1
|
Maschi D, Gramlich MW, Klyachko VA. Myosin V Regulates Spatial Localization of Different Forms of Neurotransmitter Release in Central Synapses. Front Synaptic Neurosci 2021; 13:650334. [PMID: 33935678 PMCID: PMC8081987 DOI: 10.3389/fnsyn.2021.650334] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/03/2021] [Indexed: 11/18/2022] Open
Abstract
Synaptic active zone (AZ) contains multiple specialized release sites for vesicle fusion. The utilization of release sites is regulated to determine spatiotemporal organization of the two main forms of synchronous release, uni-vesicular (UVR) and multi-vesicular (MVR). We previously found that the vesicle-associated molecular motor myosin V regulates temporal utilization of release sites by controlling vesicle anchoring at release sites in an activity-dependent manner. Here we show that acute inhibition of myosin V shifts preferential location of vesicle docking away from AZ center toward periphery, and results in a corresponding spatial shift in utilization of release sites during UVR. Similarly, inhibition of myosin V also reduces preferential utilization of central release sites during MVR, leading to more spatially distributed and temporally uniform MVR that occurs farther away from the AZ center. Using a modeling approach, we provide a conceptual framework that unites spatial and temporal functions of myosin V in vesicle release by controlling the gradient of release site release probability across the AZ, which in turn determines the spatiotemporal organization of both UVR and MVR. Thus myosin V regulates both temporal and spatial utilization of release sites during two main forms of synchronous release.
Collapse
Affiliation(s)
- Dario Maschi
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, United States
| | | | - Vitaly A Klyachko
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
2
|
Gramlich MW, Klyachko VA. Nanoscale Organization of Vesicle Release at Central Synapses. Trends Neurosci 2020; 42:425-437. [PMID: 31176424 DOI: 10.1016/j.tins.2019.03.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/20/2019] [Accepted: 03/01/2019] [Indexed: 11/28/2022]
Abstract
Presynaptic boutons support neurotransmitter release with nanoscale precision at sub-millisecond timescales. Studies over the past two decades have revealed a rich tapestry of molecular players governing synaptic vesicle fusion at highly specialized release sites in the active zone (AZ). However, the spatiotemporal organization of release at active synapses remains elusive, in part owing to the extremely small size of the AZ and the limited resolution of conventional approaches. Recent advances in fluorescence nanoscopy have revolutionized direct investigation of presynaptic release organization and dynamics. We discuss here recent nanoscopy-based studies of the molecular architecture, the spatial organization and dynamic regulation of release sites, and the mechanisms of release site replenishment. These findings have uncovered previously unknown levels of structural and functional organization at central synapses, with important implications for synaptic transmission and plasticity.
Collapse
Affiliation(s)
- Michael W Gramlich
- Department of Cell Biology and Physiology, Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO, USA; Present address: Department of Physics, Auburn University, Auburn, AL, USA
| | - Vitaly A Klyachko
- Department of Cell Biology and Physiology, Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
3
|
Barros-Zulaica N, Rahmon J, Chindemi G, Perin R, Markram H, Muller E, Ramaswamy S. Estimating the Readily-Releasable Vesicle Pool Size at Synaptic Connections in the Neocortex. Front Synaptic Neurosci 2019; 11:29. [PMID: 31680928 PMCID: PMC6813366 DOI: 10.3389/fnsyn.2019.00029] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/30/2019] [Indexed: 12/21/2022] Open
Abstract
Previous studies based on the 'Quantal Model' for synaptic transmission suggest that neurotransmitter release is mediated by a single release site at individual synaptic contacts in the neocortex. However, recent studies seem to contradict this hypothesis and indicate that multi-vesicular release (MVR) could better explain the synaptic response variability observed in vitro. In this study we present a novel method to estimate the number of release sites per synapse, also known as the size of the readily releasable pool (NRRP), from paired whole-cell recordings of connections between layer 5 thick tufted pyramidal cell (L5_TTPC) in the juvenile rat somatosensory cortex. Our approach extends the work of Loebel et al. (2009) by leveraging a recently published data-driven biophysical model of neocortical tissue. Using this approach, we estimated NRRP to be between two to three for synaptic connections between L5_TTPCs. To constrain NRRP values for other connections in the microcircuit, we developed and validated a generalization approach using published data on the coefficient of variation (CV) of the amplitudes of post-synaptic potentials (PSPs) from literature and comparing them against in silico experiments. Our study predicts that transmitter release at synaptic connections in the neocortex could be mediated by MVR and provides a data-driven approach to constrain the MVR model parameters in the microcircuit.
Collapse
Affiliation(s)
| | - John Rahmon
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Giuseppe Chindemi
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Rodrigo Perin
- Laboratory of Neural Microcircuitry, Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Henry Markram
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland.,Laboratory of Neural Microcircuitry, Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Eilif Muller
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Srikanth Ramaswamy
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| |
Collapse
|
4
|
Properties of Quantum Release of Glutamate and Glycine in Synapses between Co-Cultured Primary Afferent and Spinal Dorsal Horn Neurons. NEUROPHYSIOLOGY+ 2013. [DOI: 10.1007/s11062-013-9343-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
5
|
Abstract
Different types of synapses are specialized to interpret spike trains in their own way by virtue of the complement of short-term synaptic plasticity mechanisms they possess. Numerous types of short-term, use-dependent synaptic plasticity regulate neurotransmitter release. Short-term depression is prominent after a single conditioning stimulus and recovers in seconds. Sustained presynaptic activation can result in more profound depression that recovers more slowly. An enhancement of release known as facilitation is prominent after single conditioning stimuli and lasts for hundreds of milliseconds. Finally, tetanic activation can enhance synaptic strength for tens of seconds to minutes through processes known as augmentation and posttetantic potentiation. Progress in clarifying the properties, mechanisms, and functional roles of these forms of short-term plasticity is reviewed here.
Collapse
Affiliation(s)
- Wade G Regehr
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
6
|
Loebel A, Silberberg G, Helbig D, Markram H, Tsodyks M, Richardson MJE. Multiquantal release underlies the distribution of synaptic efficacies in the neocortex. Front Comput Neurosci 2009; 3:27. [PMID: 19956403 PMCID: PMC2786302 DOI: 10.3389/neuro.10.027.2009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Accepted: 11/08/2009] [Indexed: 11/18/2022] Open
Abstract
Inter-pyramidal synaptic connections are characterized by a wide range of EPSP amplitudes. Although repeatedly observed at different brain regions and across layers, little is known about the synaptic characteristics that contribute to this wide range. In particular, the range could potentially be accounted for by differences in all three parameters of the quantal model of synaptic transmission, i.e. the number of release sites, release probability and quantal size. Here, we present a rigorous statistical analysis of the transmission properties of excitatory synaptic connections between layer-5 pyramidal neurons of the somato-sensory cortex. Our central finding is that the EPSP amplitude is strongly correlated with the number of estimated release sites, but not with the release probability or quantal size. In addition, we found that the number of release sites can be more than an order of magnitude higher than the typical number of synaptic contacts for this type of connection. Our findings indicate that transmission at stronger synaptic connections is mediated by multiquantal release from their synaptic contacts. We propose that modulating the number of release sites could be an important mechanism in regulating neocortical synaptic transmission.
