1
|
Neurorehabilitation in Multiple Sclerosis-A Review of Present Approaches and Future Considerations. J Clin Med 2022; 11:jcm11237003. [PMID: 36498578 PMCID: PMC9739865 DOI: 10.3390/jcm11237003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Multiple sclerosis is an increasingly prevalent disease, representing the leading cause of non-traumatic neurological disease in Europe and North America. The most common symptoms include gait deficits, balance and coordination impairments, fatigue, spasticity, dysphagia and an overactive bladder. Neurorehabilitation therapeutic approaches aim to alleviate symptoms and improve the quality of life through promoting positive immunological transformations and neuroplasticity. The purpose of this study is to evaluate the current treatments for the most debilitating symptoms in multiple sclerosis, identify areas for future improvement, and provide a reference guide for practitioners in the field. It analyzes the most cited procedures currently in use for the management of a number of symptoms affecting the majority of patients with multiple sclerosis, from different training routines to cognitive rehabilitation and therapies using physical agents, such as electrostimulation, hydrotherapy, cryotherapy and electromagnetic fields. Furthermore, it investigates the quality of evidence for the aforementioned therapies and the different tests applied in practice to assess their utility. Lastly, the study looks at potential future candidates for the treatment and evaluation of patients with multiple sclerosis and the supposed benefits they could bring in clinical settings.
Collapse
|
2
|
The Role of fMRI in the Assessment of Neuroplasticity in MS: A Systematic Review. Neural Plast 2018; 2018:3419871. [PMID: 30693023 PMCID: PMC6332922 DOI: 10.1155/2018/3419871] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 11/05/2018] [Indexed: 11/17/2022] Open
Abstract
Neuroplasticity, which is the ability of the brain to adapt to internal and external environmental changes, physiologically occurs during growth and in response to damage. The brain's response to damage is of particular interest in multiple sclerosis, a chronic disease characterized by inflammatory and neurodegenerative damage to the central nervous system. Functional MRI (fMRI) is a tool that allows functional changes related to the disease and to its evolution to be studied in vivo. Several studies have shown that abnormal brain recruitment during the execution of a task starts in the early phases of multiple sclerosis. The increased functional activation during a specific task observed has been interpreted mainly as a mechanism of adaptive plasticity designed to contrast the increase in tissue damage. More recent fMRI studies, which have focused on the activity of brain regions at rest, have yielded nonunivocal results, suggesting that changes in functional brain connections represent mechanisms of either adaptive or maladaptive plasticity. The few longitudinal studies available to date on disease evolution have also yielded discrepant results that are likely to depend on the clinical features considered and the length of the follow-up. Lastly, fMRI has been used in interventional studies to investigate plastic changes induced by pharmacological therapy or rehabilitation, though whether such changes represent a surrogate of neuroplasticity remains unclear. The aim of this paper is to systematically review the existing literature in order to provide an overall description of both the neuroplastic process itself and the evolution in the use of fMRI techniques as a means of assessing neuroplasticity. The quantitative and qualitative approach adopted here ensures an objective analysis of published, peer-reviewed research and yields an overview of up-to-date knowledge.
Collapse
|
3
|
Kim JH, Kim BS, Hwang SJ, Chang WS, Kim KW, Kwon HC, Lee YH, Chang JW. Symptom-associated change of motor-related neuromagnetic fields in a patient with multiple sclerosis: A case report. J Clin Neurosci 2018; 50:115-122. [PMID: 29439908 DOI: 10.1016/j.jocn.2018.01.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 01/08/2018] [Indexed: 11/18/2022]
Abstract
The objective of this study was to investigate functional abnormalities of the brain in a patient with multiple sclerosis (MS) by using magnetoencephalography (MEG) and a finger-tapping task. A 46-year-old woman that presented with motor weakness of left hand and was diagnosed with MS. Conventional magnetic resonance imaging demonstrated a white matter lesion with hyperintensity on T2-weighted images in the right motor area. MEG recordings were performed during the period of motor weakness and after clinical improvement. Neuromagnetic brain activation was elicited by a simple, visually cued finger movement. The Equivalent current dipole (ECD) strength of the movement-evoked field (MEF) in the affected hemisphere was significantly decreased relative to the unaffected hemisphere. After improvement in motor weakness, we found that the lower amplitude of the readiness field and decreased ECD strength of the MEF observed in affected hemisphere during motor weakness had recovered. Analysis of motor-related neuromagnetic fields revealed that MEG may be used to detect diffuse changes in the brain that are not observable by conventional imaging of white matter regions in MS. We further found that brain activities can change after improvement in motor weakness.
Collapse
Affiliation(s)
- Ji Hee Kim
- Department of Neurosurgery, Hallym University Sacred Heart Hospital, Anyang, Gyeonggi-do, Republic of Korea
| | - Bong Soo Kim
- EIT/LOFUS R&D Center, International St. Mary's Hospital, Catholic Kwandong University, Incheon, Republic of Korea
| | - Su Jeong Hwang
- Department of Neurosurgery, Brain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Won Seok Chang
- Department of Neurosurgery, Brain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ki Woong Kim
- Korean Research Institute of Standard and Science (KRISS), Daejeon, Republic of Korea
| | - Hyuk Chan Kwon
- Korean Research Institute of Standard and Science (KRISS), Daejeon, Republic of Korea
| | - Yong Ho Lee
- Korean Research Institute of Standard and Science (KRISS), Daejeon, Republic of Korea
| | - Jin Woo Chang
- Department of Neurosurgery, Brain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Wirsching I, Buttmann M, Odorfer T, Volkmann J, Classen J, Zeller D. Altered motor plasticity in an acute relapse of multiple sclerosis. Eur J Neurosci 2018; 47:251-257. [PMID: 29285814 DOI: 10.1111/ejn.13818] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 12/16/2017] [Accepted: 12/18/2017] [Indexed: 11/30/2022]
Abstract
In relapsing-remitting MS (RRMS), the symptoms of a clinical relapse subside over time. Neuroplasticity is believed to play an important compensatory role. In this study, we assessed excitability-decreasing plasticity during an acute relapse of MS and 12 weeks afterwards. Motor plasticity was examined in 19 patients with clinically isolated syndrome or RRMS during a steroid-treated relapse (t1) and 12 weeks afterwards (t2) using paired-associative stimulation (PAS10). This method combines repetitive electric nerve stimulation with transcranial magnetic stimulation of the contralateral motor cortex to model long-term synaptic depression in the human cortex. Additionally, 19 age-matched healthy controls were assessed. Motor-evoked potentials of the abductor pollicis brevis muscle were recorded before and after intervention. Clinical disability was assessed by the multiple sclerosis functional composite and the subscore of the nine-hole peg test taken as a measure of hand function. The effect of PAS10 was significantly different between controls and patients; at t1, but not at t2, baseline-normalized postinterventional amplitudes were significantly higher in patients (106 [IQR 98-137] % post10-15 and 111 [IQR 88-133] % post20-25) compared to controls (92 [IQR 85-111] % and 90 [IQR 75-102] %). Additional exploratory analysis indicated a potentially excitability-enhancing effect of PAS10 in patients as opposed to controls. Significant clinical improvement between t1 and t2 was not correlated with PAS10 effects. Our results indicate an alteration of PAS10-induced synaptic plasticity during relapse, presumably reflecting a polarity shift due to metaplastic processes within the motor cortex. Further studies will need to elucidate the functional significance of such changes for the clinical course of MS.
