1
|
Schweke H, Mucchielli MH, Chevrollier N, Gosset S, Lopes A. SURFMAP: A Software for Mapping in Two Dimensions Protein Surface Features. J Chem Inf Model 2022; 62:1595-1601. [DOI: 10.1021/acs.jcim.1c01269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hugo Schweke
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette 91198, France
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Marie-Hélène Mucchielli
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette 91190, France
- Université de Paris, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette 91190, France
| | | | - Simon Gosset
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette 91190, France
- Université de Paris, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette 91190, France
| | - Anne Lopes
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette 91198, France
| |
Collapse
|
2
|
Misprediction of Structural Disorder in Halophiles. Molecules 2019; 24:molecules24030479. [PMID: 30699990 PMCID: PMC6384707 DOI: 10.3390/molecules24030479] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 01/25/2019] [Accepted: 01/26/2019] [Indexed: 12/01/2022] Open
Abstract
Whereas the concept of intrinsic disorder derives from biophysical observations of the lack of structure of proteins or protein regions under native conditions, many of our respective concepts rest on proteome-scale bioinformatics predictions. It is established that most predictors work reliably on proteins commonly encountered, but it is often neglected that we know very little about their performance on proteins of microorganisms that thrive in environments of extreme temperature, pH, or salt concentration, which may cause adaptive sequence composition bias. To address this issue, we predicted structural disorder for the complete proteomes of different extremophile groups by popular prediction methods and compared them to those of the reference mesophilic group. While significant deviations from mesophiles could be explained by a lack or gain of disordered regions in hyperthermophiles and radiotolerants, respectively, we found systematic overprediction in the case of halophiles. Additionally, examples were collected from the Protein Data Bank (PDB) to demonstrate misprediction and to help understand the underlying biophysical principles, i.e., halophilic proteins maintain a highly acidic and hydrophilic surface to avoid aggregation in high salt conditions. Although sparseness of data on disordered proteins from extremophiles precludes the development of dedicated general predictors, we do formulate recommendations for how to address their disorder with current bioinformatics tools.
Collapse
|
3
|
Molecular characterization of a recombinant manganese superoxide dismutase from Lactococcus lactis M4. BIOMED RESEARCH INTERNATIONAL 2014; 2014:469298. [PMID: 24592392 PMCID: PMC3921932 DOI: 10.1155/2014/469298] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 10/12/2013] [Accepted: 11/03/2013] [Indexed: 11/18/2022]
Abstract
A superoxide dismutase (SOD) gene of Lactococcus lactis M4 was cloned and expressed in a prokaryotic system. Sequence analysis revealed an open reading frame of 621 bp which codes for 206 amino acid residues. Expression of sodA under T7 promoter exhibited a specific activity of 4967 U/mg when induced with 1 mM of isopropyl-β-D-thiogalactopyranoside. The recombinant SOD was purified to homogeneity by immobilised metal affinity chromatography and Superose 12 gel filtration chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and western blot analyses of the recombinant SOD detected a molecular mass of approximately 27 kDa. However, the SOD was in dimer form as revealed by gel filtration chromatography. The purified recombinant enzyme had a pI of 4.5 and exhibited maximal activity at 25°C and pH 7.2. It was stable up to 45°C. The insensitivity of this lactococcal SOD to cyanide and hydrogen peroxide established that it was a MnSOD. Although it has 98% homology to SOD of L. lactis IL1403, this is the first elucidated structure of lactococcal SOD revealing active sites containing the catalytic manganese coordinated by four ligands (H-27, H-82, D-168, and H-172).
Collapse
|
4
|
Haikarainen T, Frioux C, Zhnag LQ, Li DC, Papageorgiou AC. Crystal structure and biochemical characterization of a manganese superoxide dismutase from Chaetomium thermophilum. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1844:422-9. [PMID: 24316252 DOI: 10.1016/j.bbapap.2013.11.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 11/20/2013] [Accepted: 11/23/2013] [Indexed: 10/25/2022]
Abstract
A manganese superoxide dismutase from the thermophilic fungus Chaetomium thermophilum (CtMnSOD) was expressed in Pichia pastoris and purified to homogeneity. Its optimal temperature was 60°C with approximately 75% of its activity retained after incubation at 70°C for 60min. Recombinant yeast cells carrying C. thermophilum mnsod gene exhibited higher stress resistance to salt and oxidative stress-inducing agents than control yeast cells. In an effort to provide structural insights, CtMnSOD was crystallized and its structure was determined at 2.0Å resolution. The overall architecture of CtMnSOD was found similar to other MnSODs with highest structural similarities obtained against a MnSOD from the thermotolerant fungus Aspergillus fumigatus. In order to explain its thermostability, structural and sequence analysis of CtMnSOD with other MnSODs was carried out. An increased number of charged residues and an increase in the number of intersubunit salt bridges and the Thr:Ser ratio were identified as potential reasons for the thermostability of CtMnSOD.
