1
|
The origin, evolution and diversification of multiple isoforms of light-dependent protochlorophyllide oxidoreductase (LPOR): focus on angiosperms. Biochem J 2020; 477:2221-2236. [PMID: 32568402 DOI: 10.1042/bcj20200323] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/29/2020] [Accepted: 06/01/2020] [Indexed: 12/11/2022]
Abstract
Light-dependent protochlorophyllide oxidoreductase (LPOR) catalyzes the reduction of protochlorophyllide to chlorophyllide, which is a key reaction for angiosperm development. Dark operative light-independent protochlorophyllide oxidoreductase (DPOR) is the other enzyme able to catalyze this reaction, however, it is not present in angiosperms. LPOR, which evolved later than DPOR, requires light to trigger the reaction. The ancestors of angiosperms lost DPOR genes and duplicated the LPORs, however, the LPOR evolution in angiosperms has not been yet investigated. In the present study, we built a phylogenetic tree using 557 nucleotide sequences of LPORs from both bacteria and plants to uncover the evolution of LPOR. The tree revealed that all modern sequences of LPOR diverged from a single sequence ∼1.36 billion years ago. The LPOR gene was then duplicated at least 10 times in angiosperms, leading to the formation of two or even more LPOR isoforms in multiple species. In the case of Arabidopsis thaliana, AtPORA and AtPORB originated in one duplication event, in contrary to the isoform AtPORC, which diverged first. We performed biochemical characterization of these isoforms in vitro, revealing differences in the lipid-driven properties. The results prone us to hypothesize that duplication events of LPOR gave rise to the isoforms having different lipid-driven activity, which may predispose them for functioning in different locations in plastids. Moreover, we showed that LPOR from Synechocystis operated in the lipid-independent manner, revealing differences between bacterial and plant LPORs. Based on the presented results, we propose a novel classification of LPOR enzymes based on their biochemical properties and phylogenetic relationships.
Collapse
|
2
|
Vedalankar P, Tripathy BC. Evolution of light-independent protochlorophyllide oxidoreductase. PROTOPLASMA 2019; 256:293-312. [PMID: 30291443 DOI: 10.1007/s00709-018-1317-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 09/27/2018] [Indexed: 06/08/2023]
Abstract
The nonhomologous enzymes, the light-independent protochlorophyllide reductase (DPOR) and the light-dependent protochlorophyllide oxidoreductase (LPOR), catalyze the reduction of protochlorophyllide (Pchlide) to chlorophyllide (Chlide) in the penultimate step of biosynthesis of chlorophyll (Chl) required for photosynthetic light absorption and energy conversion. The two enzymes differ with respect to the requirement of light for catalysis and oxygen sensitivity. DPOR and LPOR initially evolved in the ancestral prokaryotic genome perhaps at different times. DPOR originated in the anoxygenic environment of the Earth from nitrogenase-like enzyme of methanogenic archaea. Due to the transition from anoxygenic to oxygenic photosynthesis in the prokaryote, the DPOR was mostly inactivated in the daytime by photosynthetic O2 leading to the evolution of oxygen-insensitive LPOR that could function in the light. The primary endosymbiotic event transferred the DPOR and LPOR genes to the eukaryotic phototroph; the DPOR remained in the genome of the ancestor that turned into the plastid, whereas LPOR was transferred to the host nuclear genome. From an evolutionary point of view, several compelling theories that explain the disappearance of DPOR from several species cutting across different phyla are as follows: (i) pressure of the oxygenic environment; (ii) change in the light conditions and temperature; and (iii) lineage-specific gene losses, RNA editing, and nonsynonymous substitution. Certain primary amino acid sequence and the physiochemical properties of the ChlL subunit of DPOR have similarity with that of LPOR suggesting a convergence of these two enzymes in certain evolutionary event. The newly obtained sequence data from different phototrophs will further enhance the width of the phylogenetic information on DPOR.
Collapse
Affiliation(s)
| | - Baishnab C Tripathy
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
3
|
|
4
|
Evolutionary dynamics of light-independent protochlorophyllide oxidoreductase genes in the secondary plastids of cryptophyte algae. EUKARYOTIC CELL 2008; 7:550-3. [PMID: 18178774 DOI: 10.1128/ec.00396-07] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Plastid genes encoding light-independent protochlorophyllide oxidoreductase (LIPOR) subunits were isolated from cryptophyte algae, the first example of such genes in plastids of secondary endosymbiotic origin. The presence of functional and nonfunctional copies of LIPOR genes in cryptophytes suggests that light-independent chlorophyll biosynthesis is a nonessential pathway in these organisms.