Collapse
Affiliation(s)
- Isabelle Wirsching
- Department of Neurology, University of Würzburg, Josef-Schneider-Str. 11, 97080, Würzburg, Germany
| | - Mathias Buttmann
- Department of Neurology, University of Würzburg, Josef-Schneider-Str. 11, 97080, Würzburg, Germany
| | - Thorsten Odorfer
- Department of Neurology, University of Würzburg, Josef-Schneider-Str. 11, 97080, Würzburg, Germany
| | - Jens Volkmann
- Department of Neurology, University of Würzburg, Josef-Schneider-Str. 11, 97080, Würzburg, Germany
| | - Joseph Classen
- Department of Neurology, University of Leipzig, 04103, Leipzig, Germany
| | - Daniel Zeller
- Department of Neurology, University of Würzburg, Josef-Schneider-Str. 11, 97080, Würzburg, Germany
| |
Collapse
|
5
|
Rudko DA, Derakhshan M, Maranzano J, Nakamura K, Arnold DL, Narayanan S. Delineation of cortical pathology in multiple sclerosis using multi-surface magnetization transfer ratio imaging. NEUROIMAGE-CLINICAL 2016; 12:858-868. [PMID: 27872808 PMCID: PMC5107650 DOI: 10.1016/j.nicl.2016.10.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 09/23/2016] [Accepted: 10/11/2016] [Indexed: 01/06/2023]
Abstract
The purpose of our study was to evaluate the utility of measurements of cortical surface magnetization transfer ratio (csMTR) on the inner, mid and outer cortical boundaries as clinically accessible biomarkers of cortical gray matter pathology in multiple sclerosis (MS). Twenty-five MS patients and 12 matched controls were recruited from the MS Clinic of the Montreal Neurological Institute. Anatomical and magnetization transfer ratio (MTR) images were acquired using 3 Tesla MRI at baseline and two-year time-points. MTR maps were smoothed along meshes representing the inner, mid and outer neocortical boundaries. To evaluate csMTR reductions suggestive of sub-pial demyelination in MS patients, a mixed model analysis was carried out at both the individual vertex level and in anatomically parcellated brain regions. Our results demonstrate that focal areas of csMTR reduction are most prevalent along the outer cortical surface in the superior temporal and posterior cingulate cortices, as well as in the cuneus and precentral gyrus. Additionally, age regression analysis identified that reductions of csMTR in MS patients increase with age but appear to hit a plateau in the outer caudal anterior cingulate, as well as in the precentral and postcentral cortex. After correction for the naturally occurring gradient in cortical MTR, the difference in csMTR between the inner and outer cortex in focal areas in the brains of MS patients correlated with clinical disability. Overall, our findings support multi-surface analysis of csMTR as a sensitive marker of cortical sub-pial abnormality indicative of demyelination in MS patients. Novel cortical MTR analysis identifies areas of sub-pial abnormality in MS patients. A greater area of sub-pial abnormality in MS exists on the outer cortical layer. Cortical regions most affected were involved in executive function and processing speed. Normalized differences between outer and inner cortex MTR correlate with EDSS in MS. This technique can be applied for clinical trials at the MRI field strength of 3 T.
Collapse
Affiliation(s)
- David A Rudko
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Mishkin Derakhshan
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Josefina Maranzano
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Kunio Nakamura
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue Cleveland, OH 44195, United States
| | - Douglas L Arnold
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Sridar Narayanan
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
6
|
Casadio M, Sanguineti V, Solaro C, Morasso PG. A Haptic Robot Reveals the Adaptation Capability of Individuals with Multiple Sclerosis. Int J Rob Res 2016. [DOI: 10.1177/0278364907084981] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A prerequisite for rehabilitation is that patients preserve their ability to adapt to novel dynamic environments, an ability that has been associated with the cerebellar system. In this study, we use a robot manipulandum to assess the ability of multiple sclerosis (MS) subjects in the early phase of the disease to adapt to a speed-dependent force field. Their performance is compared with an equal number of age-matched controls. We found that MS subjects display subtle in-coordination problems but do not significantly di fer from controls in their ability to adapt to the force field. These findings are discussed in terms of the possible benefits that MS subjects might receive from robot-assisted therapy that is specifically aimed at impaired visuomotor coordination.
Collapse
Affiliation(s)
- Maura Casadio
- Department of Informatics, Systems and Telematics University of Genova Via Opera Pia 13, 16145 Genova GE, Italy and Foundation 'Don Carlo Gnocchi' Via Cisa Vecchia, 19038 Sarzana SP, Italy,
| | - Vittorio Sanguineti
- Department of Informatics, Systems and Telematics and Research Center for Neuroscience and Neuroengineering University of Genova Via Opera Pia 13, 16145 Genova GE, Italy,
| | - Claudio Solaro
- Neurology Department, Hospital “P. Antero Micone' Via D. Oliva 22, 16158 Genova GE, Italy,
| | - Pietro G. Morasso
- Department of Informatics, Systems and Telematics University of Genova Via Opera Pia 13, 16145 Genova GE, Italy,
| |
Collapse
|
7
|
Long-term TENS treatment decreases cortical motor representation in multiple sclerosis. Neuroscience 2013; 250:1-7. [PMID: 23831423 DOI: 10.1016/j.neuroscience.2013.06.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 06/02/2013] [Accepted: 06/20/2013] [Indexed: 11/21/2022]
Abstract
This study investigated the effects of a long-term transcutaneous electrical nerve stimulation (TENS) treatment on cortical motor representation in patients with multiple sclerosis (MS). In this double-blind crossover design, patients received either TENS or sham stimulation for 3 weeks (1h per day) on the median nerve region of the most impaired hand, followed by the other stimulation condition after a washout period of 6 months. Cortical motor representation was mapped using transcranial magnetic stimulation (TMS) at the baseline and after the 3-week stimulation protocol. Our results revealed that 3 weeks of daily stimulation with TENS significantly decreased the cortical motor representation of the stimulated muscle in MS patients. Although the mechanisms underlying this decrease remain unclear, our findings indicate that TENS has the ability to induce long-term reorganization in the motor cortex of MS patients.
