1
|
Natural Cubic Spline Regression Modeling Followed by Dynamic Network Reconstruction for the Identification of Radiation-Sensitivity Gene Association Networks from Time-Course Transcriptome Data. PLoS One 2016; 11:e0160791. [PMID: 27505168 PMCID: PMC4978405 DOI: 10.1371/journal.pone.0160791] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 06/14/2016] [Indexed: 11/23/2022] Open
Abstract
Gene expression time-course experiments allow to study the dynamics of transcriptomic changes in cells exposed to different stimuli. However, most approaches for the reconstruction of gene association networks (GANs) do not propose prior-selection approaches tailored to time-course transcriptome data. Here, we present a workflow for the identification of GANs from time-course data using prior selection of genes differentially expressed over time identified by natural cubic spline regression modeling (NCSRM). The workflow comprises three major steps: 1) the identification of differentially expressed genes from time-course expression data by employing NCSRM, 2) the use of regularized dynamic partial correlation as implemented in GeneNet to infer GANs from differentially expressed genes and 3) the identification and functional characterization of the key nodes in the reconstructed networks. The approach was applied on a time-resolved transcriptome data set of radiation-perturbed cell culture models of non-tumor cells with normal and increased radiation sensitivity. NCSRM detected significantly more genes than another commonly used method for time-course transcriptome analysis (BETR). While most genes detected with BETR were also detected with NCSRM the false-detection rate of NCSRM was low (3%). The GANs reconstructed from genes detected with NCSRM showed a better overlap with the interactome network Reactome compared to GANs derived from BETR detected genes. After exposure to 1 Gy the normal sensitive cells showed only sparse response compared to cells with increased sensitivity, which exhibited a strong response mainly of genes related to the senescence pathway. After exposure to 10 Gy the response of the normal sensitive cells was mainly associated with senescence and that of cells with increased sensitivity with apoptosis. We discuss these results in a clinical context and underline the impact of senescence-associated pathways in acute radiation response of normal cells. The workflow of this novel approach is implemented in the open-source Bioconductor R-package splineTimeR.
Collapse
|
2
|
Wu ZH, Miyamoto S. Many faces of NF-kappaB signaling induced by genotoxic stress. J Mol Med (Berl) 2007; 85:1187-202. [PMID: 17607554 DOI: 10.1007/s00109-007-0227-9] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2007] [Revised: 04/20/2007] [Accepted: 05/22/2007] [Indexed: 12/22/2022]
Abstract
The nuclear factor-kappaB (NF-kappaB) family of dimeric transcription factors plays pivotal roles in physiologic and pathologic processes, including immune and inflammatory responses and development and progression of various human cancers. Inactive NF-kappaB dimers normally exist in the cytoplasm in association with inhibitor proteins belonging to the inhibitor of NF-kappaB (IkappaB) family of related proteins. Activation of NF-kappaB involves its release from IkappaB and subsequent nuclear translocation to induce expression of target genes. Intense research effort has revealed many distinct signaling pathways and mechanisms of NF-kappaB activation induced by immune and inflammatory stimuli. These aspects of NF-kappaB biology have been amply reviewed in the literature. However, those that involve DNA-damaging agents are less well understood, and multiple conflicting pathways and mechanisms have been described in the literature. In this review, we summarize the proposed mechanisms of NF-kappaB activation by various DNA-damaging agents, discuss the significance of such activation in the context of cancer treatment, and highlight some of the critical questions that remain to be addressed in future studies.
