1
|
Brock A. Fragmentation hydrogen exchange mass spectrometry: A review of methodology and applications. Protein Expr Purif 2012; 84:19-37. [DOI: 10.1016/j.pep.2012.04.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 04/13/2012] [Indexed: 01/19/2023]
|
2
|
Zhang N, Du Y, Cui M, Xing J, Liu Z, Liu S. Probing the Interaction of Cisplatin with Cytochrome c by Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Anal Chem 2012; 84:6206-12. [DOI: 10.1021/ac301122w] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Ningbo Zhang
- Changchun
Center of Mass Spectrometry,
Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People’s
Republic of China
- Graduate School of the Chinese Academy of Sciences, Beijing 100039,
People’s Republic of China
| | - Yonggang Du
- Changchun
Center of Mass Spectrometry,
Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People’s
Republic of China
- Graduate School of the Chinese Academy of Sciences, Beijing 100039,
People’s Republic of China
| | - Meng Cui
- Changchun
Center of Mass Spectrometry,
Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People’s
Republic of China
| | - Junpeng Xing
- Changchun
Center of Mass Spectrometry,
Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People’s
Republic of China
| | - Zhiqiang Liu
- Changchun
Center of Mass Spectrometry,
Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People’s
Republic of China
| | - Shuying Liu
- Changchun
Center of Mass Spectrometry,
Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People’s
Republic of China
| |
Collapse
|
3
|
Kowlessur D, Tobacman LS. Troponin regulatory function and dynamics revealed by H/D exchange-mass spectrometry. J Biol Chem 2009; 285:2686-94. [PMID: 19920153 DOI: 10.1074/jbc.m109.062349] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Muscle contraction is tightly regulated by Ca(2+) binding to the thin filament protein troponin. The mechanism of this regulation was investigated by detailed mapping of the dynamic properties of cardiac troponin using amide hydrogen exchange-mass spectrometry. Results were obtained in the presence of either saturation or non-saturation of the regulatory Ca(2+) binding site in the NH(2) domain of subunit TnC. Troponin was found to be highly dynamic, with 60% of amides exchanging H for D within seconds of exposure to D(2)O. In contrast, portions of the TnT-TnI coiled-coil exhibited high protection from exchange, despite 6 h in D(2)O. The data indicate that the most stable portion of the trimeric troponin complex is the coiled-coil. Regulatory site Ca(2+) binding altered dynamic properties (i.e. H/D exchange protection) locally, near the binding site and in the TnI switch helix that attaches to the Ca(2+)-saturated TnC NH(2) domain. More notably, Ca(2+) also altered the dynamic properties of other parts of troponin: the TnI inhibitory peptide region that binds to actin, the TnT-TnI coiled-coil, and the TnC COOH domain that contains the regulatory Ca(2+) sites in many invertebrate as opposed to vertebrate troponins. Mapping of these affected regions onto the troponin highly extended structure suggests that cardiac troponin switches between alternative sets of intramolecular interactions, similar to previous intermediate resolution x-ray data of skeletal muscle troponin.
Collapse
Affiliation(s)
- Devanand Kowlessur
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | | |
Collapse
|
4
|
Selevsek N, Rival S, Tholey A, Heinzle E, Heinz U, Hemmingsen L, Adolph HW. Zinc ion-induced domain organization in metallo-beta-lactamases: a flexible "zinc arm" for rapid metal ion transfer? J Biol Chem 2009; 284:16419-16431. [PMID: 19395380 PMCID: PMC2713538 DOI: 10.1074/jbc.m109.001305] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Indexed: 11/06/2022] Open
Abstract
The reversible unfolding of metallo-beta-lactamase from Chryseobacterium meningosepticum (BlaB) by guanidinium hydrochloride is best described by a three-state model including folded, intermediate, and unfolded states. The transformation of the folded apoenzyme into the intermediate state requires only very low denaturant concentrations, in contrast to the Zn2-enzyme. Similarly, circular dichroism spectra of both BlaB and metallo-beta-lactamase from Bacillus cereus 569/H/9 (BcII) display distinct differences between metal-free and Zn2-enzymes, indicating that the zinc ions affect the folding of the proteins, giving a larger alpha-helix content. To identify the regions of the protein involved in this zinc ion-induced change, a hydrogen deuterium exchange study with matrix-assisted laser desorption ionization tandem time of flight mass spectrometry on metal-free and Zn1- and Zn2-BcII was carried out. The region spanning the metal binding metallo-beta-lactamases (MBL) superfamily consensus sequence His-X-His-X-Asp motif and the loop connecting the N- and C-terminal domains of the protein undergoes a zinc ion-dependent structural change between intrinsically disordered and ordered states. The inherent flexibility even appears to allow for the formation of metal ion-bridged protein-protein complexes which may account for both electrospray ionization-mass spectroscopy results obtained upon variation of the zinc/protein ratio and stoichiometry-dependent variations of 199mHg-perturbed angular correlation of gamma-rays spectroscopic data. We suggest that this flexible "zinc arm" motif, present in all the MBL subclasses, is disordered in metal-free MBLs and may be involved in metal ion acquisition from zinc-carrying molecules different from MBL in an "activation on demand" regulation of enzyme activity.