Collapse
|
8
|
Tacchino A, Bove M, Pedullà L, Battaglia MA, Papaxanthis C, Brichetto G. Imagined actions in multiple sclerosis patients: evidence of decline in motor cognitive prediction. Exp Brain Res 2013; 229:561-70. [PMID: 23811731 DOI: 10.1007/s00221-013-3617-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 06/10/2013] [Indexed: 10/26/2022]
Abstract
Motor imagery is a mental process during which subjects internally simulate a movement without any motor output. Mental and actual movement durations are similar in healthy adults (isochrony) while temporal discrepancies (anisochrony) could be an expression of neurological deficits on action representation. It is unclear whether patients with multiple sclerosis (PwMS) preserve the capacity to simulate their own movements. This study investigates the ability of PwMS to predict their own actions by comparing temporal features of dominant and non-dominant actual and mental actions. Fourteen PwMS and nineteen healthy subjects (HS) were asked to execute and to imagine pointing arm movements among four pairs of targets of different sizes. Task duration was calculated for both actual and mental movements by an optoelectronic device. Results showed temporal consistency and target-by-target size modulation in actual movements through the four cycles for both groups with significantly longer actual and mental movement durations in PwMS with respect to HS. An index of performance (IP) was used to examine actual/mental isochrony properties in the two groups. Statistical analysis on IP showed in PwMS significantly longer actual movement durations with respect to mental movement durations (anisochrony), more relevant for the non-dominant than dominant arm. Mental prediction of motor actions is not well preserved in MS where motor and cognitive functional changes are present. Differences in performing imagined task with dominant and non-dominant arm could be related to increased cognitive effort required for performing non-dominant movements.
Collapse
Affiliation(s)
- Andrea Tacchino
- Scientific Research Area, Italian Multiple Sclerosis Foundation (FISM), Via Operai 40, 16149 Genoa, Italy
| | | | | | | | | | | |
Collapse
|
9
|
de Lago E, Gómez-Ruiz M, Moreno-Martet M, Fernández-Ruiz J. Cannabinoids, multiple sclerosis and neuroprotection. Expert Rev Clin Pharmacol 2012; 2:645-60. [PMID: 22112258 DOI: 10.1586/ecp.09.42] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The cannabinoid signaling system participates in the control of cell homeostasis in the CNS, which explains why, in different neurodegenerative diseases including multiple sclerosis (MS), alterations in this system have been found to serve both as a pathogenic factor (malfunctioning of this system has been found at early phases of these diseases) and as a therapeutic target (the management of this system has beneficial effects). MS is an autoimmune disease that affects the CNS and it is characterized by inflammation, demyelination, remyelination, gliosis and axonal damage. Although it has been considered mainly as an inflammatory disorder, recent studies have recognized the importance of axonal loss both in the progression of the disorder and in the appearance of neurological disability, even in early stages of the disease. In recent years, several laboratories have addressed the therapeutic potential of cannabinoids in MS, given the experience reported by some MS patients who self-medicated with marijuana. Most of these studies focused on the alleviation of symptoms (spasticity, tremor, anxiety and pain) or on the inflammatory component of the disease. However, recent data also revealed the important neuroprotective action that could be exerted by cannabinoids in this disorder. The present review will be precisely centered on this neuroprotective potential, which is based mainly on antioxidant, anti-inflammatory and anti-excitotoxic properties, exerted through the activation of CB1 or CB2 receptors or other unknown mechanisms.
Collapse
Affiliation(s)
- Eva de Lago
- Departamento de Bioquímica y Biología Molecular and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Facultad de Medicina, Universidad Complutense, 28040 Madrid, Spain.
| | | | | | | |
Collapse
|
10
|
Achiron A, Chapman J, Tal S, Bercovich E, Gil H, Achiron A. Superior temporal gyrus thickness correlates with cognitive performance in multiple sclerosis. Brain Struct Funct 2012; 218:943-50. [PMID: 22790785 DOI: 10.1007/s00429-012-0440-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Accepted: 06/19/2012] [Indexed: 11/26/2022]
Abstract
Decreased cortical thickness that signifies gray matter pathology and its impact on cognitive performance is a research field with growing interest in relapsing-remitting multiple sclerosis (RRMS) and needs to be further elucidated. Using high-field 3.0 T MRI, three-dimensional T1-FSPGR (voxel size 1 × 1 × 1 mm) cortical thickness was measured in 82 regions in the left hemisphere (LH) and right hemisphere (RH) in 20 RRMS patients with low disease activity and in 20 age-matched healthy subjects that in parallel underwent comprehensive cognitive evaluation. The correlation between local cortical atrophy and cognitive performance was examined. We identified seven regions with cortical tissue loss that differed between RRMS and age-matched healthy controls. These regions were mainly located in the frontal and temporal lobes, specifically within the gyrus rectus, inferior frontal sulcus, orbital gyrus, parahippocampal gyrus, and superior temporal gyrus, with preferential left asymmetry. Increased cortical thickness was identified in two visual sensory regions, the LH inferior occipital gyrus, and the RH cuneus, implicating adaptive plasticity. Correlation analysis demonstrated that only the LH superior temporal gyrus thickness was associated with cognitive performance and its thickness correlated with motor skills (r = 0.65, p = 0.003), attention (r = 0.45, p = 0.042), and information processing speed (r = 0.50, p = 0.025). Our findings show that restricted cortical thinning occurs in RRMS patients with mild disease and that LH superior temporal gyrus atrophy is associated with cognitive dysfunction.
Collapse
Affiliation(s)
- Asaf Achiron
- Department of Neurology, Multiple Sclerosis Center, Sheba Medical Center, Sackler School of Medicine, Tel-Aviv University, Tel-Hashomer, Israel.
| | | | | | | | | | | |
Collapse
|
11
|
Horakova D, Kalincik T, Dusankova JB, Dolezal O. Clinical correlates of grey matter pathology in multiple sclerosis. BMC Neurol 2012; 12:10. [PMID: 22397707 PMCID: PMC3311149 DOI: 10.1186/1471-2377-12-10] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2011] [Accepted: 03/07/2012] [Indexed: 12/26/2022] Open
Abstract
Traditionally, multiple sclerosis has been viewed as a disease predominantly affecting white matter. However, this view has lately been subject to numerous changes, as new evidence of anatomical and histological changes as well as of molecular targets within the grey matter has arisen. This advance was driven mainly by novel imaging techniques, however, these have not yet been implemented in routine clinical practice. The changes in the grey matter are related to physical and cognitive disability seen in individuals with multiple sclerosis. Furthermore, damage to several grey matter structures can be associated with impairment of specific functions. Therefore, we conclude that grey matter damage - global and regional - has the potential to become a marker of disease activity, complementary to the currently used magnetic resonance markers (global brain atrophy and T2 hyperintense lesions). Furthermore, it may improve the prediction of the future disease course and response to therapy in individual patients and may also become a reliable additional surrogate marker of treatment effect.
