1
|
Fang JL, Loukotková L, Chitranshi P, Gamboa da Costa G, Beland FA. Effects of human sulfotransferases on the cytotoxicity of 12-hydroxynevirapine. Biochem Pharmacol 2018; 155:455-467. [DOI: 10.1016/j.bcp.2018.07.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/14/2018] [Indexed: 11/16/2022]
|
2
|
Fang B. RAS signaling and anti-RAS therapy: lessons learned from genetically engineered mouse models, human cancer cells, and patient-related studies. Acta Biochim Biophys Sin (Shanghai) 2016; 48:27-38. [PMID: 26350096 DOI: 10.1093/abbs/gmv090] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 07/09/2015] [Indexed: 12/13/2022] Open
Abstract
Activating mutations of oncogenic RAS genes are frequently detected in human cancers. The studies in genetically engineered mouse models (GEMMs) reveal that Kras-activating mutations predispose mice to early onset tumors in the lung, pancreas, and gastrointestinal tract. Nevertheless, most of these tumors do not have metastatic phenotypes. Metastasis occurs when tumors acquire additional genetic changes in other cancer driver genes. Studies on clinical specimens also demonstrated that KRAS mutations are present in premalignant tissues and that most of KRAS mutant human cancers have co-mutations in other cancer driver genes, including TP53, STK11, CDKN2A, and KMT2C in lung cancer; APC, TP53, and PIK3CA in colon cancer; and TP53, CDKN2A, SMAD4, and MED12 in pancreatic cancer. Extensive efforts have been devoted to develop therapeutic agents that target enzymes involved in RAS posttranslational modifications, that inhibit downstream effectors of RAS signaling pathways, and that kill RAS mutant cancer cells through synthetic lethality. Recent clinical studies have revealed that sorafenib, a pan-RAF and VEGFR inhibitor, has impressive benefits for KRAS mutant lung cancer patients. Combination therapy of MEK inhibitors with either docetaxel, AKT inhibitors, or PI3K inhibitors also led to improved clinical responses in some KRAS mutant cancer patients. This review discusses knowledge gained from GEMMs, human cancer cells, and patient-related studies on RAS-mediated tumorigenesis and anti-RAS therapy. Emerging evidence demonstrates that RAS mutant cancers are heterogeneous because of the presence of different mutant alleles and/or co-mutations in other cancer driver genes. Effective subclassifications of RAS mutant cancers may be necessary to improve patients' outcomes through personalized precision medicine.
Collapse
Affiliation(s)
- Bingliang Fang
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
3
|
Fang JL, Wu Y, Gamboa da Costa G, Chen S, Chitranshi P, Beland FA. Human Sulfotransferases Enhance the Cytotoxicity of Tolvaptan. Toxicol Sci 2015; 150:27-39. [PMID: 26660633 DOI: 10.1093/toxsci/kfv311] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Tolvaptan, a vasopressin receptor 2 antagonist used to treat hyponatremia, has recently been reported to be associated with liver injury. Sulfotransferases (SULTs) have been implicated as important detoxifying and/or activating enzymes for numerous xenobiotics, drugs, and endogenous compounds. To characterize better the role of SULTs in tolvaptan metabolism, HEK293 cells stably overexpressing 12 human SULTs were generated. Using these cell lines, the extent of tolvaptan sulfate formation was assessed by reversed-phase high-performance liquid chromatography through comparison to a synthetic standard. Of the 12 known human SULTs, no detectable sulfation of tolvaptan was observed with SULT1A1, SULT1A2, SULT1A3, SULT1C2, SULT1C4, SULT4A1, or SULT6B1. The affinity of individual SULT isozymes, as determined by Km analysis, was SULT1C3 >> SULT2A1 > SULT2B1 ∼ SULT1B1 > SULT1E1. The half inhibitory concentration of tolvaptan on cell growth in HEK293/SULT1C3 cells and HEK293/CYP3A4 & SULT1C3 cells was significantly lower than that in the corresponding HEK293/vector cells or HEK293/CYP3A4 & SULT vector cells. Moreover, exposing cells to tolvaptan in the presence of cyclosporine A, an inhibitor of the drug efflux transporters, significantly increased the intracellular levels of tolvaptan sulfate and decreased the cell viability in HEK293/SULT1C3 cells. These data indicate that sulfation increased the cytotoxicity of tolvaptan.