Collapse
Affiliation(s)
- Nathalie Selevsek
- From the Departments of Biochemical Engineering, 66041 Saarbrücken, Germany
| | - Sandrine Rival
- Biochemistry, Saarland University, 66041 Saarbrücken, Germany
| | - Andreas Tholey
- From the Departments of Biochemical Engineering, 66041 Saarbrücken, Germany; Institute for Experimental Medicine-Systemic Proteome Research and Bioanalytics, Christian-Albrechts Universität, 24105 Kiel, Germany
| | - Elmar Heinzle
- From the Departments of Biochemical Engineering, 66041 Saarbrücken, Germany
| | - Uwe Heinz
- Department of Basic Sciences and Environment, Faculty of Life Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| | - Lars Hemmingsen
- Department of Basic Sciences and Environment, Faculty of Life Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| | - Hans W Adolph
- Department of Basic Sciences and Environment, Faculty of Life Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Denmark.
| |
Collapse
|
5
|
Suchanova B, Tuma R. Folding and assembly of large macromolecular complexes monitored by hydrogen-deuterium exchange and mass spectrometry. Microb Cell Fact 2008; 7:12. [PMID: 18394161 PMCID: PMC2365927 DOI: 10.1186/1475-2859-7-12] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Accepted: 04/04/2008] [Indexed: 11/26/2022] Open
Abstract
Recent advances in protein mass spectrometry (MS) have enabled determinations of hydrogen deuterium exchange (HDX) in large macromolecular complexes. HDX-MS became a valuable tool to follow protein folding, assembly and aggregation. The methodology has a wide range of applications in biotechnology ranging from quality control for over-expressed proteins and their complexes to screening of potential ligands and inhibitors. This review provides an introduction to protein folding and assembly followed by the principles of HDX and MS detection, and concludes with selected examples of applications that might be of interest to the biotechnology community.
Collapse
|
6
|
Kaltashov IA, Zhang M, Eyles SJ, Abzalimov RR. Investigation of structure, dynamics and function of metalloproteins with electrospray ionization mass spectrometry. Anal Bioanal Chem 2006; 386:472-81. [PMID: 16932945 DOI: 10.1007/s00216-006-0636-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Revised: 06/06/2006] [Accepted: 06/19/2006] [Indexed: 10/24/2022]
Abstract
Electrospray ionization mass spectrometry (ESI MS) has emerged recently as a powerful tool for analyzing many structural and behavioral aspects of metalloproteins in great detail. In this review we discuss recent developments in the field, placing particular emphasis on the unique features of ESI MS that lend themselves to metalloprotein characterization at a variety of levels. Direct mass measurement enables the determination of protein-metal ion binding stoichiometry in solution and metalloprotein higher order structure in the case of multi-subunit proteins. MS techniques have been developed for determining the locations of metal-binding centers, metal oxidation states and reaction intermediates of metal-containing enzymes. Other ESI MS techniques are also discussed, such as protein ion charge state distributions and hydrogen/deuterium exchange studies, which can be used to measure metal binding affinities and to shed light on vital dynamic aspects of the functional properties of metalloproteins endowed by metal binding.