Collapse
Affiliation(s)
- Alex Loebel
- Department of Neurobiology, Weizmann Institute of Science Rehovot, Israel
| | | | | | | | | | | |
Collapse
|
7
|
Scimemi A, Beato M. Determining the neurotransmitter concentration profile at active synapses. Mol Neurobiol 2009; 40:289-306. [PMID: 19844813 PMCID: PMC2777263 DOI: 10.1007/s12035-009-8087-7] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Accepted: 09/30/2009] [Indexed: 10/29/2022]
Abstract
Establishing the temporal and concentration profiles of neurotransmitters during synaptic release is an essential step towards understanding the basic properties of inter-neuronal communication in the central nervous system. A variety of ingenious attempts has been made to gain insights into this process, but the general inaccessibility of central synapses, intrinsic limitations of the techniques used, and natural variety of different synaptic environments have hindered a comprehensive description of this fundamental phenomenon. Here, we describe a number of experimental and theoretical findings that has been instrumental for advancing our knowledge of various features of neurotransmitter release, as well as newly developed tools that could overcome some limits of traditional pharmacological approaches and bring new impetus to the description of the complex mechanisms of synaptic transmission.
Collapse
Affiliation(s)
- Annalisa Scimemi
- Synaptic Physiology Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-3701, USA.
| | | |
Collapse
|
8
|
Biró ÁA, Holderith NB, Nusser Z. Release probability-dependent scaling of the postsynaptic responses at single hippocampal GABAergic synapses. J Neurosci 2006; 26:12487-96. [PMID: 17135411 PMCID: PMC2630420 DOI: 10.1523/jneurosci.3106-06.2006] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The amount of neurotransmitter released after the arrival of an action potential affects the strength and the trial-to-trial variability of postsynaptic responses. Most studies examining the dependence of synaptic neurotransmitter concentration on the release probability (P(r)) have focused on glutamatergic synapses. Here we asked whether univesicular or multivesicular release characterizes transmission at hippocampal GABAergic synapses. We used multiple probability functional analysis to derive quantal parameters at inhibitory connections between cannabinoid receptor- and cholecystokinin (CCK)-expressing interneurons and CA3 pyramidal cells. After the recordings, the cells were visualized and reconstructed at the light-microscopic level, and the number of boutons mediating the IPSCs was determined using electron microscopy (EM). The number of active zones (AZs) per CCK-immunopositive bouton was determined from three-dimensional EM reconstructions, thus allowing the calculation of the total number of AZs for each pair. Our results reveal an approximate fivefold discrepancy between the numbers of functionally determined release sites (17.4 +/- 3.2) and structurally identified AZs (3.7 +/- 0.9). Channel modeling predicts that a fivefold to sevenfold increase in the peak synaptic GABA concentration is required for the fivefold enhancement of the postsynaptic responses. Kinetic analysis of the unitary IPSCs indicates that the increase in synaptic GABA concentration is most likely attributable to multivesicular release. This change in the synaptic GABA concentration transient together with extremely low postsynaptic receptor occupancy permits a P(r)-dependent scaling of the postsynaptic response generated at a single hippocampal GABAergic synaptic contact.
Collapse
Affiliation(s)
- Ágota A. Biró
- Laboratory of Cellular Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, 1083 Budapest, Hungary
| | - Noémi B. Holderith
- Laboratory of Cellular Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, 1083 Budapest, Hungary
| | - Zoltan Nusser
- Laboratory of Cellular Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, 1083 Budapest, Hungary
| |
Collapse
|
9
|
Abstract
The Mauthner (M) cell is a critical element in a vital escape "reflex" triggered by abrupt or threatening events. Its properties at the molecular and synaptic levels, their various forms of plasticity, and the design of its networks, are all well adapted for this survival function. They guarantee that this behavior is appropriately unilateral, variable, and unpredictable. The M cell sets the behavioral threshold, and, acting in concert with other elements of the brainstem escape network, determines when, where, and how the escape is executed.
Collapse
Affiliation(s)
- Henri Korn
- Laboratoire Recepteurs et Cognition, CNRS, URA 2182, Institut Pasteur, 25, rue du Docteur-Roux, 75724 Paris Cedex 15, France
| | | |
Collapse
|
10
|
Sun HY, Lyons SA, Dobrunz LE. Mechanisms of target-cell specific short-term plasticity at Schaffer collateral synapses onto interneurones versus pyramidal cells in juvenile rats. J Physiol 2005; 568:815-40. [PMID: 16109728 PMCID: PMC1464188 DOI: 10.1113/jphysiol.2005.093948] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Although it is presynaptic, short-term plasticity has been shown at some synapses to depend upon the postsynaptic cell type. Previous studies have reported conflicting results as to whether Schaffer collateral axons have target-cell specific short-term plasticity. Here we investigate in detail the short-term dynamics of Schaffer collateral excitatory synapses onto CA1 stratum radiatum interneurones versus pyramidal cells in acute hippocampal slices from juvenile rats. In response to three stimulus protocols that invoke different forms of short-term plasticity, we find differences in some but not all forms of presynaptic short-term plasticity, and heterogeneity in the short term plasticity of synapses onto interneurones. Excitatory synapses onto the majority of interneurones had less paired-pulse facilitation than synapses onto pyramidal cells across a range of interpulse intervals (20-200 ms). Unlike synapses onto pyramidal cells, synapses onto most interneurones had very little facilitation in response to short high-frequency trains of five pulses at 5, 10 and 20 Hz, and depressed during trains at 50 Hz. However, the amount of high-frequency depression was not different between synapses onto pyramidal cells versus the majority of interneurones at steady state during 2-10 Hz trains. In addition, a small subset of interneurones (approximately 15%) had paired-pulse depression rather than paired-pulse facilitation, showed only depression in response to the high-frequency five pulse trains, and had more steady-state high-frequency depression than synapses onto pyramidal cells or the majority of interneurones. To investigate possible mechanisms for these differences in short-term plasticity, we developed a mechanistic mathematical model of neurotransmitter release that explicitly explores the contributions to different forms of short-term plasticity of the readily releasable vesicle pool size, release probability per vesicle, calcium-dependent facilitation, synapse inactivation following release, and calcium-dependent recovery from inactivation. Our model fits the responses of each of the three cell groups to the three different stimulus protocols with only two parameters that differ with cell group. The model predicts that the differences in short-term plasticity between synapses onto CA1 pyramidal cells and stratum radiatum interneurones are due to a higher initial release probability per vesicle and larger readily releasable vesicle pool size at synapses onto interneurones, resulting in a higher initial release probability. By measuring the rate of block of NMDA receptors by the open channel blocker MK-801, we confirmed that the initial release probability is greater at synapses onto interneurones versus pyramidal cells. This provides a mechanism by which both the initial strength and the short-term dynamics of Schaffer collateral excitatory synapses are regulated by their postsynaptic target cell.
Collapse
Affiliation(s)
- Hua Yu Sun
- Department of Neurobiology and Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | |
Collapse
|
11
|
Biró AA, Holderith NB, Nusser Z. Quantal size is independent of the release probability at hippocampal excitatory synapses. J Neurosci 2005; 25:223-32. [PMID: 15634785 PMCID: PMC6725207 DOI: 10.1523/jneurosci.3688-04.2005] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Short-term synaptic plasticity changes the reliability of transmission during repetitive activation and allows different neuronal ensembles to encode distinct features of action potential trains. Identifying the mechanisms and the locus of expression of such plasticity is essential for understanding neuronal information processing. To determine the quantal parameters and the locus of alterations during short-term plasticity of cortical glutamatergic synapses, EPSCs were evoked in hippocampal oriens-alveus interneurons by CA1 pyramidal cells. The robust short-term facilitation of this connection allowed us to examine the transmission under functionally relevant but widely different release probability (P(r)) conditions. Paired whole-cell recordings permitted the functional and post hoc morphological characterization of the synapses. To determine the quantal size (q), the P(r), and the number of functional release sites (N(F)), two independent quantal analysis methods were used. Light and electron microscopy were performed to identify the number of synaptic junctions (N(EM)) between the recorded cells. The mean number of functional release sites (N(F(f)) = 2.9 +/- 0.4; n = 8) as inferred from a simple binomial model with no quantal variance agreed well with the mean of N(EM) (2.8 +/- 0.8; n = 6), but N(F(f)) never matched N(EM) when they were compared in individual pairs; however, including quantal variance in the model improved the functional prediction of the structural data. Furthermore, an increased P(r) (4.8 +/- 0.8-fold) fully accounted for the marked short-term facilitation of EPSCs (5.0 +/- 0.7-fold), and q was independent of P(r). Our results are consistent with the "one-release site, one-vesicle" hypothesis.