Collapse
Affiliation(s)
- Jia-Long Fang
- Division of Biochemical Toxicology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, Arkansas 72079
| | - Yuanfeng Wu
- Division of Biochemical Toxicology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, Arkansas 72079
| | - Gonçalo Gamboa da Costa
- Division of Biochemical Toxicology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, Arkansas 72079
| | - Si Chen
- Division of Biochemical Toxicology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, Arkansas 72079
| | - Priyanka Chitranshi
- Division of Biochemical Toxicology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, Arkansas 72079
| | - Frederick A Beland
- Division of Biochemical Toxicology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, Arkansas 72079
| |
Collapse
|
4
|
Fang B, Mehran RJ, Heymach JV, Swisher SG. Predictive biomarkers in precision medicine and drug development against lung cancer. CHINESE JOURNAL OF CANCER 2015; 34:295-309. [PMID: 26134262 PMCID: PMC4593363 DOI: 10.1186/s40880-015-0028-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 06/04/2015] [Indexed: 02/06/2023]
Abstract
The molecular characterization of various cancers has shown that cancers with the same origins, histopathologic diagnoses, and clinical stages can be highly heterogeneous in their genetic and epigenetic alterations that cause tumorigenesis. A number of cancer driver genes with functional abnormalities that trigger malignant transformation and that are required for the survival of cancer cells have been identified. Therapeutic agents targeting some of these cancer drivers have been successfully developed, resulting in substantial improvements in clinical symptom amelioration and outcomes in a subset of cancer patients. However, because such therapeutic drugs often benefit only a limited number of patients, the successes of clinical development and applications rely on the ability to identify those patients who are sensitive to the targeted therapies. Thus, biomarkers that can predict treatment responses are critical for the success of precision therapy for cancer patients and of anticancer drug development. This review discusses the molecular heterogeneity of lung cancer pathogenesis; predictive biomarkers for precision medicine in lung cancer therapy with drugs targeting epidermal growth factor receptor (EGFR), anaplastic lymphoma kinase (ALK), c-ros oncogene 1 receptor tyrosine kinase (ROS1), and immune checkpoints; biomarkers associated with resistance to these therapeutics; and approaches to identify predictive biomarkers in anticancer drug development. The identification of predictive biomarkers during anticancer drug development is expected to greatly facilitate such development because it will increase the chance of success or reduce the attrition rate. Additionally, such identification will accelerate the drug approval process by providing effective patient stratification strategies in clinical trials to reduce the sample size required to demonstrate clinical benefits.
Collapse
Affiliation(s)
- Bingliang Fang
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Reza J Mehran
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - John V Heymach
- Department of Thoracic and Head/Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Stephen G Swisher
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
5
|
Marklund M, Landberg R, Andersson R, Aman P, Kamal-Eldin A. Alkylresorcinol metabolism in Swedish adults is affected by factors other than intake of whole-grain wheat and rye. J Nutr 2012; 142:1479-86. [PMID: 22739366 DOI: 10.3945/jn.112.159244] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The urinary alkylresorcinol (AR) metabolites, 3,5-dihydroxybenzoic acid (DHBA) and 3-(3,5-dihydroxyphenyl)-propanoic acid (DHPPA), could potentially serve as biomarkers for intake of whole-grain (WG) wheat and rye. Excretion of AR metabolites is largely dependent on the intake of AR but may also be influenced by other factors. This study aimed to investigate the validity of free and conjugated AR metabolites as biomarkers for WG intake of wheat and rye and to identify potential determinants of AR metabolites in urine. We quantified free aglycones and conjugates of AR metabolites in 24-h urine collections from 52 free-living Swedish adults and calculated correlation coefficients between urinary AR metabolite excretion and self-reported WG intake. We used partial least-squares regression to identify possible determinants of urinary AR metabolites. Approximately 50% of urinary AR metabolites were found as conjugates. Excretions of individually quantified free and conjugated AR metabolites and their sums were correlated to self-reported intake of WG rye and wheat (r = 0.50-0.68; P < 0.001). Excretion of urinary AR metabolites was mainly dependent on intake of 2 major dietary AR homologs, C19:0 and C21:0. Sex, BMI, and vitamin C intake were identified as determinants of the proportion of free and glucuronidated DHPPA in the present study. Urinary AR metabolites may be useful in reflecting short-term to medium-term intake of WG, but urine samples should be deconjugated prior to quantification. Anthropometric and dietary factors affecting the proportion of conjugated AR metabolites in urine may to some extent influence AR elimination and thereby the performance of urinary AR metabolites as biomarkers.