Collapse
Affiliation(s)
- Teemu Haikarainen
- Turku Centre for Biotechnology, University of Turku, BioCity, Turku 20521, Finland; Åbo Akademi University, BioCity, Turku 20521, Finland
| | - Clémence Frioux
- Turku Centre for Biotechnology, University of Turku, BioCity, Turku 20521, Finland; Åbo Akademi University, BioCity, Turku 20521, Finland
| | - Li-Qing Zhnag
- Department of Environmental Biology, Shandong Agricultural University, Taian, Shandong 271018, China; Department of Chemistry and Chemical Engineering, Taishan Medical College, Taian, Shandong 271016, China
| | - Duo-Chuan Li
- Department of Environmental Biology, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Anastassios C Papageorgiou
- Turku Centre for Biotechnology, University of Turku, BioCity, Turku 20521, Finland; Åbo Akademi University, BioCity, Turku 20521, Finland.
| |
Collapse
|
5
|
Dey S, Pal A, Chakrabarti P, Janin J. The subunit interfaces of weakly associated homodimeric proteins. J Mol Biol 2010; 398:146-60. [PMID: 20156457 DOI: 10.1016/j.jmb.2010.02.020] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 02/10/2010] [Accepted: 02/10/2010] [Indexed: 02/07/2023]
Abstract
We analyzed subunit interfaces in 315 homodimers with an X-ray structure in the Protein Data Bank, validated by checking the literature for data that indicate that the proteins are dimeric in solution and that, in the case of the "weak" dimers, the homodimer is in equilibrium with the monomer. The interfaces of the 42 weak dimers, which are smaller by a factor of 2.4 on average than in the remainder of the set, are comparable in size with antibody-antigen or protease-inhibitor interfaces. Nevertheless, they are more hydrophobic than in the average transient protein-protein complex and similar in amino acid composition to the other homodimer interfaces. The mean numbers of interface hydrogen bonds and hydration water molecules per unit area are also similar in homodimers and transient complexes. Parameters related to the atomic packing suggest that many of the weak dimer interfaces are loosely packed, and we suggest that this contributes to their low stability. To evaluate the evolutionary selection pressure on interface residues, we calculated the Shannon entropy of homologous amino acid sequences at 60% sequence identity. In 93% of the homodimers, the interface residues are better conserved than the residues on the protein surface. The weak dimers display the same high degree of interface conservation as other homodimers, but their homologs may be heterodimers as well as homodimers. Their interfaces may be good models in terms of their size, composition, and evolutionary conservation for the labile subunit contacts that allow protein assemblies to share and exchange components, allosteric proteins to undergo quaternary structure transitions, and molecular machines to operate in the cell.
Collapse
Affiliation(s)
- Sucharita Dey
- Bioinformatics Centre, Bose Institute, P-1/12 CIT Scheme VIIM, Calcutta 700 054, India
| | | | | | | |
Collapse
|
6
|
Boucher IW, Kalliomaa AK, Levdikov VM, Blagova EV, Fogg MJ, Brannigan JA, Wilson KS, Wilkinson AJ. Structures of two superoxide dismutases from Bacillus anthracis reveal a novel active centre. Acta Crystallogr Sect F Struct Biol Cryst Commun 2005; 61:621-4. [PMID: 16511113 PMCID: PMC1952455 DOI: 10.1107/s1744309105017380] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Accepted: 06/01/2005] [Indexed: 11/10/2022]
Abstract
The BA4499 and BA5696 genes of Bacillus anthracis encode proteins homologous to manganese superoxide dismutase, suggesting that this organism has an expanded repertoire of antioxidant proteins. Differences in metal specificity and quaternary structure between the dismutases of prokaryotes and higher eukaryotes may be exploited in the development of therapeutic antibacterial compounds. Here, the crystal structure of two Mn superoxide dismutases from B. anthracis solved to high resolution are reported. Comparison of their structures reveals that a highly conserved residue near the active centre is substituted in one of the proteins and that this is a characteristic feature of superoxide dismutases from the B. cereus/B. anthracis/B. thuringiensis group of organisms.