Collapse
Affiliation(s)
- Agota A Biró
- Laboratory of Cellular Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, 1083 Budapest, Hungary
| | | | | |
Collapse
|
12
|
Abstract
We have used Monte Carlo simulations to understand the generation of quantal responses at the single active zones of CA1 synapses. We constructed a model of AMPA channel activation that accounts for the responses to controlled glutamate application and a model of glutamate diffusion in the synaptic cleft. With no further adjustments to these models, we simulated the response to the release of glutamate from a single vesicle. The predicted response closely matches the rise time of observed responses, which recent measurements show is much faster (<100 μs) than previously thought. The simulations show that initial channel opening is driven by a brief (<100 μs) glutamate spike near the site of vesicle fusion, producing a hotspot of channel activation (diameter: ∼250 nm) smaller than many synapses. Quantal size therefore depends more strongly on the density of channels than their number, a finding that has important implications for measuring synaptic strength. Recent measurements allow estimation of AMPA receptor density at CA1 synapses. Using this value, our simulations correctly predicts a quantal amplitude of ∼10 pA. We have also analyzed the properties of excitatory postsynaptic currents (EPSCs) generated by the multivesicular release that can occur during evoked responses. We find that summation is nearly linear and that the existence of multiple narrow peaks in amplitude histograms can be accounted for. It has been unclear how to reconcile the existence of these narrow peaks, which indicate that the variation of quantal amplitude is small (CV < 0.2) with the highly variable amplitude of miniature EPSCs (mEPSCs; CV ∼ 0.6). According to one theory, mEPSC variability arises from variation in vesicle glutamate content. However, both our modeling results and recent experimental results indicate that this view cannot account for the observed rise time/amplitude correlation of mEPSCs. In contrast, this correlation and the high mEPSC variability can be accounted for if some mEPSCs are generated by two or more vesicles released with small temporal jitter. We conclude that a broad range of results can be accounted for by simple principles: quantal amplitude (∼10 pA) is stereotyped, some mEPSCs are multivesicular at moderate and large synapses, and evoked responses are generated by quasi-linear summation of multiple quanta.
Collapse
Affiliation(s)
- Sridhar Raghavachari
- Dept. of Biology and Volen Center for Complex Systems, Brandeis University MS 008, 415 South S., Waltham, MA 02454, USA
| | | |
Collapse
|
13
|
Lei S, McBain CJ. Two Loci of expression for long-term depression at hippocampal mossy fiber-interneuron synapses. J Neurosci 2004; 24:2112-21. [PMID: 14999062 PMCID: PMC6730444 DOI: 10.1523/jneurosci.4645-03.2004] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Two distinct forms of long-term depression (LTD) exist at mossy fiber synapses between dentate gyrus granule cells and hippocampal CA3 stratum lucidum interneurons. Although induction of each form of LTD requires an elevation of postsynaptic intracellular Ca2+, at Ca2+-impermeable AMPA receptor (CI-AMPAR) synapses, induction is NMDA receptor (NMDAR) dependent, whereas LTD at Ca2+-permeable AMPA receptor (CP-AMPAR) synapses is NMDAR independent. However, the expression locus of either form of LTD is not known. Using a number of criteria, including the coefficient of variation, paired-pulse ratio, AMPA-NMDA receptor activity, and the low-affinity AMPAR antagonist gamma-D-glutamyl-glycine, we demonstrate that LTD expression at CP-AMPAR synapses is presynaptic and results from reduced transmitter release, whereas LTD expression at CI-AMPAR synapses is postsynaptic. The N-ethylmaleimide-sensitive fusion protein-AP2-clathrin adaptor protein 2 inhibitory peptide pep2m occluded LTD expression at CI-AMPAR synapses but not at CP-AMPAR synapses, confirming that CI-AMPAR LTD involves postsynaptic AMPAR trafficking. Thus, mossy fiber innervation of CA3 stratum lucidum interneurons occurs via two parallel systems targeted to either Ca2+-permeable or Ca2+-impermeable AMPA receptors, each with a distinct expression locus for long-term synaptic plasticity.
Collapse
Affiliation(s)
- Saobo Lei
- Laboratory of Cellular and Synaptic Neurophysiology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-4495, USA
| | | |
Collapse
|
14
|
Kushmerick C, von Gersdorff H. Exo-endocytosis at mossy fiber terminals: toward capacitance measurements in cells with arbitrary geometry. Proc Natl Acad Sci U S A 2003; 100:8618-20. [PMID: 12861076 PMCID: PMC166358 DOI: 10.1073/pnas.1633427100] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Christopher Kushmerick
- The Vollum Institute, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239,USA
| | | |
Collapse
|
15
|
Abstract
Changes in the amplitudes of signals conveyed at synaptic contacts between neurons underlie many brain functions and pathologies. Here we review the possible determinants of the amplitude and plasticity of the elementary postsynaptic signal, the miniature. In the absence of a definite understanding of the molecular mechanism releasing transmitters, we investigated a possible alternative interpretation. Classically, both the quantal theory and the vesicle theory predict that the amount of transmitter producing a miniature is determined presynaptically prior to release and that rapid changes in miniature amplitude reflect essentially postsynaptic alterations. However, recent data indicates that short-term and long-lasting changes in miniature amplitude are in large part due to changes in the amount of transmitter in individual released packets that show no evidence of preformation. Current representations of transmitter release derive from basic properties of neuromuscular transmission and endocrine secretion. Reexamination of overlooked properties of these two systems indicate that the amplitude of miniatures may depend as much, if not more, on the Ca(2+) signals in the presynaptic terminal than on the number of postsynaptic receptors available or on vesicle's contents. Rapid recycling of transmitter and its possible adsorption at plasma and vesicle lumenal membrane surfaces suggest that exocytosis may reflect membrane traffic rather than actual transmitter release. This led us to reconsider the disregarded hypothesis introduced by Fatt and Katz (1952; J Physiol 117:109-128) that the excitability of the release site may account for the "quantal effect" in fast synaptic transmission. In this case, changes in excitability of release sites would contribute to the presynaptic quantal plasticity that is often recorded.