Collapse
Affiliation(s)
- Matti Marklund
- Department of Food Science, BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
6
|
Kang JS, Jeon YJ, Suh J, Park SK, Yang KH, Kim HM. 2-Acetylaminofluorene inhibits interleukin-1β production in LPS-stimulated macrophages by blocking NF-κB/Rel activation. Cancer Lett 2004; 203:91-8. [PMID: 14670622 DOI: 10.1016/j.canlet.2003.08.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In the present study, we demonstrate the inhibitory effect of 2-acetylaminofluorene (AAF) on interleukin-1beta (IL-1beta) gene expression in lipopolysaccharide (LPS)-stimulated macrophages. Acetylaminofluorene inhibited IL-1 production in LPS-stimulated splenic macrophages and RAW 264.7 cells. Additionally, AAF also suppressed LPS-induced mRNA expression of IL-1beta in macrophages. To further characterize the molecular mechanism responsible for AAF-mediated suppression of IL-1beta, we investigated the effect of AAF on LPS-mediated activation of transcription factors, such as NF-kappaB, AP-1, CRE and NF-IL6, which are known to be important for LPS-induced gene expression of IL-1beta. Treatment of AAF caused a dose-related inhibition of LPS-induced NF-kappaB/Rel transcriptional activation, while the transcriptional activation of AP-1, CRE and NF-IL6 was not affected by AAF. Furthermore, LPS-induced NF-kappaB/Rel DNA binding was also suppressed by AAF treatment. These results suggest that AAF inhibits IL-1beta gene expression by blocking NF-kappaB/Rel activation.
Collapse
Affiliation(s)
- Jong Soon Kang
- Biopotency Evaluation Laboratory, Korea Research Institute of Bioscience and Biotechnology, 52 Oun-dong, Yuseong-gu, 305-333 Taejon, South Korea
| | | | | | | | | | | |
Collapse
|
7
|
Sprague CL, Elfarra AA. Detection of carboxylic acids and inhibition of hippuric acid formation in rats treated with 3-butene-1,2-diol, a major metabolite of 1,3-butadiene. Drug Metab Dispos 2003; 31:986-92. [PMID: 12867486 DOI: 10.1124/dmd.31.8.986] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Epidemiological studies have indicated that 1,3-butadiene exposure is associated with an increased risk of leukemia. In human liver microsomes, 1,3-butadiene is rapidly oxidized to butadiene monoxide, which can then be hydrolyzed to 3-butene-1,2-diol (BDD). In this study, BDD and several potential metabolites were characterized in the urine of male B6C3F1 mice and Sprague-Dawley rats after BDD administration (i.p.). Rats given 1420 micromol kg(-1) BDD excreted significantly greater amounts of BDD relative to rats administered 710 micromol kg(-1) BDD. Rats administered 1420 or 2840 micromol kg(-1) BDD excreted significantly greater amounts of BDD per kilogram of body weight than mice given an equivalent dose. Trace amounts of 1-hydroxy-2-butanone and the carboxylic acid metabolites, crotonic acid, propionic acid, and 2-ketobutyric acid, were detected in mouse and rat urine after BDD administration. Because of the identification of the carboxylic acid metabolites and because of the known ability of carboxylic acids to conjugate coenzyme A, which is critical for hippuric acid formation, the effect of BDD treatment on hippuric acid concentrations was investigated. Rats given 1420 or 2272 micromol kg(-1) BDD had significantly elevated ratios of benzoic acid to hippuric acid in the urine after treatment compared with control urine. However, this effect was not observed in mice administered 1420 or 2840 micromol kg(-1) BDD. Collectively, the results demonstrate species differences in the urinary excretion of BDD and show that BDD administration in rats inhibits hippuric acid formation. The detection of 1-hydroxy-2-butanone and the carboxylic acids also provides insight regarding pathways of BDD metabolism in vivo.