Collapse
Affiliation(s)
- Zhao-Hui Wu
- Department of Pharmacology, University of Wisconsin-Madison, WI 53706, USA
| | | |
Collapse
|
3
|
Kumar B, Joshi J, Kumar A, Pandey BN, Hazra B, Mishra KP. Radiosensitization by diospyrin diethylether in MCF-7 breast carcinoma cell line. Mol Cell Biochem 2007; 304:287-96. [PMID: 17534696 DOI: 10.1007/s11010-007-9511-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2006] [Accepted: 05/07/2007] [Indexed: 10/23/2022]
Abstract
The development of radio-resistant tumor cells might be overcome by the use of tumor selective cytotoxic agents in combination with radiation treatment of cancer. Thus, we are exploring the radiomodifying potential of D7, a tumor-inhibitory compound derived from a plant product, diospyrin, in breast carcinoma cells, MCF-7. The present study indicated that D7 could enhance the radiation-induced cytotoxicity and apoptosis through down-regulation of the anti-apoptotic Bcl-2 and COX-2 gene expression, and up-regulation of pro-apoptotic genes, like p53 and p21. The higher expression of PUMA, a pro-apoptotic protein was also observed in the combination treatment. Effect of D7 on up-regulation of p21 expression in irradiated MCF-7 cells was concomitant with the cell cycle arrest in the G1 phase. Thus, it was concluded that D7 could sensitize the effect of radiation in breast carcinoma by regulating the gene expression involved in cell cycle and apoptosis.
Collapse
Affiliation(s)
- Binod Kumar
- Department of Pharmaceutical Technology, Jadavpur University, Raja S.C. Mullick Road, Jadavpur, Calcutta, West Bengal 700032, India
| | | | | | | | | | | |
Collapse
|
4
|
Dai LC, Wang X, Yao X, Min LS, Qian FC, He JF. Antisense oligonucleotide targeting p53 increased apoptosis of MCF-7 cells induced by ionizing radiation. Acta Pharmacol Sin 2006; 27:1453-8. [PMID: 17049121 DOI: 10.1111/j.1745-7254.2006.00405.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
AIM To investigate the effect of antisense compounds (AS) targeting human p53 mRNA on radiosensitivity of MCF-7 cells. METHODS Western blotting and RTPCR were used to analyze the protein content and mRNA level. Additionally, cell proliferation, cell cycle and cell apoptosis were all analyzed in irradiated or sham-irradiated cells. RESULTS Among the five antisense compounds (AS), AS3 was identified to efficiently inhibit p53 mRNA level and protein content. Interestingly, AS3 transfer has little effect on cell proliferation in DU-145 cells (mutant p53) after ionizing radiation (IR). In contrast, a marked increase of cell apoptosis and growth inhibition were observed in MCF-7 cells (wild-type p53), suggesting that AS3 can increase radiosensitivity of MCF-7 cells. Additionally, it was also observed that the transfection of AS3 decreased the fraction of G1 phase cells, and increased the proportion of S phase cells compared to untreated cells 24 h after IR in MCF-7 cell lines. CONCLUSION AS3 transfection increases MCF-7 cell apoptosis induced by 5 Gy-radiation, and this mechanism may be closely associated with abrogation of G1 phase arrest.
Collapse
Affiliation(s)
- Li-cheng Dai
- Huzhou Key Laboratory of Molecular Medicine, Huzhou Central Hospital, Huzhou 313000, China.