Collapse
Affiliation(s)
- Jean Vautrin
- Laboratory of Neurophysiology, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
16
|
Pedroarena CM, Schwarz C. Efficacy and short-term plasticity at GABAergic synapses between Purkinje and cerebellar nuclei neurons. J Neurophysiol 2003; 89:704-15. [PMID: 12574448 DOI: 10.1152/jn.00558.2002] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although the entire output of the cerebellar cortex is conveyed to the deep cerebellar nuclei neurons (DCNs) via the GABAergic synapses established by Purkinje cells (PCs), very little is known about the strength and dynamic properties of PC-DCN connections. Here we show that activation of PC-DCN unitary connections induced large conductance changes (11.7 nS) in DCNs recorded in whole cell patch configuration in acute slices, suggesting that activity of single PCs might significantly affect the output of its target neurons. Based on the large unitary quantal content (18) inferred from calculations of PC-DCN quantal size (0.65 nS) and the near absence of failures in synaptic transmission during control conditions, we conclude that PC-DCN connections are highly multi-sited. The analysis of dynamic properties of PC-DCN synapses demonstrated remarkable paired pulse depression (PPD), maximal at short intervals (paired pulse ratio of 0.15 at 7-ms interval). We provide evidence that PPD is presynaptic in origin and release-independent. In addition, multiple pulse stimulation revealed that PC-DCN synapses exhibited larger sensitivity to dynamic than to steady signals. We postulate that the, otherwise paradoxical, combination of marked short-term depression with strong multi-sited connections is optimal to transfer dynamic information at unitary level by performing spatial average of release probability across the numerous release sites. This feature could enable these synapses to encode presynaptic time-varying signals of single PCs as moment-to-moment changes in synaptic strength, a capacity well suited to the postulated role of cerebellum in control of temporal aspects of motor or cognitive behaviors.
Collapse
|
17
|
Abstract
Most CNS synapses investigated thus far contain a large number of vesicles docked at the active zone, possibly forming individual release sites. At the present time, it is unclear whether these vesicles can be discharged independently of one another. To investigate this problem, we recorded miniature excitatory currents by whole-cell and single-synapse recordings from CA3-CA1 hippocampal neurons and analyzed their stochastic properties. In addition, spontaneous release was investigated by ultrastructural analysis of quickly frozen synapses, revealing vesicle intermediates in docking and spontaneous fusion states. In these experiments, no signs of inhibitory interactions between quanta could be detected up to 1 msec from the previous discharge. This suggests that exocytosis at one site does not per se inhibit vesicular fusion at neighboring sites. At longer intervals, the output of quanta diverged from a random memoryless Poisson process because of the presence of a bursting component. The latter, which could not be accounted for by random coincidences, was independent of Ca2+ elevations in the cytosol, whether from Ca2+ flux through the plasma membrane or release from internal stores. Results of these experiments, together with the observation of spontaneous pairs of omega profiles at the active zone, suggest that multimodal release is produced by an enduring activation of an integrated cluster of release sites.
Collapse
|
18
|
Release dependence to a paired stimulus at a synaptic release site with a small variable pool of immediately releasable vesicles. J Neurosci 2002. [PMID: 12040044 DOI: 10.1523/jneurosci.22-11-04381.2002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Monte Carlo simulations were performed on a release model based on experimental data from single glutamatergic synapses containing a single release site in the hippocampal CA1 region of the neonatal rat. These simulations explored what can be learned about the release process by examining how the release probability in response to the second stimulus (P(2)) of a paired stimulus to a synapse depends on the release in response to the first stimulus. Comparisons between experimental data from a number of individual synapses and the simulated data support the notion that the immediately releasable vesicle pool is small (approximately one) and shows substantial intertrial variation. The simulations also show that the release dependence of P(2) is not necessarily an indicator of either intertrial variation in Ca(2+) influx, feedback effects of released transmitter, or activation failure of the axon.
Collapse
|
19
|
Brager DH, Capogna M, Thompson SM. Short-term synaptic plasticity, simulation of nerve terminal dynamics, and the effects of protein kinase C activation in rat hippocampus. J Physiol 2002; 541:545-59. [PMID: 12042358 PMCID: PMC2290341 DOI: 10.1113/jphysiol.2001.015842] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Phorbol esters are hypothesised to produce a protein kinase C (PKC)-dependent increase in the probability of transmitter release via two mechanisms: facilitation of vesicle fusion or increases in synaptic vesicle number and replenishment. We used a combination of electrophysiology and computer simulation to distinguish these possibilities. We constructed a stochastic model of the presynaptic contacts between a pair of hippocampal pyramidal cells that used biologically realistic processes and was constrained by electrophysiological data. The model reproduced faithfully several forms of short-term synaptic plasticity, including short-term synaptic depression (STD), and allowed us to manipulate several experimentally inaccessible processes. Simulation of an increase in the size of the readily releasable vesicle pool and the time of vesicle replenishment decreased STD, whereas simulation of a facilitation of vesicle fusion downstream of Ca(2+) influx enhanced STD. Because activation of protein kinase C with phorbol ester enhanced STD of EPSCs in rat hippocampal slice cultures, we conclude that an increase in the sensitivity of the release process for Ca(2+) underlies the potentiation of neurotransmitter release by PKC.
Collapse
Affiliation(s)
- Darrin H Brager
- Department of Physiology, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD 21201, USA.
| | | | | |
Collapse
|
20
|
Dobrunz LE. Release probability is regulated by the size of the readily releasable vesicle pool at excitatory synapses in hippocampus. Int J Dev Neurosci 2002; 20:225-36. [PMID: 12175858 DOI: 10.1016/s0736-5748(02)00015-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Synapses in the central nervous system can be very unreliable: stimulation of an individual synapse by an action potential often does not lead to release of neurotransmitter. The probability of transmitter release is not always the same, however, which enables the average strength of synaptic transmission to be regulated by modulation of release probability. Release probability is believed to be determined by the number of fusion competent vesicles (the readily releasable vesicle pool) and the release probability per vesicle. Studies from single synapses have shown that release probability correlates with the size of the readily releasable pool of vesicles across the population of excitatory CA3-CA1 synapses, both in hippocampal slices and in cultured cells. Here I present evidence that the same relationship exists between release probability and the size of the readily releasable vesicle pool within individual synapses, further suggesting that the size of the readily releasable pool helps determine release probability. In addition, using a simple model, I examine how both the number of readily releasable vesicles and the average release probability per vesicle change during trains of high frequency stimulation, and present evidence for non-uniformity of the release probability among vesicles.
Collapse
Affiliation(s)
- Lynn E Dobrunz
- Department of Neurobiology, University of Alabama, Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
21
|
Persistent, exocytosis-independent silencing of release sites underlies homosynaptic depression at sensory synapses in Aplysia. J Neurosci 2002. [PMID: 11880525 DOI: 10.1523/jneurosci.22-05-01942.2002] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The synaptic connections of Aplysia sensory neurons (SNs) undergo dramatic homosynaptic depression (HSD) with only a few low-frequency stimuli. Strong and weak SN synapses, although differing in their probabilities of release, undergo HSD at the same rate; this suggests that the major mechanism underlying HSD in these SNs may not be depletion of the releasable pool of vesicles. In computational models, we evaluated alternative mechanisms of HSD, including vesicle depletion, to determine which mechanisms enable strong and weak synapses to depress with identical time courses. Of five mechanisms tested, only release-independent, stimulus-dependent switching off of release sites resulted in HSD that was independent of initial synaptic strength. This conclusion that HSD is a release-independent phenomenon was supported by empirical results: an increase in Ca2+ influx caused by spike broadening with a K+ channel blocker did not alter HSD. Once induced, HSD persisted during 40 min of rest with no detectable recovery; thus, release does not recover automatically with rest, contrary to what would be expected if HSD represented an exhaustion of the exocytosis mechanism. The hypothesis that short-term HSD involves primarily a stepwise silencing of release sites, rather than vesicle depletion, is consistent with our earlier observation that HSD is accompanied by only a modest decrease in release probability, as indicated by little change in the paired-pulse ratio. In contrast, we found that there was a dramatic decrease in the paired-pulse ratio during serotonin-induced facilitation; this suggests that heterosynaptic facilitation primarily involves an increase in release probability, rather than a change in the number of functional release sites.