Collapse
Affiliation(s)
- Ian W. Boucher
- Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5YW, England
| | - Anne K. Kalliomaa
- Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5YW, England
| | - Vladimir M. Levdikov
- Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5YW, England
| | - Elena V. Blagova
- Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5YW, England
| | - Mark J. Fogg
- Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5YW, England
| | - James A. Brannigan
- Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5YW, England
| | - Keith S. Wilson
- Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5YW, England
| | - Anthony J. Wilkinson
- Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5YW, England
| |
Collapse
|
7
|
Jackson TA, Karapetian A, Miller AF, Brunold TC. Spectroscopic and computational studies of the azide-adduct of manganese superoxide dismutase: definitive assignment of the ligand responsible for the low-temperature thermochromism. J Am Chem Soc 2004; 126:12477-91. [PMID: 15453782 DOI: 10.1021/ja0482583] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A variety of spectroscopic and computational techniques have been used to examine the thermochromic transition previously reported for the oxidized state of Mn-dependent superoxide dismutase from E. coli in the presence of substrate analog azide (N(3)-Mn(3+)SOD).[Whittaker, M. M.; Whittaker, J. W. Biochemistry 1996, 35, 6762-6770.] Although previous spectroscopic studies had shown that this thermochromic event corresponds to a change in coordination number of the active-site Mn(3+) ion from 6 to 5 as temperature is increased, the ligand that dissociates in this conversion had yet to be identified. Through the use of electronic absorption, circular dichroism (CD), and magnetic CD (MCD) spectroscopies, both d-->d and ligand-to-metal charge-transfer (LMCT) transition energies have been determined for native Mn(3+)SOD (possessing a five-coordinate Mn(3+) center) and Y34F N(3)-Mn(3+)SOD (forming a six-coordinate N(3)-Mn(3+) adduct at all temperatures). These two systems provide well-defined reference points from which to analyze the absorption and CD data obtained for N(3)-Mn(3+)SOD at room temperature (RT). Comparison of excited-state spectroscopic data reveals that Mn(3+)SOD and RT N(3)-Mn(3+)SOD exhibit virtually identical d-->d transition energies, suggesting that these two species possess similar geometric and electronic structures and, thus, that azide does not actually coordinate to the active-site Mn(3+) ion at RT. However, resonance Raman spectra of both N(3)-Mn(3+)SOD and Y34F N(3)-Mn(3+)SOD at 0 degrees C exhibit azide-related vibrations, indicating that azide does interact with the active site of the native enzyme at this temperature. To gain further insight into the nature of the azide/Mn(3+) interaction in RT N(3)-Mn(3+)SOD, several viable active-site models designed to promote either dissociation of coordinated solvent, Asp167, or azide were generated using DFT computations. By utilizing the time-dependent DFT method to predict absorption spectra for these models of RT N(3)-Mn(3+)SOD, we demonstrate that only azide dissociation is consistent with experimental data. Collectively, our spectroscopic and computational data provide evidence that the active site of N(3)-Mn(3+)SOD at RT exists in a dynamic equilibrium, with the azide molecule either hydrogen-bonded to the second-sphere Tyr34 residue or coordinated to the Mn(3+) ion. These results further highlight the role that second-sphere residues, especially Tyr34, play in tuning substrate (analog)/metal ion interactions.
Collapse
Affiliation(s)
- Timothy A Jackson
- Department of Chemistry, University of Wisconsin-Madison, 53706, USA
| | | | | | | |
Collapse
|
8
|
Chen CJ, Liu MY, Chang T, Chang WC, Wang BC, Le Gall J. Crystal structure of a nucleoside diphosphate kinase from Bacillus halodenitrificans: coexpression of its activity with a Mn-superoxide dismutase. J Struct Biol 2003; 142:247-55. [PMID: 12713952 DOI: 10.1016/s1047-8477(03)00014-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We found that when grown under anaerobic conditions the moderate halophile, gram-positive bacterium Bacillus halodenitrificans (ATCC 49067) synthesizes large amounts of a polypeptide complex that contains a heme center capable of reversibly bind nitric oxide. This complex, when exposed to air, dissociates and reassociates into two active components, a Mn-containing superoxide dismutase (SOD) and a nucleoside diphosphate kinase (BhNDK). The crystal structure of this latter enzyme has been determined at 2.2A resolution using molecular replacement method, based on the crystal structure of Drosophila melanogaster NDK. The model contains 149 residues of a total 150 residues and 34 water molecules. BhNDK consists of a four-stranded antiparallel beta-sheet, whose surfaces are partially covered by six alpha-helices, and its overall and active site structures are similar to those of homologous enzymes. However, the hexameric packing of BhNDK shows that this enzyme is different from both eukaryotic and gram-negative bacteria. The need for the bacterium to presynthesize both SOD and NDK precursors which are activated during the anaerobic-aerobic transition is discussed.
Collapse
Affiliation(s)
- Chun-Jung Chen
- X-ray Structural Biology Group, National Synchrotron Radiation Research Center, Hsinchu 30077, Taiwan.
| | | | | | | | | | | |
Collapse
|