| | | | | | | | | | | |
Collapse
|
5
|
Cosaceanu D, Budiu RA, Carapancea M, Castro J, Lewensohn R, Dricu A. Ionizing radiation activates IGF-1R triggering a cytoprotective signaling by interfering with Ku-DNA binding and by modulating Ku86 expression via a p38 kinase-dependent mechanism. Oncogene 2006; 26:2423-34. [PMID: 17043647 DOI: 10.1038/sj.onc.1210037] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ionizing radiation exposure results in the activation of several tyrosine kinase receptors that participate in radiation-induced DNA damage response and radioresistance. We previously showed that insulin-like growth factor 1 receptor (IGF-1R) inhibition enhanced radiosensitivity of non-small-cell lung cancer (NSCLC) cells. In this paper, we demonstrate that in U1810 NSCLC cells gamma-radiation activates IGF-1R within 10 min, with a maximal activation effect 2 h post-irradiation. Impairment of IGF-1R tyrosine kinase activity enhances human lung cancer cells radiosensitivity by a mechanism that involves phosphatidylinositol 3-kinase (PI3-K) and p38 kinase. In an active form, IGF-1R binds and activates p38 kinase, promoting receptor signaling. Conversely, inhibition of IGF-1R phosphorylation results in IGF-1R/p38 complex disruption and p38 kinase inactivation. We have also demonstrated that in insulin-like growth factor-1-stimulated cells, Ku-DNA-binding activation is induced by ionizing radiation within 4 h, reaches a maximum level at 12 h and remains active up to 72 h. Blockade of IGF-1R activity or its downstream signaling through p38 kinase induces a decrease in radiation-mediated Ku-DNA-binding activation and downregulates the level of Ku86, without affecting Ku70 expression in the nucleus of U1810 cells. The IGF-1R signaling via PI3-K does not interfere with the p38 signaling, the Ku-DNA-binding activity or the level of Ku86. Our present study demonstrates for the first time that ionizing radiation activates IGF-1R. Inhibition of IGF-1R signaling via p38 kinase induces radiosensitivity by a novel mechanism involving nuclear Ku86.
Collapse
Affiliation(s)
- D Cosaceanu
- Department of Oncology-Pathology, Cancer Center Karolinska and Radiumhemmet Karolinska Institute/Hospital, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
6
|
Pawlik TM, Keyomarsi K. Role of cell cycle in mediating sensitivity to radiotherapy. Int J Radiat Oncol Biol Phys 2004; 59:928-42. [PMID: 15234026 DOI: 10.1016/j.ijrobp.2004.03.005] [Citation(s) in RCA: 780] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2003] [Revised: 03/01/2004] [Accepted: 03/08/2004] [Indexed: 02/09/2023]
Abstract
Multiple pathways are involved in maintaining the genetic integrity of a cell after its exposure to ionizing radiation. Although repair mechanisms such as homologous recombination and nonhomologous end-joining are important mammalian responses to double-strand DNA damage, cell cycle regulation is perhaps the most important determinant of ionizing radiation sensitivity. A common cellular response to DNA-damaging agents is the activation of cell cycle checkpoints. The DNA damage induced by ionizing radiation initiates signals that can ultimately activate either temporary checkpoints that permit time for genetic repair or irreversible growth arrest that results in cell death (necrosis or apoptosis). Such checkpoint activation constitutes an integrated response that involves sensor (RAD, BRCA, NBS1), transducer (ATM, CHK), and effector (p53, p21, CDK) genes. One of the key proteins in the checkpoint pathways is the tumor suppressor gene p53, which coordinates DNA repair with cell cycle progression and apoptosis. Specifically, in addition to other mediators of the checkpoint response (CHK kinases, p21), p53 mediates the two major DNA damage-dependent cellular checkpoints, one at the G(1)-S transition and the other at the G(2)-M transition, although the influence on the former process is more direct and significant. The cell cycle phase also determines a cell's relative radiosensitivity, with cells being most radiosensitive in the G(2)-M phase, less sensitive in the G(1) phase, and least sensitive during the latter part of the S phase. This understanding has, therefore, led to the realization that one way in which chemotherapy and fractionated radiotherapy may work better is by partial synchronization of cells in the most radiosensitive phase of the cell cycle. We describe how cell cycle and DNA damage checkpoint control relates to exposure to ionizing radiation.