Collapse
|
22
|
Abstract
Synapses show widely varying degrees of short-term facilitation and depression. Several mechanisms have been proposed to underlie short-term plasticity, but the contributions of presynaptic mechanisms have been particularly difficult to study because of the small size of synaptic boutons in the mammalian brain. Here we review the functional properties of the calyx of Held, a giant nerve terminal that has shed new light on the general mechanisms that control short-term plasticity. The calyx of Held has also provided fresh insights into the strategies used by synapses to extend their dynamic range of operation and preserve the timing of sensory stimuli.
Collapse
Affiliation(s)
- Henrique von Gersdorff
- The Vollum Institute, Oregon Health and Science University, Portland, Oregon 97201-3098, USA.
| | | |
Collapse
|
23
|
Henze DA, McMahon DBT, Harris KM, Barrionuevo G. Giant miniature EPSCs at the hippocampal mossy fiber to CA3 pyramidal cell synapse are monoquantal. J Neurophysiol 2002; 87:15-29. [PMID: 11784726 DOI: 10.1152/jn.00394.2001] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The mechanisms generating giant miniature excitatory postsynaptic currents (mEPSCs) were investigated at the hippocampal mossy fiber (MF) to CA3 pyramidal cell synapse in vitro. These giant mEPSCs have peak amplitudes as large as 1,700 pA (13.6 nS) with a mean maximal mEPSC amplitude of 366 +/- 20 pA (mean +/- SD; 5 nS; n = 25 cells). This is compared with maximal mEPSC amplitudes of <100 pA typically observed at other cortical synapses. We tested the hypothesis that giant mEPSCs are due to synchronized release of multiple vesicles across the release sites of single MF boutons by directly inducing vesicular release using secretagogues. If giant mEPSCs result from simultaneous multivesicular release, then secretagogues should increase the frequency of small mEPSCs selectively. We found that hypertonic sucrose and spermine increased the frequency of both small and giant mEPSCs. The peptide toxin secretagogues alpha-latrotoxin and pardaxin failed to increase the frequency of giant mEPSCs, but the possible lack of tissue penetration of the toxins make these results equivocal. Because a multiquantal release mechanism is likely to be mediated by a spontaneous increase in presynaptic calcium concentration, a monoquantal mechanism is further supported by results that giant mEPSCs were not affected by manipulations of extracellular or intracellular calcium concentrations. In addition, reducing the temperature of the bath to 15 degrees C failed to desynchronize the rising phases of giant mEPSCs. Together these data suggest that the giant mEPSCs are generated via a monovesicular mechanism. Three-dimensional analysis through serial electron microscopy of the MF boutons revealed large clear vesicles (50 to 160 nm diam) docked presynaptically at the MF synapse in sufficient numbers to account for the amplitude and frequency of giant mEPSCs recorded electrophysiologically. It is concluded that release of the contents of a single large clear vesicle generates giant mEPSCs at the MF to CA3 pyramidal cell synapse.
Collapse
Affiliation(s)
- Darrell A Henze
- Department of Neuroscience and Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.
| | | | | | | |
Collapse
|
24
|
Scheuss V, Neher E. Estimating synaptic parameters from mean, variance, and covariance in trains of synaptic responses. Biophys J 2001; 81:1970-89. [PMID: 11566771 PMCID: PMC1301672 DOI: 10.1016/s0006-3495(01)75848-1] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Fluctuation analysis of synaptic transmission using the variance-mean approach has been restricted in the past to steady-state responses. Here we extend this method to short repetitive trains of synaptic responses, during which the response amplitudes are not stationary. We consider intervals between trains, long enough so that the system is in the same average state at the beginning of each train. This allows analysis of ensemble means and variances for each response in a train separately. Thus, modifications in synaptic efficacy during short-term plasticity can be attributed to changes in synaptic parameters. In addition, we provide practical guidelines for the analysis of the covariance between successive responses in trains. Explicit algorithms to estimate synaptic parameters are derived and tested by Monte Carlo simulations on the basis of a binomial model of synaptic transmission, allowing for quantal variability, heterogeneity in the release probability, and postsynaptic receptor saturation and desensitization. We find that the combined analysis of variance and covariance is advantageous in yielding an estimate for the number of release sites, which is independent of heterogeneity in the release probability under certain conditions. Furthermore, it allows one to calculate the apparent quantal size for each response in a sequence of stimuli.
Collapse
Affiliation(s)
- V Scheuss
- Max-Plack-Institut für biophysikalische Chemie, Abteilung Membranbiophysik, D-37077 Göttingen, Germany
| | | |
Collapse
|
25
|
Abstract
In vivo recordings from Mauthner cells in adult zebrafish (Danio rerio) and goldfish (Carassius auratus) preparations with potassium chloride filled electrodes revealed a new class of long-lasting synaptic events in these cells. Their decay time constant ranged from 20 to 80ms, which is about 20 times longer than that of previously identified fast glycinergic inhibitory postsynaptic potentials in this neuron. The average time to peak of these slow events ranged from 1 to 6ms. We demonstrated that they are also inhibitory since (i) they were resistant to antagonists of the excitatory glutamatergic receptors; (ii) their amplitude was increased following chloride loading of the Mauthner cell; (iii) their reversal potential was the same as that of fast, glycinergic inhibitory postsynaptic potentials; and (iv) they produced an inhibitory shunt of the cell's membrane resistance. Furthermore, as with the fast inhibitory postsynaptic potentials, the decay time of the slow events is voltage dependent, increasing when the Mauthner cell is depolarized. However, these inhibitory postsynaptic potentials had a different pharmacological profile to the fast glycinergic ones. That is, they persisted in the presence of strychnine at doses that abolished the fast ones and they were more sensitive to bicuculline. These data are compatible with the notion that these inhibitory postsynaptic potentials are mediated by activation of a different inhibitory receptor type, and may be GABAergic. In addition, the decay time constant of the fast inhibitory postsynaptic current was shorter than the first of the two components that contribute to the bi-exponential decay reported previously for miniature inhibitory postsynaptic currents in Mauthner cells of larval zebrafish. This suggests developmental modifications and/or a switch in the assembly of glycine receptor subtypes. While amplitude distributions of the fast miniature inhibitory postsynaptic potentials recorded in the presence of tetrodotoxin generally could fit with a single Gaussian function, the amplitude histograms of slow miniature events were skewed, often with multiple nearly equally spaced peaks, consistent with the synchronous release of several quantal units. These previously undescribed slow unitary inhibitory postsynaptic potentials contribute to inhibitory synaptic noise recorded in the Mauthner cells. Specifically, autocorrelation analysis revealed gamma-like rhythms (30-80Hz) in each of two phases, characterized as "noisy" and "quiet", and dominated by the fast and slow inhibitory postsynaptic potentials, respectively. The major frequencies of these two states were significantly different (i.e. around 90 and 40Hz, respectively), suggesting that the fast and slow inhibitory postsynaptic potentials are derived from different inhibitory networks. Chloride-filled Mauthner cells gradually hyperpolarized in the presence of tetrodotoxin, reflecting the effect of ongoing activity in the interneurons that produce the slow events. We conclude that this new class of inhibitory postsynaptic potentials contributes to the tonic inhibition which controls the Mauthner cell's excitability. In physiological conditions, this regulatory influence is expressed as a continuous shunt of this neuron's input resistance and responsiveness to sensory inputs.