Collapse
|
5
|
|
6
|
|
7
|
Wilhelm C, Büchel C, Fisahn J, Goss R, Jakob T, Laroche J, Lavaud J, Lohr M, Riebesell U, Stehfest K, Valentin K, Kroth PG. The regulation of carbon and nutrient assimilation in diatoms is significantly different from green algae. Protist 2006; 157:91-124. [PMID: 16621693 DOI: 10.1016/j.protis.2006.02.003] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Christian Wilhelm
- Department of Plant Physiology, Institute of Biology I, University of Leipzig, Johannisallee 23, 04103 Leipzig, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Kolossov VL, Bohnert HJ, Rebeiz CA. Chloroplast biogenesis 92: In situ screening for divinyl chlorophyll(ide) a reductase mutants by spectrofluorometry. Anal Biochem 2006; 348:192-7. [PMID: 16337140 DOI: 10.1016/j.ab.2005.07.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2005] [Revised: 07/21/2005] [Accepted: 07/22/2005] [Indexed: 11/20/2022]
Abstract
Chlorophyll biosynthetic heterogeneity is rooted mainly in parallel divinyl (DV) and monovinyl (MV) biosynthetic routes interconnected by 4-vinyl reductases (4VRs) that convert DV tetrapyrroles to MV tetrapyrroles by conversion of the vinyl group at position 4 of the macrocycle to ethyl. What is not clear at this stage is whether the various 4VR activities are catalyzed by one enzyme of broad specificity or by a family of enzymes encoded by one gene or multiple genes with each enzyme having narrow specificity. Additional research is needed to identify the various regulatory components of 4-vinyl reduction. In this undertaking, Arabidopsis mutants that accumulate DV chlorophyllide a and/or DV chlorophyll [Chl(ide)] a are likely to provide an appropriate resource. Because the Arabidopsis genome has been completely sequenced, the best strategy for identifying 4VR and/or putative regulatory 4VR genes is to screen Arabidopsis Chl mutants for DV Chl(ide) a accumulation. In wild-type Arabidopsis, a DV plant species, only MV chlorophyllide (Chlide) a is detectable. However in Chl mutants lacking 4VR activity, DV Chl(ide) a may accumulate in addition to MV Chl(ide) a. In the current work, an in situ assay of DV Chl(ide) a accumulation, suitable for screening a large number of mutants lacking 4-vinyl Chlide a reductase activity with minimal experimental handling, is described. The assay involves homogenization of the tissues in Tris-HCl:glycerol buffer and the recording of Soret excitation spectra at 77K. DV Chlide a formation is detected by a Soret excitation shoulder at 459 nm over a wide range of DV Chlide a/MV Chl a ratios. The DV Chlide a shoulder became undetectable at DV Chlide a/MV Chl a ratios less than 0.049, that is, at a DV Chlide a content of less than 5%.
Collapse
Affiliation(s)
- Vladimir L Kolossov
- Rebeiz Foundation for Basic Research, 2209 Edgewater, Champaign, IL 61822, USA
| | | | | |
Collapse
|
9
|
Stadnichuk IN, Amirjani MR, Sundqvist C. Identification of spectral forms of protochlorophyllide in the region 670-730 nm. Photochem Photobiol Sci 2005; 4:230-8. [PMID: 15696242 DOI: 10.1039/b403170a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2004] [Accepted: 01/05/2005] [Indexed: 11/21/2022]
Abstract
Dark-grown leaves of three different species, maize, wheat, pea and a pea mutant (lip1) have been used to study protochlorophyllide (Pchlide) spectral forms. As a comparison also pea epicotyls were used. Different native forms of Pchlide were identified using the variation in the spectral properties of the plant material and the second derivatives of the 77 K fluorescence excitation and emission spectra. The spectral forms were further characterised by Gaussian deconvolution. In addition to short-wavelength and long-wavelength forms the area between 660 and 730 nm was shown to contain, together with some vibrational bands, five far-red Pchlide forms. They had pairs of excitation and emission peaks at 658 and 666 nm, 668 and 680 nm, 677 and 690 nm, 686 and 698 as well as 696 and 728 nm, respectively. The presence of several far-red Pchlide forms in dark-grown leaves gave evidence for additional aggregated states of Pchlide under native conditions.
Collapse
Affiliation(s)
- Igor N Stadnichuk
- A. N. Bakh Institute of Biochemistry, Russian Academy of Sciences, Moscow, Russia
| | | | | |
Collapse
|
10
|
Abstract
Protochlorophyllide (Pchlide) reductases are key enzymes in the process of chlorophyll biosynthesis. In this review, current knowledge on the molecular organization, substrate specificity and assembly of the light-dependent reduced nicotinamide adenine dinucleotide phosphate:Pchlide oxidoreductases are discussed. Characteristics of light-independent enzymes are also described briefly, and the possible reasons for the selection of light-dependent enzymes during the course of evolution are discussed.