Collapse
Affiliation(s)
- Dana Horakova
- Department of Neurology and Center of Clinical Neuroscience, Charles University in Prague, 1st Faculty of Medicine and General University Hospital, Charles University, Prague, Czech Republic.
| | | | | | | |
Collapse
|
12
|
Geurts JJG, Stys PK, Minagar A, Amor S, Zivadinov R. Gray matter pathology in (chronic) MS: modern views on an early observation. J Neurol Sci 2009; 282:12-20. [PMID: 19249061 DOI: 10.1016/j.jns.2009.01.018] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Revised: 01/14/2009] [Accepted: 01/22/2009] [Indexed: 01/21/2023]
Abstract
Involvement of the gray matter (GM) in the pathology of multiple sclerosis (MS) was already recognized in the early days of MS research, but the detection of (cortical) GM lesions under the microscope and with magnetic resonance imaging (MRI) techniques was initially suboptimal and could only recently be enhanced. The visualization of GM lesions in vivo opens new doors for studies focusing on clinical, especially cognitive, effects of GM pathology, as well as for monitoring of neuroprotective treatment. However, so far little is known about what causes GM pathology. In this review, several pathogenetic mechanisms will be discussed, affecting the MS brain both from the 'outside-in' and from the 'inside-out'. Also, the use and reliability of MRI atrophy measures as a monitoring tool for GM damage in the therapeutic setting will be reviewed.
Collapse
Affiliation(s)
- Jeroen J G Geurts
- Dept. of Pathology, VU University Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
13
|
|
14
|
Tedeschi G, Dinacci D, Comerci M, Lavorgna L, Savettieri G, Quattrone A, Livrea P, Patti F, Brescia Morra V, Servillo G, Orefice G, Paciello M, Prinster A, Coniglio G, Bonavita S, Di Costanzo A, Bellacosa A, Valentino P, Quarantelli M, Brunetti A, Salemi G, D’Amelio M, Simone I, Salvatore M, Bonavita V, Alfano B. Brain atrophy evolution and lesion load accrual in multiple sclerosis: a 2-year follow-up study. Mult Scler 2008; 15:204-11. [DOI: 10.1177/1352458508098270] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background To investigate in a large cohort of patients with multiple sclerosis (MS), lesion load and atrophy evolution, and the relationship between clinical and magnetic resonance imaging (MRI) correlates of disease progression. Methods Two hundred and sixty-seven patients with MS were studied at baseline and two years later using the same MRI protocol. Abnormal white matter fraction, normal appearing white matter fraction, global white matter fraction, gray matter fraction and whole brain fraction, T2-hyperintense, and T1-hypointense lesions were measured at both time points. Results The majority of patients were clinically stable, whereas MRI-derived brain tissue fractions were significantly different after 2 years. The correlation between MRI data at baseline and their variation during the follow-up showed that lower basal gray matter atrophy was significantly related with higher progression of gray matter atrophy during follow-up. The correlation between MRI parameters and disease duration showed that gray matter atrophy rate decreased with increasing disease duration, whereas the rate of white matter atrophy had a constant pattern. Lower basal gray matter atrophy was associated with increased probability of developing gray matter atrophy at follow-up, whereas gray matter atrophy progression over 2 years and new T2 lesion load were risk factors for whole brain atrophy progression. Conclusions In MS, brain atrophy occurs even after a relatively short period of time and in patients with limited progression of disability. Short-term brain atrophy progression rates differ across tissue compartments, as gray matter atrophy results more pronounced than white matter atrophy and appears to be a early phenomenon in the MS-related disease progression.
Collapse
Affiliation(s)
- G Tedeschi
- Department of Neurological Sciences, Second University of Naples, Naples, Italy; Institute Hermitage Capodimonte, Naples, Italy
| | - D Dinacci
- Department of Neurological Sciences, Second University of Naples, Naples, Italy
| | - M Comerci
- Institute of Biostructure and Bioimaging, National Research Council, Naples, Italy
| | - L Lavorgna
- Department of Neurological Sciences, Second University of Naples, Naples, Italy
| | - G Savettieri
- Department of Neurology, University of Palermo, Palermo, Italy
| | - A Quattrone
- Department of Neurology, University of Catanzaro, Catanzaro, Italy
| | - P Livrea
- Department of Neurological and Psychiatric Sciences, University of Bari, Bari, Italy
| | - F Patti
- Department of Neurology, University of Catania, Catania, Italy
| | - V Brescia Morra
- Department of Neurological Sciences, University of Naples “Federico II,” Naples, Italy
| | - G Servillo
- Department of Neurological Sciences, Second University of Naples, Naples, Italy
| | - G Orefice
- Department of Neurological Sciences, University of Naples “Federico II,” Naples, Italy
| | - M Paciello
- Department of Neurology, San Carlo Hospital, Potenza, Italy
| | - A Prinster
- Institute of Biostructure and Bioimaging, National Research Council, Naples, Italy
| | - G Coniglio
- Department of Neurology, San Carlo Hospital, Potenza, Italy
| | - S Bonavita
- Department of Neurological Sciences, Second University of Naples, Naples, Italy; Institute Hermitage Capodimonte, Naples, Italy
| | - A Di Costanzo
- Department of Neurological Sciences, Second University of Naples, Naples, Italy
| | - A Bellacosa
- Department of Neurological and Psychiatric Sciences, University of Bari, Bari, Italy
| | - P Valentino
- Department of Neurology, University of Catanzaro, Catanzaro, Italy
| | - M Quarantelli
- Institute of Biostructure and Bioimaging, National Research Council, Naples, Italy
| | - A Brunetti
- Institute of Biostructure and Bioimaging, National Research Council, Naples, Italy; Department of Diagnostic Imaging, University of Naples “Federico II,” Naples, Italy
| | - G Salemi
- Department of Neurology, University of Palermo, Palermo, Italy
| | - M D’Amelio
- Department of Neurology, University of Palermo, Palermo, Italy
| | - I Simone
- Department of Neurological and Psychiatric Sciences, University of Bari, Bari, Italy
| | - M Salvatore
- Institute of Biostructure and Bioimaging, National Research Council, Naples, Italy; Department of Diagnostic Imaging, University of Naples “Federico II,” Naples, Italy
| | - V Bonavita
- Institute Hermitage Capodimonte, Naples, Italy; Department of Neurological Sciences, University of Naples “Federico II,” Naples, Italy
| | - B Alfano
- Institute of Biostructure and Bioimaging, National Research Council, Naples, Italy
| |
Collapse
|
15
|
Affiliation(s)
- Jeroen J G Geurts
- Department of Radiology, VU University Medical Centre, Amsterdam, Netherlands.