Collapse
Affiliation(s)
- K Hatta
- Biologie Cellulaire et Moléculaire du Neurone, INSERM U261, Institut Pasteur, 25, rue du Dr Roux, 75724 Cedex 15, Paris, France
| | | | | | | |
Collapse
|
26
|
Trussell L. Recording and analyzing synaptic currents and synaptic potentials. CURRENT PROTOCOLS IN NEUROSCIENCE 2001; Chapter 6:Unit 6.10. [PMID: 18428509 DOI: 10.1002/0471142301.ns0610s07] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Intracellular recording of synaptic currents (PSCs) under voltage clamp conditions provides the most accurate and direct means for measuring the earliest effects of neurotransmitters. With this tool, combined with pharmacological or ionic manipulations, one can obtain information about the type of transmitter used at a synapse, the dynamics of transmitter-receptor interactions, the types and numbers of receptors activated, the effects of drugs on transmission, functional neural circuitry, and indications about the mechanisms of synaptic plasticity. Each synaptic current or potential is a reflection of many experimental variables: the ionic composition of the solutions, the temperature, the presence of pharmacological agents, the rate of synaptic stimulation, the history of stimulation, the variables of the recording system, as well as other factors unique to each preparation. Correct analysis of data requires all these parameters be considered. Both stimulus-evoked and spontaneous synaptic events are covered in this unit since conclusions about synaptic and drug mechanisms are strongest when based upon recording of both types of activity. This unit outlines basic considerations for recording PSCs and PSPs in addition to guidelines for data analysis.
Collapse
Affiliation(s)
- L Trussell
- Oregon Health Sciences University, Portland, Oregon, USA
| |
Collapse
|
27
|
Abstract
Synaptic depression was studied at the axo-axonic connection between the goldfish Mauthner axon and identified cranial relay interneurons using simultaneous presynaptic and postsynaptic recordings and a paired-pulse stimulus paradigm. We used interstimulus intervals (ISIs) ranging from 10 msec to 1 sec and a cycle time of approximately 5 sec. Depression (Delta EPSP/EPSP1) was maximal at the shorter intervals (80%) and decreased exponentially with a tau approximately 400 msec (360 +/- 107 msec, mean +/- SD). We found the amplitudes of the first and second EPSP were not correlated, indicating the magnitude of depression does not depend on the amount of transmitter released by the conditioning stimulus. At short ISIs, the latency of EPSP2 was 23% longer than that of EPSP1 and recovered to control with tau approximately 400 msec, whereas rise time and decay time were not altered significantly. The latency distribution, which is determined by the timing of the first quantum released each trial, was used to derive alpha(t), the rate of evoked exocytosis after an action potential. alpha(t) was biphasic, and both components were consistently delayed during depression. Presynaptic manipulations of putative intracellular regulatory pathways, such as Ca(2+) and GTPgammaS injections, preferentially affected the amplitude of EPSP1 or EPSP2. These results are not consistent with simple depletion of the available pool of synaptic vesicles as the major mechanism underlying depression. They rather suggest that it is attributable to a modification or refractoriness of the release process and that there may be multiple pathways subserving evoked exocytosis.
Collapse
|
28
|
Abstract
Membrane fusion involves the merger of two phospholipid bilayers in an aqueous environment. In artificial lipid bilayers, fusion proceeds by means of defined transition states, including hourglass-shaped intermediates in which the proximal leaflets of the fusing membranes are merged whereas the distal leaflets are separate (fusion stalk), followed by the reversible opening of small aqueous fusion pores. Fusion of biological membranes requires the action of specific fusion proteins. Best understood are the viral fusion proteins that are responsible for merging the viral with the host cell membrane during infection. These proteins undergo spontaneous and dramatic conformational changes upon activation. In the case of the paradigmatic fusion proteins of the influenza virus and of the human immunodeficiency virus, an amphiphilic fusion peptide is inserted into the target membrane. The protein then reorients itself, thus forcing the fusing membranes together and inducing lipid mixing. Fusion of intracellular membranes in eukaryotic cells involves several protein families including SNAREs, Rab proteins, and Sec1/Munc-18 related proteins (SM-proteins). SNAREs form a novel superfamily of small and mostly membrane-anchored proteins that share a common motif of about 60 amino acids (SNARE motif). SNAREs reversibly assemble into tightly packed helical bundles, the core complexes. Assembly is thought to pull the fusing membranes closely together, thus inducing fusion. SM-proteins comprise a family of soluble proteins that bind to certain types of SNAREs and prevent the formation of core complexes. Rab proteins are GTPases that undergo highly regulated GTP-GDP cycles. In their GTP form, they interact with specific proteins, the effector proteins. Recent evidence suggests that Rab proteins function in the initial membrane contact connecting the fusing membranes but are not involved in the fusion reaction itself.
Collapse
Affiliation(s)
- R Jahn
- Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany.
| | | |
Collapse
|
29
|
Implications of all-or-none synaptic transmission and short-term depression beyond vesicle depletion: a computational study. J Neurosci 2000. [PMID: 10662847 DOI: 10.1523/jneurosci.20-04-01575.2000] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The all-or-none character of transmission at central synapses is commonly viewed as evidence that only one vesicle can be released per action potential at a single release site. This interpretation is still a matter of debate; its resolution is important for our understanding of the nature of quantal response. In this work we explore observable consequences of the univesicular release hypothesis by studying a stochastic model of synaptic transmission. We investigated several alternative mechanisms for the all-or-none response: (1) the univesicular release constraint realized through lateral inhibition across presynaptic membrane, (2) the constraint of a single releasable vesicle per active zone, and (3) the postsynaptic receptor saturation. We show that both the univesicular release constraint and the postsynaptic receptor saturation lead to a limited amount of depression by vesicle depletion, so that depletion alone cannot account for the strong paired-pulse depression observed at some cortical synapses. Although depression can be rapid if there is only one releasable vesicle per active zone, this scenario leads to a limit on the transmission probability. We evaluate additional mechanisms beyond vesicle depletion, and our results suggest that the strong paired-pulse depression may be a result of activity-dependent inactivation of the exocytosis machinery. Furthermore, we found that the statistical analysis of release events, in response to a long stimulus train, might allow one to distinguish experimentally between univesicular and multivesicular release scenarios. We show that without the univesicular release constraint, the temporal correlation between release events is always negative, whereas it is typically positive with such a constraint if the vesicle fusion probability is sufficiently large.
Collapse
|
30
|
Hatta K, Korn H. Tonic inhibition alternates in paired neurons that set direction of fish escape reaction. Proc Natl Acad Sci U S A 1999; 96:12090-5. [PMID: 10518581 PMCID: PMC18417 DOI: 10.1073/pnas.96.21.12090] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/1999] [Accepted: 08/24/1999] [Indexed: 11/18/2022] Open
Abstract
Crossed antagonism between activities in neurons subserving alternating movements such as swimming or walking has been described in a number of systems. The role of reciprocal inhibition has been implicated in these activities, but involvement of rhythmic ongoing fluctuations of membrane potential, called synaptic "noise," has not been examined. In the Mauthner (M) cells, which control the direction of escape, this activity is inhibitory. We report that in the zebrafish (Danio rerio), inhibitory synaptic noise exhibits prolonged bursts of rhythmic, inhibitory postsynaptic potentials, which attenuate the M cell's sensibility to excitatory sensory drives. Furthermore, paired intracellular recordings have shown that inhibitory synaptic noise alternates between two distinct states, noisy and quiet, which are out of phase in the two cells. Firing of either M cell resets this pattern by reducing the inhibition in the contralateral one. This suggests that an avoidance reflex in one direction may favor initiation, by the opposite M cell, of a subsequent escape toward a more appropriate location.