Collapse
Affiliation(s)
- Igor A Kaltashov
- Department of Chemistry, University of Massachusetts-Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA.
| | | | | | | |
Collapse
|
7
|
Frego L, Davidson W. Conformational changes of the glucocorticoid receptor ligand binding domain induced by ligand and cofactor binding, and the location of cofactor binding sites determined by hydrogen/deuterium exchange mass spectrometry. Protein Sci 2006; 15:722-30. [PMID: 16600964 PMCID: PMC2242475 DOI: 10.1110/ps.051781406] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
HXMS (hydrogen/deuterium exchange mass spectrometry) of the glucocorticoid receptor ligand-binding domain (GR LBD) complexed with the agonist dexamethasone and the antagonist RU-486 is described. Variations in the rates of exchange were observed in regions consistent with the published crystal structures of GR LBD complexed with RU-486 when compared with the GR dexamethasone complex. We also report the HXMS results for agonist-bound GR LBD with the coactivator transcriptional intermediary factor 2 (TIF2) and anatagonist-bound GR LBD with nuclear receptor corepressor (NCoR). Alterations in exchange rates observed for agonist-bound GR LBD with TIF2 present were consistent with the published crystal structural contacts for the complex. Alterations in exchange rates observed for antagonist-bound GR LBD with NCoR were a subset of those observed with TIF2 binding, suggesting a common or overlapping binding site for coactivator and corepressor.
Collapse
Affiliation(s)
- Lee Frego
- Boehringer Ingelheim Phramaceuticals, Research and Development Center, Ridgefield, Connecticut 06877, USA.
| | | |
Collapse
|
8
|
Lísal J, Lam TT, Kainov DE, Emmett MR, Marshall AG, Tuma R. Functional visualization of viral molecular motor by hydrogen-deuterium exchange reveals transient states. Nat Struct Mol Biol 2005; 12:460-6. [PMID: 15834422 DOI: 10.1038/nsmb927] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2004] [Accepted: 03/22/2005] [Indexed: 11/09/2022]
Abstract
Molecular motors undergo cyclical conformational changes and convert chemical energy into mechanical work. The conformational dynamics of a viral packaging motor, the hexameric helicase P4 of dsRNA bacteriophage phi8, was visualized by hydrogen-deuterium exchange and high-resolution mass spectrometry. Concerted changes of exchange kinetics revealed a cooperative unit that dynamically links ATP-binding sites and the central RNA-binding channel. The cooperative unit is compatible with a structure-based model in which translocation is mediated by a swiveling helix. Deuterium labeling also revealed the transition state associated with RNA loading, which proceeds via opening of the hexameric ring. The loading mechanism is similar to that of other hexameric helicases. Hydrogen-deuterium exchange provides an important link between time-resolved spectroscopic observations and high-resolution structural snapshots of molecular machines.
Collapse
Affiliation(s)
- Jirí Lísal
- Institute of Biotechnology and Department of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
9
|
Limited proteolysis combined with isotope labeling and quantitative LC-MALDI MS for monitoring protein conformational changes: a study on calcium-binding sites of cardiac Troponin C. Anal Chim Acta 2005. [DOI: 10.1016/j.aca.2004.04.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Abstract
Modern mass spectrometry (MS) is well known for its exquisite sensitivity in probing the covalent structure of macromolecules, and for that reason, it has become the major tool used to identify individual proteins in proteomics studies. This use of MS is now widespread and routine. In addition to this application of MS, a handful of laboratories are developing and using a methodology by which MS can be used to probe protein conformation and dynamics. This application involves using MS to analyze amide hydrogen/deuterium (H/D) content from exchange experiments. Introduced by Linderstøm-Lang in the 1950s, H/D exchange involves using (2)H labeling to probe the rate at which protein backbone amide protons undergo chemical exchange with the protons of water. With the advent of highly sensitive electrospray ionization (ESI)-MS, a powerful new technique for measuring H/D exchange in proteins at unprecedented sensitivity levels also became available. Although it is still not routine, over the past decade the methodology has been developed and successfully applied to study various proteins and it has contributed to an understanding of the functional dynamics of those proteins.
Collapse
Affiliation(s)
- Claudia S Maier
- Department of Chemistry, Oregon State University, Corvallis, Oregon, USA
| | | |
Collapse
|
11
|
Hoofnagle AN, Resing KA, Ahn NG. Protein analysis by hydrogen exchange mass spectrometry. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 2003; 32:1-25. [PMID: 12598366 DOI: 10.1146/annurev.biophys.32.110601.142417] [Citation(s) in RCA: 288] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mass spectrometry has provided a powerful method for monitoring hydrogen exchange of protein backbone amides with deuterium from solvent. In comparison to popular NMR approaches, mass spectrometry has the advantages of higher sensitivity, wider coverage of sequence, and the ability to analyze larger proteins. Proteolytic fragmentation of proteins following the exchange reaction provides moderate structural resolution, in some cases enabling measurements from single amides. The technique has provided new insight into protein-protein and protein-ligand interfaces, as well as conformational changes during protein folding or denaturation. In addition, recent studies illustrate the utility of hydrogen exchange mass spectrometry toward detecting protein motions relevant to allostery, covalent modifications, and enzyme function.