Collapse
Affiliation(s)
- Timothy M Pawlik
- Department of Surgical Oncology, University of Texas M. D. Anderson Cancer Center, Box 66, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | | |
Collapse
|
7
|
Kuwahara Y, Shimada A, Mitani H, Shima A. Gamma-ray exposure accelerates spermatogenesis of medaka fish, Oryzias latipes. Mol Reprod Dev 2003; 65:204-11. [PMID: 12704732 DOI: 10.1002/mrd.10261] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To examine the spermatogenesis (and spermiogenesis) cell population kinetics after gamma-irradiation, the frequency and fate of BrdU-labeled pre-meiotic spermatogenic cells (spermatogonia and pre-leptotene spermatocytes) and spermatogonial stem cells (SSCs) of the medaka fish (Oryzias latipes) were examined immunohistochemically and by BrdU-labeling. After 4.75 Gy of gamma-irradiation, a statistically significant decrease in the frequency of BrdU-labeled cells was detected in the SSCs, but not in pre-meiotic spermatogenic cells. The time necessary for differentiation of surviving pre-meiotic spermatogenic cells without delay of germ cell development was shortened. More than 90% of surviving pre-meiotic spermatogenic cells differentiated into haploid cells within 5 days after irradiation, followed by a temporal spermatozoa exhaust in the testis. Next, spermatogenesis began in the surviving SSCs. However, the outcome was abnormal spermatozoa, indicating that accelerated maturation process led to morphological abnormalities. Moreover, 35% of the morphologically normal spermatozoa were dead at day 6. Based on these results, we suggest a reset system; after irradiation most surviving spermatogenic cells, except for the SSCs, are prematurely eliminated from the testis by spermatogenesis (and spermiogenesis) acceleration, and subsequent spermatogenesis begins with the surviving SSCs, a possible safeguard against male germ cell mutagenesis.
Collapse
Affiliation(s)
- Yoshikazu Kuwahara
- Laboratory of Radiation Biology, Department of Biological Sciences, Graduate School of Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Tokyo 277-8562, Japan.
| | | | | | | |
Collapse
|
8
|
|
9
|
Jung M, Dritschilo A. NF-kappa B signaling pathway as a target for human tumor radiosensitization. Semin Radiat Oncol 2001; 11:346-51. [PMID: 11677659 DOI: 10.1053/srao.2001.26034] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
NF-kappa B is a critical nuclear transcriptional factor that is activated in response to cellular stresses and regulates the expression of genes involved in cell proliferation and cell death. When regulated NF-kappa B activation is disrupted, cells undergo apoptosis. That is, constitutively elevated or dysregulated NF-kappa B activation leads to cell death in response to stress. These mechanisms have been shown experimentally by expressing dominant negative inhibitors of NF-kappa B (I kappa B-alpha) in cancer cells exposed to chemotherapeutic agents or to ionizing radiation. NF-kappa B also plays an important role in a novel, radiation-inducible signaling pathway that involves the ataxia-telangiectasia mutated (ATM) protein kinase. Cells from patients with ataxia-telangiectasia (AT) are exquisitely sensitive to ionizing radiation and exhibit impaired NF-kappa B activation in response to this stress. Restoration of NF-kappa B regulation in AT fibroblasts by introducing a dominant negative form of I kappa B-alpha has resulted in correction of radiation sensitivity and a reduction of ionizing radiation-induced apoptosis. Expression of introduced ATM in AT cells results in correction of NF-kappa B regulation and an increase in postradiation survival without reduction in radiation-induced apoptosis. Taken together, these observations support a central role for NF-kappa B regulation in cellular intrinsic radiation sensitivity and apoptosis after exposure to ionizing radiation. Therefore, we hypothesize that the signaling pathway involving ATM/NF-kappa B/I kappa B offers attractive potential molecular targets for radiation sensitization in strategies to enhance the therapeutic ratio in cancer treatment.