| | | |
Collapse
|
16
|
|
17
|
Wegner C, Filippi M, Korteweg T, Beckmann C, Ciccarelli O, De Stefano N, Enzinger C, Fazekas F, Agosta F, Gass A, Hirsch J, Johansen-Berg H, Kappos L, Barkhof F, Polman C, Mancini L, Manfredonia F, Marino S, Miller DH, Montalban X, Palace J, Rocca M, Ropele S, Rovira A, Smith S, Thompson A, Thornton J, Yousry T, Matthews PM. Relating functional changes during hand movement to clinical parameters in patients with multiple sclerosis in a multi-centre fMRI study. Eur J Neurol 2008; 15:113-22. [PMID: 18217881 DOI: 10.1111/j.1468-1331.2007.02027.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We performed a prospective multi-centre study using functional magnetic resonance imaging (fMRI) to better characterize the relationships between clinical expression and brain function in patients with multiple sclerosis (MS) at eight European sites (56 MS patients and 60 age-matched, healthy controls). Patients showed greater task-related activation bilaterally in brain regions including the pre- and post-central, inferior and superior frontal, cingulate and superior temporal gyri and insula (P < 0.05, all statistics corrected for multiple comparisons). Both patients and healthy controls showed greater brain activation with increasing age in the ipsilateral pre-central and inferior frontal gyri (P < 0.05). Patients, but not controls, showed greater brain activation in the anterior cingulate gyrus and the bilateral ventral striatum (P < 0.05) with less hand dexterity. An interaction between functional activation changes in MS and age was found. This large fMRI study over a broadly selected MS patient population confirms that movement for patients demands significantly greater cognitive 'resource allocation' and suggests age-related differences in brain responses to the disease. These observations add to evidence that brain functional responses (including potentially adaptive brain plasticity) contribute to modulation of clinical expression of MS pathology and demonstrate the feasibility of a multi-site functional MRI study of MS.
Collapse
Affiliation(s)
- C Wegner
- Centre for Functional Magnetic Resonance Imaging of the Brain, University of Oxford, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
There is increasing evidence that the severity of the clinical manifestations of multiple sclerosis (MS) does not simply depend on the extent of tissue destruction, but rather represents a complex balance among tissue damage, tissue repair, and cortical reorganization. Functional magnetic resonance imaging (fMRI) provides information about the extent and nature of brain plasticity, which follows MS structural injury and might have the potential to limit the clinical manifestations of the disease. An altered recruitment of regions normally devoted to the performance of a given task and/or the recruitment of additional areas, which are not typically activated by healthy people for performing that given task, have been described in patients with MS, independent of their clinical phenotype when investigating the visual, cognitive, and motor systems. These functional changes have been related to the extent and severity of brain damage within and outside T2-visible lesions and to the involvement of specific central nervous system (CNS) structures, including the spinal cord and the optic nerve. Brain functional changes have been shown to be dynamic over time, not only after an acute relapse, but also in clinically stable patients. An increased recruitment of the cerebral networks might represent a first step of cortical reorganization with the potential to maintain a normal level of function in the course of MS. The progressive failure of these mechanisms might, on the one hand, result in the activation of previously silent "second-order" compensatory areas, and, on the other, contribute to the clinical manifestations of the disease.
Collapse
Affiliation(s)
- Maria A Rocca
- Neuroimaging Research Unit, Department of Neurology, Scientific Institute and University Ospedale San Raffaele, Milan, Italy
| | | |
Collapse
|
19
|
Marques KB, Santos LMB, Oliveira ALR. Spinal motoneuron synaptic plasticity during the course of an animal model of multiple sclerosis. Eur J Neurosci 2006; 24:3053-62. [PMID: 17156366 DOI: 10.1111/j.1460-9568.2006.05184.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
During the course of experimental autoimmune encephalomyelitis, a massive loss of motor and sensitive function occurs, which has been classically attributed to the demyelination process. In rats, the clinical signs disappear within 5 days following complete tetraplegia, indicating that demyelination might not be the only cause for the rapid evolution of the disease. The present work investigated the occurrence of experimental autoimmune encephalomyelitis-induced changes of the synaptic covering of spinal motoneurons during exacerbation and after remission. The terminals were typed with transmission electron microscopy as C-, F- and S-type. Immunohistochemical analysis of synaptophysin, glial fibrillary acidic protein and the microglia/macrophage marker F4/80 were also used in order to draw a correlation between the synaptic changes and the glial reaction. The ultrastructural analysis showed that, during exacerbation, there was a strong retraction of both F- and S-type terminals. In this sense, both the covering as well as the length of the remaining terminals suffered great reductions. However, the retracted terminals rapidly returned to apposition, although the mean length remained shorter. A certain level of sprouting may have occurred as, after remission, the number of F-terminals was greater than in the control group. The immunohistochemical analysis showed that the peak of synaptic loss was coincident with an increased macro- and microglial reaction. Our results suggest that the major changes occurring in the spinal cord network during the time course of the disease may contribute significantly to the origin of the clinical signs as well as help to explain their rapid recovery.
