal rates or salinomycin in poultry litter or the removal rates of lasalocid or amprolium in dairy manure.
Collapse
Affiliation(s)
- Osman A Arikan
- USDA-ARS, Beltsville Agricultural Research Center, Sustainable Agricultural Systems Laboratory, Beltsville, MD 20705, USA; Istanbul Technical University, Department of Environmental Engineering, Istanbul 34469, Turkey.
| | - Walter Mulbry
- USDA-ARS, Beltsville Agricultural Research Center, Sustainable Agricultural Systems Laboratory, Beltsville, MD 20705, USA
| | - Clifford Rice
- USDA-ARS, Beltsville Agricultural Research Center, Sustainable Agricultural Systems Laboratory, Beltsville, MD 20705, USA
| |
Collapse
|
7
|
Jaimes-Correa JC, Snow DD, Bartelt-Hunt SL. Seasonal occurrence of antibiotics and a beta agonist in an agriculturally-intensive watershed. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 205:87-96. [PMID: 26025261 DOI: 10.1016/j.envpol.2015.05.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 05/14/2015] [Accepted: 05/17/2015] [Indexed: 06/04/2023]
Abstract
We evaluated the occurrence of 12 veterinary antibiotics and a beta agonist over spatial and temporal scales in Shell Creek, an intensively agricultural watershed in Nebraska, using Polar Organic Chemical Integrative Samplers (POCIS). Twelve pharmaceuticals were detected with concentrations ranging from 0.0003 ng/L to 68 ng/L. The antibiotics measured at the highest time-weighted average concentrations were lincomycin (68 ng/L) and monensin (49 ng/L), and both compounds were detected at increased concentrations in summer months. Analysis of variance indicates that mean concentrations of detected pharmaceuticals have no significant (p > 0.01) spatial variation. However, significant temporal differences (p < 0.01) were observed. This study demonstrates the utility of passive samplers such as POCIS for monitoring ambient levels of pharmaceuticals in surface waters.
Collapse
Affiliation(s)
| | - Daniel D Snow
- Water Sciences Laboratory, Nebraska Water Center & School of Natural Resources, University of Nebraska-Lincoln, United States
| | | |
Collapse
|