Collapse
Affiliation(s)
- M Jung
- Department of Radiation Medicine, Georgetown University Medical Center, Washington, DC 20007-2197, USA
| | | |
Collapse
|
10
|
Dritschilo A. Radiosensitivity and transcription factor NF-kappaB inhibition-progress and pitfalls. J Natl Cancer Inst 1999; 91:1910-1. [PMID: 10564669 DOI: 10.1093/jnci/91.22.1910] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
11
|
Chen S, Cai L, Li X, Liu S. Low-dose whole-body irradiation induces alteration of protein expression in mouse splenocytes. Toxicol Lett 1999; 105:141-152. [PMID: 10221276 DOI: 10.1016/s0378-4274(98)00393-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
In previous studies, the stimulatory effect on immunological function and adaptive response in splenocytes were found after exposure of mice to low-dose whole-body irradiation (LD-WBI). Protein synthesis was found to be required for these responses. The present study, therefore, attempts to investigate the protein changes in mouse splenocytes after exposure to LD-WBI. Two-dimensional gel electrophoresis was used to show the alterations of proteins in nuclei, cytoplasm and extracellular fluid of the splenocytes at 4 h after mice exposed to 75 mGy X-rays. As compared to control, changed expressions of 20, 15 and 6 proteins, in sizes ranging from 10 to 69 kDa with pI of 5.0-8.2, were found in the nuclei, cytoplasm and extracellular fluid of splenocytes, respectively. One protein, shown in the cytoplasm of splenocytes of control mice, appeared in extracellular fluid of splenocytes after LD-WBI. Two proteins, shown in cytoplasm, and one protein, shown in extracellular fluid of splenocytes in control mice, appeared in the nuclei after LD-WBI. Time-course of protein synthesis varied in different proteins after LD-WBI. These results suggest that alterations of protein expressions and redistribution of proteins between intracellular and extracellular compartments occurred in the splenocytes after LD-WBI. Protein extract from LD-WBI splenocytes was fractionated by Sephadex G-100. Fractions 61-80 contained proteins able to protect lymphocytes in vitro from radiation-induced chromosome aberrations. These findings are of importance in elucidating mechanisms of immuno-enhancement and adaptive response induced by low-dose radiation. although the features and the functions of these proteins remain to be elucidated in future studies.
Collapse
Affiliation(s)
- S Chen
- Institute of Radiation Medicine, Norman Bethune University of Medical Sciences, Changchun, People's Republic of China
| | | | | | | |
Collapse
|
12
|
Kim HE, Han SJ, Kasza T, Han R, Choi HS, Palmer KC, Kim HR. Platelet-derived growth factor (PDGF)-signaling mediates radiation-induced apoptosis in human prostate cancer cells with loss of p53 function. Int J Radiat Oncol Biol Phys 1997; 39:731-6. [PMID: 9336156 DOI: 10.1016/s0360-3016(97)00358-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Platelet-derived growth factor (PDGF) signals a diversity of cellular responses in vitro, including cell proliferation, survival, transformation, and chemotaxis. PDGF functions as a "competence factor" to induce a set of early response genes expressed in G1 including p21WAF1/CIP1, a functional mediator of the tumor suppressor gene p53 in G1/S checkpoint. For PDGF-stimulated cells to progress beyond G1 and transit the cell cycle completely, progression factors in serum such as insulin and IGF-1 are required. We have recently shown a novel role of PDGF in inducing apoptosis in growth-arrested murine fibroblasts. The PDGF-induced apoptosis is rescued by insulin, suggesting that G1/S checkpoint is a critical determinant for PDGF-induced apoptosis. Because recent studies suggest that radiation-induced signal transduction pathways interact with growth factor-mediated signaling pathways, we have investigated whether activation of the PDGF-signaling facilitates the radiation-induced apoptosis in the absence of functional p53. For this study we have used the 125-IL cell line, a mutant p53-containing, highly metastatic, and hormone-unresponsive human prostate carcinoma cell line. PDGF signaling is constitutively activated by transfection with a p28v-sis expression vector, which was previously shown to activate PDGF alpha- and beta- receptors. Although the basal level of p21WAF1/CIP1 expression and radiation-induced apoptosis were not detectable in control 125-IL cells as would be predicted in mutant p53-containing cells, activation of PDGF-signaling induced expression of p21WAF1/CIP1 and radiation-induced apoptosis. Our study suggests that the level of "competence" growth factors including PDGF may be one of the critical determinants for radiation-induced apoptosis, especially in cells with loss of p53 function at the site of radiotherapy in vivo.
Collapse
Affiliation(s)
- H E Kim
- Department of Radiation Oncology, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | | | | | | | | | | | | |
Collapse
|