Collapse
Affiliation(s)
- K Hatta
- Biologie Cellulaire et Moléculaire du Neurone, Institut National de la Santé et de la Recherche Médicale U261, Institut Pasteur, 25, rue du Dr Roux, 75724 Paris Cedex 15, France.
| | | |
Collapse
|
31
|
Ankri N, Korn H. A statistical method for correcting distortions of amplitude distribution histograms due to collisions of synaptic events. J Neurosci Methods 1999; 91:83-99. [PMID: 10522827 DOI: 10.1016/s0165-0270(99)00078-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The waveform of spontaneous synaptic potentials or currents comprising synaptic noise can be significantly distorted when these events are closely spaced due to a high frequency activity in the presynaptic inputs that generate them. It is essential to correct these alterations prior to measurements of overlapping miniature and/or postsynaptic potentials, in order to provide reliable information about their true amplitude distributions, and to avoid spurious peaks in the resulting histograms. In this paper we describe a statistical method for making these corrections, its range of application, and its theoretical background. Its use becomes necessary when the frequency of events is of the order of 8-50 Hz, depending upon their time to peak, which ranges from 6 to 1 ms in most synaptic potentials recorded in the central nervous system.
Collapse
Affiliation(s)
- N Ankri
- Laboratoire de Biologie Cellulaire et Moléculaire du Neurone, INSERM U261, Institut Pasteur, Paris, France.
| | | |
Collapse
|
32
|
Rabphilin knock-out mice reveal that rabphilin is not required for rab3 function in regulating neurotransmitter release. J Neurosci 1999. [PMID: 10407024 DOI: 10.1523/jneurosci.19-14-05834.1999] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Rab3A and rab3C are GTP-binding proteins of synaptic vesicles that regulate vesicle exocytosis. Rabphilin is a candidate rab3 effector at the synapse because it binds to rab3s in a GTP-dependent manner, it is co-localized with rab3s on synaptic vesicles, and it dissociates with rab3s from the vesicles during exocytosis. Rabphilin contains two C(2) domains, which could function as Ca(2+) sensors in exocytosis and is phosphorylated as a function of stimulation. However, it is unknown what essential function, if any, rabphilin performs. One controversial question regards the respective roles of rab3s and rabphilin in localizing each other to synaptic vesicles: although rabphilin is mislocalized in rab3A knock-out mice, purified synaptic vesicles were shown to require rabphilin for binding of rab3A but not rab3A for binding of rabphilin. To test whether rabphilin is involved in localizing rab3s to synaptic vesicles and to explore the functions of rabphilin in regulating exocytosis, we have now analyzed knock-out mice for rabphilin. Mice that lack rabphilin are viable and fertile without obvious physiological impairments. In rabphilin-deficient mice, rab3A is targeted to synaptic vesicles normally, whereas in rab3A-deficient mice, rabphilin transport to synapses is impaired. These results show that rabphilin binds to vesicles via rab3s, consistent with an effector function of rabphilin for a synaptic rab3-signal. Surprisingly, however, no abnormalities in synaptic transmission or plasticity were observed in rabphilin-deficient mice; synaptic properties that are impaired in rab3A knock-out mice were unchanged in rabphilin knock-out mice. Our data thus demonstrate that rabphilin is endowed with the properties of a rab3 effector but is not essential for the regulatory functions of rab3 in synaptic transmission.
Collapse
|
33
|
Locke R, Vautrin J, Highstein S. Miniature EPSPs and sensory encoding in the primary afferents of the vestibular lagena of the toadfish, Opsanus tau. Ann N Y Acad Sci 1999; 871:35-50. [PMID: 10409098 DOI: 10.1111/j.1749-6632.1999.tb09174.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The synaptic activity transmitted from vestibular hair cells of the lagena to primary afferent neurons was recorded in vitro using sharp, intracellular microelectrodes. At rest, the activity was composed of miniature excitatory postsynaptic potentials (mEPSPs) at frequencies from 5 to 20/s and action potentials (APs) at frequencies betwen 0 and 10/s. mEPSPs recorded from a single fiber displayed a large variability. For mEPSPs not triggering APs, amplitudes exhibited an average coefficient of variance (CV) of 0.323 and rise times an average CV of 0.516. APs were only triggered by mEPSPs with larger amplitudes (estimated 4-6 mV) and/or steeper maximum rate of rise (10.9 mV/ms, +/- 3.7 SD, n=4 experiments) compared to (3.50 mV/ms, +/-0.07 SD, n=6 experiments) for nontriggering mEPSPs. The smallest mEPSPs showed a fast rise time (0.99 ms between 10% and 90% of peak amplitude) and limited variability across fibers (CV:0.18) confirming that they were not attenuated signals, but rather represented single-transmitter discharges (TDs). The mEPSP amplitude and rise-time relationship suggests that many mEPSPs represented several, rather than a single pulse of secretion of TDs. According to the estimated overall TD frequency, the coincidence of TDs contributing to the same mEPSP were not statistically independent, indicating a positive interaction between TDs that is reminiscent of the way subminiature signals group to form miniature signals at the neuromuscular junction. Depending on the duration and intensity of efferent stimulation, a complete block of AP initiation occurred either immediately or after a delay of a few seconds. Efferent stimulation did not significantly change AP threshold level, but abruptly decreased mEPSP frequency to a near-complete block that followed the block of APs. Maximum mEPSP rate of rise decreased during, and recovered progressively after, efferent stimulation. After termination of efferent stimulation, mEPSP amplitude did not recover instantly and for a few seconds the amplitude distribution of synaptic events showed fewer large-amplitude events than during the control period. This confirms that mEPSP amplitude and rate of rise properties, which are critical for triggering afferent APs, are modified by efferent activity. The depression of afferent AP firing during efferent stimulation corresponded to a decrease in mEPSP frequency and, to a lesser extent, a decrease in mEPSP amplitude and rate of rise, suggesting, a decrease in the level of interaction among TDs contibuting to a mEPSP.
Collapse
Affiliation(s)
- R Locke
- Washington University School of Medicine, Department of Otolaryngology, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
34
|
Markram H, Pikus D, Gupta A, Tsodyks M. Potential for multiple mechanisms, phenomena and algorithms for synaptic plasticity at single synapses. Neuropharmacology 1998; 37:489-500. [PMID: 9704990 DOI: 10.1016/s0028-3908(98)00049-5] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Recent experimental evidence indicates that in the neocortex, the manner in which each synapse releases neurotransmitter in response to trains of presynaptic action potentials is potentially unique. These unique transmission characteristics arise because of a large heterogeneity in various synaptic properties that determine frequency dependence of transmission such as those governing the rates of synaptic depression and facilitation. A theoretical analysis was therefore undertaken to explore the phenomenologies of changes in the values of these synaptic parameters. The results illustrate how the change in any one of several synaptic parameters produces a distinctive effect on synaptic transmission and how these distinctive effects can point to the most likely biophysical mechanisms. These results could therefore be useful in studies of synaptic plasticity in order to obtain a full characterization of the phenomenologies of synaptic modifications and to isolate potential biophysical mechanisms. Based on this theoretical analysis and experimental data, it is proposed that there exists multiple mechanisms, phenomena and algorithms for synaptic plasticity at single synapses. Finally, it is shown that the impact of changing the values of synaptic parameters depends on the values of the other parameters. This may indicate that the various mechanisms, phenomena and algorithms are interlinked in a 'synaptic plasticity code'.