Collapse
Affiliation(s)
- Benoît Schoefs
- Laboratoire de Phytobiologie cellulaire, UMR-INRA/UB 1088, FRE-CNRS 2625-Plante Microbe Environnement, Université de Bourgogne à Dijon, Dijon, France
| | | |
Collapse
|
11
|
Raskin VI, Schwartz A. Experimental approach to elucidating the mechanism of light-independent chlorophyll biosynthesis in greening barley. PLANT PHYSIOLOGY 2003; 133:25-28. [PMID: 12970471 PMCID: PMC1540333 DOI: 10.1104/pp.103.025775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Affiliation(s)
- Victor I Raskin
- Institute for Plant Sciences and Genetics, Department of Agricultural Botany, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100, Israel
| | | |
Collapse
|
12
|
Frick G, Su Q, Apel K, Armstrong GA. An Arabidopsis porB porC double mutant lacking light-dependent NADPH:protochlorophyllide oxidoreductases B and C is highly chlorophyll-deficient and developmentally arrested. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 35:141-53. [PMID: 12848821 DOI: 10.1046/j.1365-313x.2003.01798.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
A key reaction in the biosynthesis of chlorophylls (Chls) a and b from cyanobacteria through higher plants is the strictly light-dependent reduction of protochlorophyllide (Pchlide) a to chlorophyllide (Chlide) a. Angiosperms, unlike other photosynthetic organisms, rely exclusively upon this mechanism to reduce Pchlide and hence require light to green. In Arabidopsis, light-dependent Pchlide reduction is mediated by three structurally related but differentially regulated NADPH:Pchlide oxidoreductases, denoted as PORA, PORB, and PORC. The PORA and PORB genes, but not PORC, are strongly expressed early in seedling development. In contrast, expression of PORB and PORC, but not PORA, is observed in older seedlings and adult plants. We have tested the hypothesis that PORB and PORC govern light-dependent Chl biosynthesis throughout most of the plant development by identifying porB and porC mutants of Arabidopsis, the first higher plant por mutants characterized. The porB-1 and porC-1 mutants lack the respective POR transcripts and specific POR isoforms because of the interruption of the corresponding genes by a derivative of the maize Dissociation (Ds) transposable element. Single por mutants, grown photoperiodically, display no obvious phenotypes at the whole plant or chloroplast ultrastructural levels, although the porB-1 mutant has less extensive etioplast inner membranes. However, a light-grown porB-1 porC-1 double mutant develops a seedling-lethal xantha phenotype at the cotyledon stage, contains only small amounts of Chl a, and possesses chloroplasts with mostly unstacked thylakoid membranes. PORB and PORC thus seem to play redundant roles in maintaining light-dependent Chl biosynthesis in green plants, and are together essential for growth and development.
Collapse
Affiliation(s)
- Geneviève Frick
- Institute for Plant Sciences, Plant Genetics, Swiss Federal Institute of Technology (ETH), Zürich, Switzerland
| | | | | | | |
Collapse
|
13
|
Vavilin DV, Vermaas WFJ. Regulation of the tetrapyrrole biosynthetic pathway leading to heme and chlorophyll in plants and cyanobacteria. PHYSIOLOGIA PLANTARUM 2002; 115:9-24. [PMID: 12010463 DOI: 10.1034/j.1399-3054.2002.1150102.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Photosynthetic organisms synthesize chlorophylls, hemes, and bilin pigments via a common tetrapyrrole biosynthetic pathway. This review summarizes current knowledge about the regulation of this pathway in plants, algae, and cyanobacteria. Particular emphasis is placed on the regulation of glutamate-1-semialdehyde formation and on the channelling of protoporphyrin IX into the heme and chlorophyll branches. The potential role of chlorophyll molecules that are not bound to photosynthetic pigment-protein complexes ('free chlorophylls') or of other Mg-containing porphyrins in regulation of tetrapyrrole synthesis is also discussed.