Collapse
|
8
|
Lewis AJ, Otake Y, Walle UK, Walle T. Sulphonation of N-hydroxy-2-acetylaminofluorene by human dehydroepiandrosterone sulphotransferase. Xenobiotica 2000; 30:253-61. [PMID: 10752640 DOI: 10.1080/004982500237640] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
1. The aim was to determine which human recombinant sulphotransferase (ST) isoform(s) were responsible for the sulphonation and, thus, potential further bioactivation of the classical hepatic procarcinogen N-hydroxy-2-acetylaminofluorene (N-OH-2AAF). 2. N-OH-2AAF was incubated together with the cosubstrate 3'-phosphoadenosine-5'-phosphosulphate (PAPS) and either human liver cytosol or recombinant P-form phenolsulphotransferase (P-PST), M-form PST, dehydroepiandrosterone-ST (DHEA-ST) or oestrogen ST (EST). Formation of 3'-phosphoadenosine-5'-phosphate (PAP) from PAPS, measured by HPLC, was used as the assay for determination of sulphoconjugation rates. 3. The liver cytosol produced a 100% increase in PAP formation in the presence of 200 microM N-OH-2AAF as compared with baseline levels (p < 0.01), corresponding to a rate of 19 pmol/min/mg protein. Recombinant P-PST, however, was without effect. This is in contrast to previous suggestions using crude enzyme preparations. Like P-PST, recombinant M-PST and EST did not sulphonate N-OH-2AAF. On the other hand, recombinant DHEA-ST produced a 161% increase in PAP formation in the presence of 200 microM N-OH-2AAF as compared with baseline values (p < 0.001). 4. Kinetic studies of N-OH-2AAF sulphonation by DHEA-ST and human liver cytosol gave similar apparent Kms. Interestingly, the Vmax for N-OH-2AAF sulphonation by DHEA-ST was very similar to that of DHEA, the natural substrate for DHEA-ST. 5. This is the first paper to demonstrate the involvement of the human DHEA-ST in the sulphonation of an N-hydroxylated aromatic amide carcinogen.
Collapse
Affiliation(s)
- A J Lewis
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston 29425, USA
| | | | | | | |
Collapse
|
9
|
Affiliation(s)
- R N Loeppky
- Department of Chemistry, University of Missouri, Columbia 65211, USA
| |
Collapse
|
10
|
Sakakibara Y, Yanagisawa K, Katafuchi J, Ringer DP, Takami Y, Nakayama T, Suiko M, Liu MC. Molecular cloning, expression, and characterization of novel human SULT1C sulfotransferases that catalyze the sulfonation of N-hydroxy-2-acetylaminofluorene. J Biol Chem 1998; 273:33929-35. [PMID: 9852044 DOI: 10.1074/jbc.273.51.33929] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Upon sulfonation, carcinogenic hydroxyarylamines such as N-hydroxy-2-acetylaminofluorene (N-OH-2AAF) can be further activated to form ultimate carcinogens in vivo. Previous studies have shown that a SULT1C1 sulfotransferase is primarily responsible for the sulfonation of N-OH-2AAF in rat liver. In the present study, two novel human sulfotransferases shown to be members of the SULT1C sulfotransferase subfamily based on sequence analysis have been cloned, expressed, and characterized. Comparisons of the deduced amino acid sequence encoded by the human SULT1C sulfotransferase cDNA 1 reveal 63.7, 61.6, and 85.1% identity to the amino acid sequences of rat SULT1C1 sulfotransferase, mouse SULT1C1 sulfotransferase, and rabbit SULT1C sulfotransferase. In contrast, the deduced amino acid sequence of the human SULT1C sulfotransferase 2 cDNA displays 62.9, 63.1, 63.1, and 62.5% identity to the amino acid sequences of the human SULT1C sulfotransferase 1, rat SULT1C1 sulfotransferase, mouse SULT1C1 sulfotransferase, and rabbit SULT1C sulfotransferase. Recombinant human SULT1C sulfotransferases 1 and 2, expressed in Escherichia coli and purified to near electrophoretic homogeneity, were shown to cross-react with the antiserum against the rat liver SULT1C1 sulfotransferase and exhibited sulfonating activities with N-OH-2AAF as substrate. Tissue-specific expression of these novel human SULT1C sulfotransferases were examined by employing the Northern blotting technique. The results provide a foundation for the investigation into the functional relevance of these new SULT1C sulfotransferases in different human tissues/organs.