Collapse
Affiliation(s)
- H Markram
- Department of Neurobiology, The Weizmann Institute for Science, Rehovot, Israel.
| | | | | | | |
Collapse
|
35
|
Hjelmstad GO, Nicoll RA, Malenka RC. Synaptic refractory period provides a measure of probability of release in the hippocampus. Neuron 1997; 19:1309-18. [PMID: 9427253 DOI: 10.1016/s0896-6273(00)80421-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Despite extensive research, much controversy remains regarding the locus of expression of long-term potentiation (LTP) in area CA1 of the hippocampus, specifically, whether LTP is accompanied by an increase in the probability of release (p(r)) of synaptic vesicles. We have developed a novel method for assaying p(r), which utilizes the synaptic refractory period--a brief 5-6 ms period following release during which the synapse is incapable of transmission (Stevens and Wang, 1995). We show that this assay is sensitive to a battery of manipulations that affect p(r) but find no change following either NMDA receptor-dependent LTP or long-term depression (LTD).
Collapse
Affiliation(s)
- G O Hjelmstad
- Neuroscience Graduate Program, University of California, San Francisco 94143, USA
| | | | | |
Collapse
|
36
|
Bolshakov VY, Golan H, Kandel ER, Siegelbaum SA. Recruitment of new sites of synaptic transmission during the cAMP-dependent late phase of LTP at CA3-CA1 synapses in the hippocampus. Neuron 1997; 19:635-51. [PMID: 9331354 DOI: 10.1016/s0896-6273(00)80377-3] [Citation(s) in RCA: 172] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Long-term potentiation at CA3-CA1 hippocampal synapses exhibits an early phase and a late phase, which can be distinguished by their underlying molecular mechanisms. Unlike the early phase, the late phase is dependent on both cAMP and protein synthesis. Quantal analysis of unitary synaptic transmission between a single presynaptic CA3 neuron and a single postsynaptic CA1 neuron suggests that, under certain conditions, the early phase of LTP involves an increase in the probability of release of a single quantum of transmitter from a single presynaptic release site, with no change in the number of quanta that are released or in postsynaptic sensitivity to transmitter. Here, we show that the cAMP-induced late phase of LTP involves an increase in the number of quanta released in response to a single presynaptic action potential, possibly due to an increase in the number of sites of synaptic transmission between a single CA3 and a single CA1 neuron.
Collapse
Affiliation(s)
- V Y Bolshakov
- Department of Pharmacology, Howard Hughes Medical Institute, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | | | | | | |
Collapse
|
37
|
Forti L, Bossi M, Bergamaschi A, Villa A, Malgaroli A. Loose-patch recordings of single quanta at individual hippocampal synapses. Nature 1997; 388:874-8. [PMID: 9278048 DOI: 10.1038/42251] [Citation(s) in RCA: 149] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Synapses in the central nervous system are typically studied by recording electrical responses from the cell body of the postsynaptic cell. Because neurons are normally connected by multiple synaptic contacts, these postsynaptic responses reflect the combined activity of many thousands synapses, and it remains unclear to what extent the properties of individual synapses can be deduced from the population response. We have therefore developed a method for recording the activity of individual hippocampal synapses. By capturing an isolated presynaptic bouton inside a loose-patch pipette and recording from the associated patch of postsynaptic membrane, we were able to detect miniature excitatory postsynaptic currents ('minis') arising from spontaneous vesicle exocytosis at a single synaptic site, and to compare these with minis recorded simultaneously from the cell body. The average peak conductance at a single synapse was about 900 pS, corresponding roughly to the opening of 90 AMPA-type glutamate-receptor channels. The variability in this conductance was about 30%, matching the value reported for the neuromuscular junction. Given that our synapses displayed single postsynaptic densities (PSDs), this variability is larger than would be predicted from the random opening of receptor channels, suggesting that they are not saturated by the content of a single vesicle. Therefore the response to a quantum of neurotransmitter at these synapses is not limited by the number of available postsynaptic receptors.
Collapse
Affiliation(s)
- L Forti
- Department of Biological and Technological Research, DIBIT, Scientific Institute San Raffaele, Milano, Italy
| | | | | | | | | |
Collapse
|
38
|
Abstract
Calcium entry through presynaptic calcium channels controls the release of neurotransmitter. It is not known whether the putative calcium sensor that triggers this rapid neurotransmitter release is close enough to be activated by the large increase in the Ca2+ concentration (calcium 'domain') reached within nanometres of a single calcium channel or whether many channels have to open. We tested this in a calyx-type synapse in the rat medial nucleus of the trapezoid body. We compared the quantal content of postsynaptic currents with the presynaptic calcium current that flows during an action potential, and the results suggest that more than 60 calcium channels open for each vesicle that is released. In addition, we dialysed terminals with the slow calcium buffer EGTA, which reduced phasic transmitter release at concentrations as low as 1 mM. These results indicate that the distance that calcium ions must diffuse to reach the calcium sensor is relatively long, and that therefore Ca2+ entry through multiple calcium channels is needed to release a vesicle.
Collapse
Affiliation(s)
- J G Borst
- Abteilung Zellphysiologie, Max-Planck-Institut für medizinische Forschung, Heidelberg, Germany.
| | | |
Collapse
|
39
|
Min MY, Appenteng K. Multimodal distribution of amplitudes of miniature and spontaneous EPSPs recorded in rat trigeminal motoneurones. J Physiol 1996; 494 ( Pt 1):171-82. [PMID: 8814614 PMCID: PMC1160622 DOI: 10.1113/jphysiol.1996.sp021483] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
1. The whole-cell variant of the patch recording method has been used to obtain voltage recordings from trigeminal motoneurones in tissue slices (500 microns thick) taken from rats aged 8 days. Membrane properties (input resistance, membrane time constant and rheobase, i.e. threshold current required to elicit an action potential) of the motoneurones were determined and recordings made of the (untriggered) EPSP activity. 2. Untriggered EPSP activity was recorded in standard artificial cerebrospinal fluid (ACSF), ACSF with added tetrodotoxin (TTX) and in nominally Ca(2+)-free ACSF with added TTX. In each case the amplitude distributions of single EPSPs were peaky and could be fitted by a model consisting of the sum of equidistant Gaussians (n = 7/9 cells). In contrast, the amplitude distribution of the noise was always unimodal. 3. All EPSP activity recorded in the presence of TTX was abolished by addition of 6-cyano-7-nitroquinoxaline-2-3-dione (CNQX; 10 microM), suggesting the activity was all mediated by glutamate acting primarily at AMPA/kainate receptors. 4. In the majority of cases, there was no correlation between the amplitude of EPSPs underlying each Gaussian and the EPSP rise time but there was a positive correlation between the EPSP half-width and EPSP rise time. The rise times of EPSPs underlying the first, and all, fitted Gaussians were similar to that for the total sample of EPSPs in each motoneurone. Taken together, this suggests that the EPSPs underlying each Gaussian arise from inputs to different dendritic compartments, and that the range of compartments is similar for EPSPs underlying successive Gaussians. 5. Two conclusions are drawn. First, EPSPs of different dendritic origin have similar amplitudes at the soma. Second, the multimodal distribution of EPSP amplitudes recorded in the presence of TTX raises the possibility that individual boutons may contain multiple release sites, with each perhaps operating on a separate functional group of postsynaptic receptors.
Collapse
Affiliation(s)
- M Y Min
- Department of Physiology, University of Leeds, UK
| | | |
Collapse
|