Collapse
MESH Headings
- Animals
- Antigens, Differentiation/metabolism
- Biomarkers/metabolism
- Disease Models, Animal
- Female
- Glial Fibrillary Acidic Protein/metabolism
- Gliosis/etiology
- Gliosis/pathology
- Gliosis/physiopathology
- Microscopy, Immunoelectron
- Motor Neurons/metabolism
- Motor Neurons/pathology
- Multiple Sclerosis/metabolism
- Multiple Sclerosis/pathology
- Multiple Sclerosis/physiopathology
- Myasthenia Gravis, Autoimmune, Experimental/metabolism
- Myasthenia Gravis, Autoimmune, Experimental/pathology
- Myasthenia Gravis, Autoimmune, Experimental/physiopathology
- Nerve Degeneration/etiology
- Nerve Degeneration/pathology
- Nerve Degeneration/physiopathology
- Nerve Regeneration/physiology
- Neuronal Plasticity/physiology
- Presynaptic Terminals/metabolism
- Presynaptic Terminals/pathology
- Rats
- Rats, Inbred Lew
- Recovery of Function/physiology
- Spinal Cord/metabolism
- Spinal Cord/pathology
- Spinal Cord/physiopathology
- Synaptophysin/metabolism
Collapse
Affiliation(s)
- K B Marques
- Departamento de Anatomia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), CP 6109, CEP 13083-970, Campinas, SP, Brazil
| | | | | |
Collapse
|
20
|
Ciccarelli O, Toosy AT, Marsden JF, Wheeler-Kingshott CM, Miller DH, Matthews PM, Thompson AJ. Functional response to active and passive ankle movements with clinical correlations in patients with primary progressive multiple sclerosis. J Neurol 2006; 253:882-91. [PMID: 16619123 DOI: 10.1007/s00415-006-0125-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2005] [Revised: 12/15/2005] [Accepted: 12/22/2005] [Indexed: 11/25/2022]
Abstract
Patients with multiple sclerosis (MS) activate a more diffuse cortical network than do healthy subjects when they perform motor tasks. This brain functional reorganisation might contribute to the limiting of disability, but it is unclear whether there is a loss of regional activation in more advanced disease. The aim of this study was to assess whether functional reorganisation diminishes in more disabled patients with primary progressive (PP) MS. The differences in the fMRI response to active and passive movements of the dominant ankle of 13 patients and 16 controls were assessed. The relationships between functional activation and disability and brain lesion load and atrophy were investigated.Patients showed greater fMRI activation than controls with passive movements in the superior temporal gyrus, rolandic operculum, and putamen. The fMRI response to active and passive movements in the ipsilateral inferior frontal gyrus was lower in patients with greater disability and greater brain T2 lesion load, respectively. Furthermore, the fMRI activation with active movements in the contralateral cerebellum was lower in patients with worse mobility. The increased activity with passive movements in regions that participate in sensori-motor integration, such as the putamen, reflects true functional reorganisation, since passive movements induce brain activation through sensory afferents only. The inverse correlation between the fMRI response in regions that are associated with motor control, and clinical or MRI measures of disease progression, suggests that there is a loss of distributed activation in more disabled patients. This may inform future treatment strategies.
Collapse
Affiliation(s)
- O Ciccarelli
- Department of Headache, Brain Injury and Neurorehabilitation, Institute of Neurology, University College London, London, UK.
| | | | | | | | | | | | | |
Collapse
|
21
|
Pantano P, Mainero C, Caramia F. Functional brain reorganization in multiple sclerosis: evidence from fMRI studies. J Neuroimaging 2006; 16:104-14. [PMID: 16629730 DOI: 10.1111/j.1552-6569.2006.00029.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
In patients with multiple sclerosis (MS), the severity of clinical signs is not closely related to indices of structural brain damage provided by conventional magnetic resonance MR. Accordingly, patients with MS may show symptom recovery while progressively accumulating tissue damage. Changes in functional organization of the cerebral cortex have been reported in functional magnetic resonance (fMRI) studies that have compared the activation patterns during motor, visual, and cognitive tasks of patients with MS with those of healthy controls. fMRI studies on MS have provided the results that are difficult to compare and may be discrepant because of differences in the criteria used for patient selection, the activation paradigm, the experimental design, and the MR acquisition parameters. Nevertheless, they do provide a new, interesting tool that sheds light on how the brain changes its functional organization in response to MS. In patients with MS, functional brain reorganization mainly consists of an increase in the extent of activation of the brain areas used by healthy subjects, as well as the recruitment of additional brain areas. These findings have been interpreted as adaptive or compensatory mechanisms that allow normal performance despite neural damage or loss. However, brain functional activity may also change in response to clinical disability, though the precise role of brain functional changes in MS has yet to fully understand. Longitudinal studies designed to explore the effects of both rehabilitation and pharmacological agents on brain plasticity might shed light on this issue.
Collapse
Affiliation(s)
- Patrizia Pantano
- Department of Neurological Sciences, University La Sapienza, Viale dell'Università 30, 00185 Rome, Italy.
| | | | | |
Collapse
|
22
|
Forn C, Barros-Loscertales A, Escudero J, Belloch V, Campos S, Parcet MA, Avila C. Cortical reorganization during PASAT task in MS patients with preserved working memory functions. Neuroimage 2006; 31:686-91. [PMID: 16466933 DOI: 10.1016/j.neuroimage.2005.12.030] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2005] [Revised: 11/21/2005] [Accepted: 12/16/2005] [Indexed: 11/24/2022] Open
Abstract
Cortical reorganization in multiple sclerosis (MS) is defined as a compensatory mechanism which requires MS patients to overactivate specific brain areas in order to perform the task as controls. To investigate this process with the Paced Auditory Serial Addition Test (PASAT) task, we selected 15 MS patients who performed the PASAT task within-normal limits and 10 healthy controls. Once selected, we used functional magnetic resonance imaging (fMRI) to investigate brain areas involved in PASAT performance in both groups. Results showed that the task activated the left frontal (BA6 and 9) and parietal cortex (BA7 and 40) in both groups, but MS patients showed a stronger activation in the left prefrontal cortex (BA9, 44 and 45) when compared with controls. These results confirmed those obtained post hoc by Audoin et al. [Audoin, B., Ibarrola, D., Ranjeva, J.P., Confort-Gouny, S., Malikova, I., Ali-Chérif, A.M., Pelletier, J., Cozzone, P., et al., 2003. Compensatory cortical activation observed by fMRI during cognitive task at the earliest stage of MS. Hum. Brain Mapp. 20, 51-58], and we interpreted this as showing true cortical reorganization.
Collapse
Affiliation(s)
- C Forn
- Dept. Psicologia, Campus Riu Sec, Fac. Ciencies Humanes i Socials, Universitat Jaume I, e-12071 Castelló, Spain
| | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
There is increasing evidence that the severity of the clinical manifestations of multiple sclerosis (MS) does not result simply from the extent of tissue destruction, rather it represents a complex balance between tissue damage, tissue repair and cortical reorganization. Functional magnetic resonance imaging provides information regarding the extent and nature of brain plasticity following MS-related structural injury, with the potential to limit the clinical manifestations of the disease. An altered recruitment of regions devoted normally to the performance of a given task and/or the recruitment of additional areas that are not typically activated by healthy people for performing that given task have been described in patients with MS, independent of their clinical phenotype, when investigating visual, cognitive and motor systems. These functional changes have been related not only to the extent and severity of brain damage within and outside T2-visible lesions and to the involvement of specific brain structures, but also to the degree of spinal cord and optic nerve involvement. It has also been suggested that an altered recruitment of specific brain regions might be associated with the appearance of clinical symptoms in MS, such as fatigue. Brain functional changes have been shown to be dynamic over time, not only after an acute relapse, but also in clinically stable patients. More recently, in patients at the earliest clinical stage of the disease, it has been shown that such changes might contribute to predicting the evolution to definite MS, and it has been postulated that dynamic changes of brain cortical activations might occur with the progression of the disease. An increased recruitment of the cerebral networks might represent the first step of cortical reorganization with the potential to maintain a normal level of function in the course of MS. The progressive failure of these mechanisms might, on the one hand, result in the activation of previously silent second-order compensatory areas, and on the other, contribute to the accumulation of irreversible disability.