Collapse
Affiliation(s)
- Y Sakakibara
- Department of Biochemistry, University of Texas Health Center, Tyler, Texas 75710, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Suzuki-Kurasaki M, Yoshioka T, Uematsu T. Purification and characterization of guinea-pig liver microsomal deacetylase involved in the deacetylation of the O-glucoside of N-hydroxyacetanilide. Biochem J 1997; 325 ( Pt 1):155-61. [PMID: 9224641 PMCID: PMC1218540 DOI: 10.1042/bj3250155] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A microsomal deacetylase that catalyses the deacetylation of the O-glucoside of N-hydroxyacetanilide (GHA) was purified from guinea-pig liver. The activity was located exclusively in the microsomes and not detected in the cytosol. The purified GHA deacetylase was a trimeric protein with a molecular mass of 160+/-10 (S.D.) kDa composed of subunits of 53+/-2 kDa; its pI was 4.7. The N-terminal amino acid sequence of GHA deacetylase was similar to those reported for guinea-pig and rat liver microsomal carboxylesterases. The GHA deacetylase showed a comparable hydrolytic activity towards p-nitrophenyl acetate (PNPA), although the activities towards N-hydroxyacetanilide, acetanilide and some endogenous acylated compounds were very low or not detectable. The deacetylase activity towards GHA was inhibited by organophosphates but not by p-chloromercuribenzoate, suggesting that GHA deacetylase can be classified as a B-esterase. The enzyme exhibited a positive homotropic co-operativity towards GHA. The values of the Hill coefficient, the half-saturating concentration ([S]0.5) for GHA, and Vmax were 1.59+/-0.03, 5.51+/-0.07 mM and 32.5+/-1.4 micromol/min per mg respectively, at the optimum pH of 8.5. The bell-shaped pH dependence of the Vmax/[S]0.5 profile indicated pKa values attributed to histidine and lysine residues. The study of stoichiometric inhibition by di-isopropyl fluorophosphate and kinetic analysis with the Monod-Wyman-Changeux model suggests that GHA deacetylase has six substrate binding sites and three catalytically essential serine residues per enzyme molecule.
Collapse
Affiliation(s)
- M Suzuki-Kurasaki
- Department of Chemical Hygiene, Hokkaido Institute of Pharmaceutical Sciences, Otaru, 047-02, Japan
| | | | | |
Collapse
|
12
|
Anders MW. Mitochondrial bioactivation of cysteine S-conjugates and 4-thiaalkanoates: implications for mitochondrial dysfunction and mitochondrial diseases. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1271:51-7. [PMID: 7599225 DOI: 10.1016/0925-4439(95)00009-s] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The toxicity of most drugs and chemicals is associated with their enzymatic conversion to toxic metabolites. Bioactivation reactions occur in a range of organs and organelles, including mitochondria. The toxicity of haloalkene-derived cysteine S-conjugates and related 4-thiaalkanoates is associated with their mitochondrial bioactivation. Toxic cysteine S-conjugates are formed by the glutathione S-transferase-catalyzed addition of glutathione to haloalkenes to give glutathione S-conjugates, which are hydrolyzed by gamma-glutamyltransferase and dipeptidases. Mitochondrial cysteine conjugate beta-lyase-catalyzed bioactivation of cysteine S-conjugates affords unstable alpha-halothiolates. Haloalkene-derived 4-thiaalkanoates, which are analogs of cysteine S-conjugates that lack an alpha-amino group, undergo bioactivation by the enzymes of fatty acid beta-oxidation to give 3-hydroxy-4-thiaalkanoates that eliminate alpha-halothiolates. alpha-Halothiolates yield alkylating and acylating agents that interact with cellular macromolecules and thereby cause cell damage. Mitochondrial dysfunction is the hallmark of cysteine S-conjugate-induced cytotoxicity: decreased respiration, decreased ATP and total adenine nucleotide concentrations, depletion of the mitochondrial glutathione content, perturbations in cellular Ca2+ homeostasis, and damage to the mitochondrial genome are seen with cysteine S-conjugates. Similar changes are observed with cytotoxic 4-thiaalkanoates, but inhibition of the medium-chain acyl-CoA dehydrogenase and hypoglycemia are also observed.
Collapse
Affiliation(s)
- M W Anders
- Department of Pharmacology, University of Rochester, New York 14642, USA
| |
Collapse
|