Collapse
Affiliation(s)
- Andrew N Hoofnagle
- Department of Chemistry and Biochemistry University of Colorado, Boulder, Colorado 80309, USA.
| | | | | |
Collapse
|
12
|
Kheterpal I, Wetzel R, Cook KD. Enhanced correction methods for hydrogen exchange-mass spectrometric studies of amyloid fibrils. Protein Sci 2003; 12:635-43. [PMID: 12592034 PMCID: PMC2312450 DOI: 10.1110/ps.0225703] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We describe methods for minimization of and correction for artifactual forward and backward exchange occurring during hydrogen exchange-mass spectrometric (HX-MS) studies of amyloid fibrils of the Abeta(1-40) peptide. The quality of the corrected data obtained using published and new correction algorithms is evaluated quantitatively. Using the new correction methods, we have determined that 20.1 +/- 1.4 of the 39 backbone amide hydrogens in Abeta(1-40) exchange with deuteriums in 100 h when amyloid fibrils of this peptide are suspended in D(2)O. These data reinforce our previous conclusions based on uncorrected data that amyloid fibrils contain a rigid protective core structure that involves only about half of the Abeta backbone amides. The methods developed here should be of general value for HX-MS studies of amyloid fibrils and other protein aggregates.
Collapse
Affiliation(s)
- Indu Kheterpal
- Graduate School of Medicine, University of Tennessee Medical Center, University of Tennessee, Knoxville, Tennessee 37996-1600, USA
| | | | | |
Collapse
|
13
|
Lanman J, Lam TT, Barnes S, Sakalian M, Emmett MR, Marshall AG, Prevelige PE. Identification of novel interactions in HIV-1 capsid protein assembly by high-resolution mass spectrometry. J Mol Biol 2003; 325:759-72. [PMID: 12507478 DOI: 10.1016/s0022-2836(02)01245-7] [Citation(s) in RCA: 177] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The pleomorphic nature of the immature and mature HIV-1 virions has made it difficult to characterize intersubunit interactions using traditional approaches. While the structures of isolated domains are known, the challenge is to identify intersubunit interactions and thereby pack these domains into supramolecular structures. Using high-resolution mass spectrometry, we have measured the amide hydrogen exchange protection factors for the soluble capsid protein (CA) and CA assembled in vitro. Comparison of the protection factors as well as chemical crosslinking experiments has led to a map of the subunit/subunit interfaces in the assembled tubes. This analysis provides direct biochemical evidence for the homotypic N domain and C domain interactions proposed from cryo-electron microscopy image reconstruction of CA tubes. Most significantly, we have identified a previously unrecognized intersubunit N domain-C domain interaction. The detection of this interaction reconciles previously discrepant biophysical and genetic data.
Collapse
Affiliation(s)
- Jason Lanman
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294-2170, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Kaltashov IA, Eyles SJ. Studies of biomolecular conformations and conformational dynamics by mass spectrometry. MASS SPECTROMETRY REVIEWS 2002; 21:37-71. [PMID: 12210613 DOI: 10.1002/mas.10017] [Citation(s) in RCA: 173] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In the post-genomic era, a wealth of structural information has been amassed for proteins from NMR and crystallography. However, static protein structures alone are not a sufficient description: knowledge of the dynamic nature of proteins is essential to understand their wide range of functions and behavior during the life cycle from synthesis to degradation. Furthermore, few proteins have the ability to act alone in the crowded cellular environment. Assemblies of multiple proteins governed by complex signaling pathways are often required for the tasks of target recognition, binding, transport, and function. Mass spectrometry has emerged over the past several years as a powerful tool to address many of these questions. Recent improvements in "soft" ionization techniques have enabled researchers to study proteins and biomolecular complexes, both directly and indirectly. Likewise, continuous improvements in instrumental design in recent years have resulted in a dramatic expansion of the m/z range and resolution, enabling observation of large multi-protein assemblies whose structures are retained in the gas phase. In this article, we discuss some of the mass spectrometric techniques applied to investigate the nature of the conformations and dynamical properties that govern protein function.