Collapse
|
24
|
Filippi M, Rocca MA. MRI evidence for multiple sclerosis as a diffuse disease of the central nervous system. J Neurol 2005; 252 Suppl 5:v16-24. [PMID: 16254697 DOI: 10.1007/s00415-005-5004-5] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The classical view of MS as a chronic inflammatory demyelinating disease leading to the formation of focal central nervous system (CNS) white matter (WM) lesions has been recently challenged by pathological studies and by the extensive application of modern MRI-based techniques. There is now overwhelming evidence supporting the following statements: MS causes widespread tissue damage in the normal-appearing white matter (NAWM) of the brain and spinal cord, whose extent and severity is more strictly associated to the clinical manifestations of the disease than the extent of focal pathology. Discrete, macroscopic lesions are just the tip of the iceberg of MS pathology. Grey matter (GM) damage is a consistent feature of all MS phenotypes, which is progressive from the start of the relapsing-remitting phase of the disease. As is the case for WM, GM damage is also a mixture of focal lesions and diffuse pathology. High-field strength MR scanners are improving our ability to image focal GM lesions and modern MR-based techniques are enabling us to quantify in vivo the extent and severity of GM pathology, which have been shown to correlate only moderately with the amount of WM changes. At least part of GM pathology in MS is not secondary to retrograde degeneration of fibers traversing WM lesions. The neurodegenerative component of the disease is not a late phenomenon and it is not completely driven by inflammatory demyelination. In fact, neurodegeneration occurs very early in the course of MS and the correlation between MRI measures of inflammation and neurodegeneration is weak in all disease phases. The interplay of inflammation and neurodegeneration is a complex and still poorly understood phenomenon. At least part of MS-related neurodegeneration is not directly driven by Wallerian degeneration. Functional cortical changes can be seen in virtually all MS patients and are likely to play a central role in the ability of the MS brain to respond to tissue injury and, hence, limit the functional consequences of structural damage. MS disability is not just the result of tissue destruction but rather a balance between tissue destruction, tissue repair and adaptive cortical reorganization. All of this calls for the concept of MS as a focal, inflammatory demyelinating, WM disease to be reexamined and to start viewing MS as a diffuse CNS disease with an important neurodegenerative component. This is central for identifying novel and effective treatment strategies.
Collapse
Affiliation(s)
- Massimo Filippi
- Neuroimaging Research Unit, Dept. of Neurology Scientific Institute and University Ospedale San Raffaele, Via Olgettina 60, 20132, Milan, Italy.
| | | |
Collapse
|
25
|
Toosy AT, Hickman SJ, Miszkiel KA, Jones SJ, Plant GT, Altmann DR, Barker GJ, Miller DH, Thompson AJ. Adaptive cortical plasticity in higher visual areas after acute optic neuritis. Ann Neurol 2005; 57:622-33. [PMID: 15852380 DOI: 10.1002/ana.20448] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The ability to distinguish adaptive cortical reorganization may help to target future therapeutic strategies after neurological insult. We investigated cortical plasticity by prospectively applying visual functional magnetic resonance imaging (fMRI) and optic nerve MRI to 20 patients with acute optic neuritis at baseline, 1, 3, 6, and 12 months. We performed three types of correlation analyses to investigate the relationships between fMRI activity, clinical function, and optic nerve structure. The first analysis directly correlated the fMRI response to clinical function or optic nerve structure and found dynamic relations especially within the first 3 months. The second analysis used a novel technique that modeled the fMRI response and optic nerve structure together with clinical function, to determine the contribution fMRI made to clinical function after accounting for structural factors. Significant effects were found at baseline only, within the right peristriate cortex, and bilaterally in the lateral occipital complexes, which are normally involved in higher order visual processing. The third analysis investigated the relation between the modeled visual recovery rate and fMRI response but found no significant effects. The key findings of this study are from the second analysis and suggest a genuine adaptive role for cortical reorganization within extrastriate visual areas early after optic neuritis.
Collapse
Affiliation(s)
- Ahmed T Toosy
- Department of Headache, Brain Injury and Rehabilitation, Institute of Neurology, University College London, London, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Audoin B, Van Au Duong M, Ranjeva J, Ibarrola D, Malikova I, Confort‐Gouny S, Soulier E, Viout P, Ali‐Chérif A, Pelletier J, Cozzone PJ. Magnetic resonance study of the influence of tissue damage and cortical reorganization on PASAT performance at the earliest stage of multiple sclerosis. Hum Brain Mapp 2005; 24:216-28. [PMID: 15543553 PMCID: PMC6871730 DOI: 10.1002/hbm.20083] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We sought to determine the influence of tissue damage and the potential impact of cortical reorganization on the performance to the Paced Auditory Serial Addition Test (PASAT) in patients at the earliest stage of multiple sclerosis (MS). Magnetization transfer ratio (MTR) imaging and functional magnetic resonance imaging (fMRI) experiments using PASAT as paradigm were carried out in 18 patients with clinically isolated syndrome suggestive of MS (CISSMS) compared to 18 controls. MTR histogram analyses showed structural abnormalities in patients involving the normal-appearing white matter (NAWM) but also the gray matter (GM). Mean PASAT scores were significantly lower in the group of patients taken as a whole, and were correlated with the mean NAWM MTR value. No correlation was observed between PASAT scores and GM MTR. However, in the subgroup of patients with normal PASAT performance (n = 9), fMRI showed larger activations in bilateral Brodmann area 45 (BA45) and right BA44 compared to that in controls (n = 18). In these areas with potentially compensatory reorganization, the whole group of patients (n = 18) showed significantly greater activation than controls (n = 18). Activation in the right BA45 was inversely correlated with the mean NAWM MTR and the peak position of GM MTR histograms of patients. This study indicates that even at the earliest stage of MS, cortical reorganization is present inside the executive system of working memory and could tend to limit the determinant functional impact of NAWM injury on the execution of the PASAT.