Collapse
Affiliation(s)
- Dmitrii V Vavilin
- Department of Plant Biology and Center for the Study of Early Events in Photosynthesis, Arizona State University, Box 871601, Tempe, AZ 85287-1601, USA
| | | |
Collapse
|
14
|
Skribanek A, Apatini D, Inaoka M, Böddi B. Protochlorophyllide and chlorophyll forms in dark-grown stems and stem-related organs. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2000; 55:172-7. [PMID: 10942082 DOI: 10.1016/s1011-1344(00)00044-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protochlorophyllide contents and the spectral properties together with photoactivities of native protochlorophyllide forms have been studied in dark-forced stems of 26 and epicotyls or hypocotyls of 9 plant species. The 77 K fluorescence emission spectra show that a form emitting at 629-631 nm is general in these organs. Besides this short-wavelength form, other protochlorophyllide forms emitting at 636, 645 and around 650-655 nm are found with various relative amplitudes. The pigment contents show good correlation with the ratio of short- to long-wavelength forms, i.e., the higher this ratio is, the less protochlorophyllide is detected. In addition to protochlorophyllide, several dark-grown plants also contain chlorophylls. In some cases only one chlorophyll form appears with emission maximum at 678-680 nm; other plants have forms characteristic of the fully developed photosynthetic apparatus (with maxima at 685, 695 and 730-740 nm). Flash illumination can transform only the 645 and 650-655 nm protochlorophyllide forms, the shorter-wavelength-emitting forms being inactive. Plant species with dominating 629-636 nm protochlorophyllide forms cannot accumulate chlorophyll on continuous illumination of natural intensity, and they became photodamaged. The structural or molecular background of the appearance of the different protochlorophyllide and chlorophyll forms and the reasons for their photosensitivity are discussed.
Collapse
Affiliation(s)
- A Skribanek
- Department of Plant Physiology, Eötvös University, Budapest, Hungary
| | | | | | | |
Collapse
|
15
|
Klement H, Helfrich M, Oster U, Schoch S, Rüdiger W. Pigment-free NADPH:protochlorophyllide oxidoreductase from Avena sativa L. Purification and substrate specificity. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 265:862-74. [PMID: 10518779 DOI: 10.1046/j.1432-1327.1999.00627.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The enzyme NADPH:protochlorophyllide oxidoreductase (POR) is the key enzyme for light-dependent chlorophyll biosynthesis. It accumulates in dark-grown plants as the ternary enzyme-substrate complex POR-protochlorophyllide a-NADPH. Here, we describe a simple procedure for purification of pigment-free POR from etioplasts of Avena sativa seedlings. The procedure implies differential solubilization with n-octyl-beta-D-glucoside and one chromatographic step with DEAE-cellulose. We show, using pigment and protein analysis, that etioplasts contain a one-to-one complex of POR and protochlorophyllide a. The preparation of 13 analogues of protochlorophyllide a is described. The analogues differ in the side chains of the macrocycle and in part contain zinc instead of the central magnesium. Six analogues with different side chains at rings A or B are active substrates, seven analogues with different side chains at rings D or E are not accepted as substrates by POR. The kinetics of the light-dependent reaction reveals three groups of substrate analogues with a fast, medium and slow reaction. To evaluate the kinetic data, the molar extinction coefficients in the reaction buffer had to be determined. At concentrations above 2 mole substrate/mole enzyme, inhibition was found for protochlorophyllide a and for the analogues.
Collapse
Affiliation(s)
- H Klement
- Botanisches Institut der Ludwig-Maximilians-Universität München, Munich, Germany
| | | | | | | | | |
Collapse
|
16
|
Chlorophylls in dark-grown epicotyl and stipula of pea. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 1999. [DOI: 10.1016/s1011-1344(99)00002-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
17
|
Scheumann V, Schoch S, Rüdiger W. Chlorophyll a formation in the chlorophyll b reductase reaction requires reduced ferredoxin. J Biol Chem 1998; 273:35102-8. [PMID: 9857045 DOI: 10.1074/jbc.273.52.35102] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The reduction of chlorophyllide b and its analogue zinc pheophorbide b in etioplasts of barley (Hordeum vulgare L.) was investigated in detail. In intact etioplasts, the reduction proceeds to chlorophyllide a and zinc pheophorbide a or, if incubated together with phytyldiphosphate, to chlorophyll a and zinc pheophytin a, respectively. In lysed etioplasts supplied with NADPH, the reduction stops at the intermediate step of 7(1)-OH-chlorophyll(ide) and Zn-7(1)-OH-pheophorbide or Zn-7(1)-OH-pheophytin. However, the final reduction is achieved when reduced ferredoxin is added to the lysed etioplasts, suggesting that ferredoxin is the natural cofactor for reduction of chlorophyll b to chlorophyll a. The reduction to chlorophyll a requires ATP in intact etioplasts but not in lysed etioplasts when reduced ferredoxin is supplied. The role of ATP and the significance of two cofactors for the two steps of reduction are discussed.
Collapse
Affiliation(s)
- V Scheumann
- Botanisches Institut der Ludwig-Maximilians-Universität München, Menzingerstrasse 67, 80638 München, Germany
| | | | | |
Collapse
|
18
|
Armstrong GA. Greening in the dark: light-independent chlorophyll biosynthesis from anoxygenic photosynthetic bacteria to gymnosperms. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 1998. [DOI: 10.1016/s1011-1344(98)00063-3] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|