Collapse
Affiliation(s)
- Igor A Kaltashov
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA.
| | | |
Collapse
|
15
|
Jänis J, Rouvinen J, Leisola M, Turunen O, Vainiotalo P. Thermostability of endo-1,4-beta-xylanase II from Trichoderma reesei studied by electrospray ionization Fourier-transform ion cyclotron resonance MS, hydrogen/deuterium-exchange reactions and dynamic light scattering. Biochem J 2001; 356:453-60. [PMID: 11368772 PMCID: PMC1221856 DOI: 10.1042/0264-6021:3560453] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Endo-1,4-beta-xylanase II (XYNII) from Trichoderma reesei is a 21 kDa enzyme that catalyses the hydrolysis of xylan, the major plant hemicellulose. It has various applications in the paper, food and feed industries. Previous thermostability studies have revealed a significant decrease in enzymic activity of the protein at elevated temperatures in citrate buffer [Tenkanen, Puls and Poutanen (1992) Enzyme Microb. Technol. 14, 566-574]. Here, thermostability of XYNII was investigated using both conventional and nanoelectrospray ionization Fourier-transform ion cyclotron resonance MS and hydrogen/deuterium (H/D)-exchange reactions. In addition, dynamic light scattering (DLS) was used as a comparative method to observe possible changes in both tertiary and quaternary structures of the protein. We observed a significant irreversible conformational change and dimerization when the protein was exposed to heat. H/D exchange revealed two distinct monomeric protein populations in a narrow transition temperature region. The conformational change in both the water and buffered solutions occurred in the same temperature region where enzymic-activity loss had previously been observed. Approx. 10-30% of the protein was specifically dimerized when exposed to the heat treatment. However, adding methanol to the solution markedly lowered the transition temperature of conformational change as well as increased the dimerization up to 90%. DLS studies in water confirmed the change in conformation observed by electrospray ionization MS. We propose that the conformational change is responsible for the loss of enzymic activity at temperatures over 50 degrees C and that the functioning of the active site in the enzyme is unfeasible in a new, more labile solution conformation.
Collapse
Affiliation(s)
- J Jänis
- University of Joensuu, Department of Chemistry, P.O. Box 111, FIN-80101 Joensuu, Finland
| | | | | | | | | |
Collapse
|
16
|
Wang F, Miles RW, Kicska G, Nieves E, Schramm VL, Angeletti RH. Immucillin-H binding to purine nucleoside phosphorylase reduces dynamic solvent exchange. Protein Sci 2000; 9:1660-8. [PMID: 11045613 PMCID: PMC2144693 DOI: 10.1110/ps.9.9.1660] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The rate and extent of hydrogen/deuterium (H/D) exchange into purine nucleoside phosphorylase (PNP) was monitored by electrospray ionization mass spectrometry (ESI-MS) to probe protein conformational and dynamic changes induced by a substrate analogue, products, and a transition state analogue. The genetic deficiency of PNP in humans is associated with severe T-cell immunodeficiency, while B-cell immunity remains functional. Inhibitors of PNP have been proposed for treatment of T-cell leukemia, to suppress the graft-vs.-host response, or to counter type IV autoimmune diseases without destroying humoral immunity. Calf spleen PNP is a homotrimer of polypeptide chains with 284 amino residues, molecular weight 31,541. Immucillin-H inhibits PNP with a Kd of 23 pM when only one of the three catalytic sites is occupied. Deuterium exchange occurs at 167 slow-exchange sites in 2 h when no catalytic site ligands are present. The substrate analogue and product prevented H/D exchange at 10 of the sites. Immucillin-H protected 32 protons from exchange at full saturation. When one of the three subunits of the homotrimer is filled with immucillin-H, and 27 protons are protected from exchange in all three subunits. Deuterium incorporation in peptides from residues 132-152 decreased in all complexes of PNP. The rate and/or extent of deuterium incorporation in peptides from residues 29-49, 50-70, 81-98, and 112-124 decreased only in the complex with the transition state analogue. The peptide-specific H/D exchange demonstrates that (1) the enzyme is most compact in the complex with immucillin-H, and (2) filling a single catalytic site of the trimer reduces H/D exchange in the same peptides in adjacent subunits. The peptides most highly influenced by the inhibitor surround the catalytic site, providing evidence for reduced protein dynamic motion caused by the transition state analogue.
Collapse
Affiliation(s)
- F Wang
- Laboratory for Macromolecular Analysis and Proteomics, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | |
Collapse
|