Collapse
Affiliation(s)
- Bertrand Audoin
- Centre de Résonance Magnétique Biologique et Médicale, (CRMBM), UMR CNRS 6612, Faculté de Médecine, Marseille, France
- Service de Neurologie, Hôpital de la Timone, Marseille, France
| | - My Van Au Duong
- Centre de Résonance Magnétique Biologique et Médicale, (CRMBM), UMR CNRS 6612, Faculté de Médecine, Marseille, France
| | - Jean‐Philippe Ranjeva
- Centre de Résonance Magnétique Biologique et Médicale, (CRMBM), UMR CNRS 6612, Faculté de Médecine, Marseille, France
| | - Danielle Ibarrola
- Centre de Résonance Magnétique Biologique et Médicale, (CRMBM), UMR CNRS 6612, Faculté de Médecine, Marseille, France
| | - Irina Malikova
- Centre de Résonance Magnétique Biologique et Médicale, (CRMBM), UMR CNRS 6612, Faculté de Médecine, Marseille, France
- Service de Neurologie, Hôpital de la Timone, Marseille, France
| | - Sylviane Confort‐Gouny
- Centre de Résonance Magnétique Biologique et Médicale, (CRMBM), UMR CNRS 6612, Faculté de Médecine, Marseille, France
| | - Elisabeth Soulier
- Centre de Résonance Magnétique Biologique et Médicale, (CRMBM), UMR CNRS 6612, Faculté de Médecine, Marseille, France
| | - Patrick Viout
- Centre de Résonance Magnétique Biologique et Médicale, (CRMBM), UMR CNRS 6612, Faculté de Médecine, Marseille, France
| | | | - Jean Pelletier
- Centre de Résonance Magnétique Biologique et Médicale, (CRMBM), UMR CNRS 6612, Faculté de Médecine, Marseille, France
- Service de Neurologie, Hôpital de la Timone, Marseille, France
| | - Patrick J. Cozzone
- Centre de Résonance Magnétique Biologique et Médicale, (CRMBM), UMR CNRS 6612, Faculté de Médecine, Marseille, France
| |
Collapse
|
27
|
Thickbroom GW, Byrnes ML, Archer SA, Kermode AG, Mastaglia FL. Corticomotor organisation and motor function in multiple sclerosis. J Neurol 2005; 252:765-71. [PMID: 15750708 DOI: 10.1007/s00415-005-0728-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2004] [Revised: 10/30/2004] [Accepted: 11/09/2004] [Indexed: 10/25/2022]
Abstract
Our objective was to determine whether there are changes in the corticomotor map for the hand in multiple sclerosis, and whether these changes correlate with indices of motor function and measures of corticomotor conduction or excitability. Transcranial magnetic stimulation (TMS) maps, motor evoked potential (MEP) latency and amplitude, motor threshold and EDSS and Purdue-pegboard measurements were made in 26 subjects with relapsing-remitting multiple sclerosis. Correlations were sought between these measurements using the Pearson product-moment correlation with a level of significance of p = 0.05 (two-tailed). Map displacement was positively correlated with MEP latency (p = 3 x 10(-4)) and EDSS (p = 0.007), and negatively correlated with Purdue score (p = 4 x 10(-4)). Purdue scores correlated with all MEP parameters (latency, p = 4 x 10(-10); threshold, p = 4 x 10(-6); amplitude, p = 0.003). We conclude that motor reorganisation is associated with impaired corticomotor conduction and may reflect a process of neural plasticity associated with axonal demyelination in MS. An understanding of motor function in MS should incorporate models of both axonal demyelination and conduction deficits as well as neural plasticity.
Collapse
Affiliation(s)
- Gary W Thickbroom
- Centre for Neuromuscular and Neurological Disorders M518, University of Western Australia, Queen Elizabeth II Medical Centre, Nedlands, WA 6009, Australia.
| | | | | | | | | |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW The advent of magnetic resonance imaging provided a powerful tool for monitoring the dynamics of pathological changes in multiple sclerosis, but conventional approaches offer only limited information that is directly relevant to clinical progression. Continued developments of imaging methods and their use for diagnosis, monitoring pathology and understanding disease progression are reviewed here. RECENT FINDINGS Magnetic resonance imaging is now well established as a clinical test for multiple sclerosis, but the specific ways in which imaging information should best be incorporated into diagnostic criteria are still debated. New data defining the substantial pathology in grey matter, regional variation in the progression of pathology and the relationship between the spatial distribution of pathological changes and symptoms are providing an increasingly compelling description of changes relevant to disability. Molecular-imaging approaches promise much more detailed descriptions. Functional magnetic resonance imaging, which suggests that adaptive functional changes could limit clinical expression of pathology, are providing further clues to the link between measures of pathology and disability. SUMMARY New data further reinforce the view that pathology relevant to clinical progression of multiple sclerosis can be defined by imaging. A range of biologically more specific markers are becoming available using positron emission tomography, as well as magnetic resonance imaging.
Collapse
Affiliation(s)
- Paul M Matthews
- Centre for Functional Magnetic Resonance Imaging of the Brain, Department of Clinical Neurology, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK.
| |
Collapse
|
29
|
Rocca MA, Gallo A, Colombo B, Falini A, Scotti G, Comi G, Filippi M. Pyramidal tract lesions and movement-associated cortical recruitment in patients with MS. Neuroimage 2004; 23:141-7. [PMID: 15325360 DOI: 10.1016/j.neuroimage.2004.05.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2003] [Revised: 04/14/2004] [Accepted: 05/04/2004] [Indexed: 10/26/2022] Open
Abstract
Cortical functional changes, with the potential to limit the functional consequences of tissue injury, have been shown in patients with multiple sclerosis (MS). In this study, we assessed the influence of MS-related tissue damage of the brain portion of the left pyramidal tract on the corresponding movement-associated patterns of cortical recruitment in a large sample of MS patients when performing a simple motor task with their fully normal functioning right upper limbs. We investigated 76 right-handed patients with definite MS. In each subject, functional magnetic resonance imaging (fMRI) was acquired during the performance of a simple motor task with the dominant, right upper limb. During the same session, dual-echo, magnetization transfer (MT) and diffusion tensor (DT) MRI sequences were also obtained to quantify the extent and the severity of pyramidal tract damage. Lesions along the left pyramidal tract were identified in 43 patients. Compared to patients without pyramidal tract lesions, patients with such lesions had more significant activations of the contralateral primary sensorimotor cortex (SMC), secondary sensorimotor cortex (SII), inferior central sulcus, and cingulate motor area (CMA). They also showed more significant activations of several regions of the ipsilateral hemisphere, including the primary SMC and the precuneus. In these patients, T2 lesion load of left pyramidal tract was correlated with the extent of activation of the contralateral primary SMC (r2 = 0.25, P < 0.0001), whereas no correlations were found between the extent of fMRI activations and the severity of intrinsic lesion damage, as well as with left pyramidal tract normal-appearing white matter damage. This study shows that, in patients with MS, following injury of the motor pathways, there is an increased recruitment of a widespread sensorimotor network, which is likely to contribute to limit the appearance of overt clinical deficits.
Collapse
Affiliation(s)
- Maria A Rocca
- Neuroimaging Research Unit, Scientific Institute and University Ospedale San Raffaele, Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
30
|
John Wiley & Sons, Ltd.. Current awareness in NMR in biomedicine. NMR IN BIOMEDICINE 2003; 16:510-517. [PMID: 14719526 DOI: 10.1002/nbm.806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
|