1
|
Shen R, Roux B, Perozo E. Anionic omega currents from single countercharge mutants in the voltage-sensing domain of Ci-VSP. J Gen Physiol 2024; 156:e202213311. [PMID: 38019193 PMCID: PMC10686229 DOI: 10.1085/jgp.202213311] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 06/08/2023] [Accepted: 10/30/2023] [Indexed: 11/30/2023] Open
Abstract
The S4 segment of voltage-sensing domains (VSDs) directly responds to voltage changes by reorienting within the electric field as a permion. A narrow hydrophobic "gasket" or charge transfer center at the core of most VSDs focuses the electric field into a narrow region and catalyzes the sequential and reversible translocation of S4 positive gating charge residues across the electric field while preventing the permeation of physiological ions. Mutating specific S4 gating charges can cause ionic leak currents through the VSDs. These gating pores or omega currents play important pathophysiological roles in many diseases of excitability. Here, we show that mutating D129, a key countercharge residue in the Ciona intestinalis voltage-sensing phosphatase (Ci-VSP), leads to the generation of unique anionic omega currents. Neutralizing D129 causes a dramatic positive shift of activation, facilitates the formation of a continuous water path through the VSD, and creates a positive electrostatic potential landscape inside the VSD that contributes to its unique anionic selectivity. Increasing the population or dwell time of the conducting state by a high external pH or an engineered Cd2+ bridge markedly increases the current magnitude. Our findings uncover a new role of countercharge residues in the impermeable VSD of Ci-VSP and offer insights into mechanisms of the conduction of anionic omega currents linked to countercharge residue mutations.
Collapse
Affiliation(s)
- Rong Shen
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
| | - Benoît Roux
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
| | - Eduardo Perozo
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
2
|
Batista-Silva H, Rodrigues K, Sousa de Moura KR, Van Der Kraak G, Delalande-Lecapitaine C, Mena Barreto Silva FR. Role of bisphenol A on calcium influx and its potential toxicity on the testis of Danio rerio. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 202:110876. [PMID: 32563953 DOI: 10.1016/j.ecoenv.2020.110876] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/07/2020] [Accepted: 06/08/2020] [Indexed: 06/11/2023]
Abstract
This study investigated the acute in vitro effect of low-concentration bisphenol A (BPA) on calcium (45Ca2+) influx in zebrafish (Danio rerio) testis and examined whether intracellular Ca2+ was involved in the effects of BPA on testicular toxicity. In vitro studies on 45Ca2+ influx were performed in the testes after incubation with BPA for 30 min. Inhibitors were added 15 min before the addition of 45Ca2+ and BPA to testes to study the mechanism of action of BPA. The involvement of intracellular calcium from stores on lactate dehydrogenase (LDH) release and on triacylglycerol (TAG) content were carried out after in vitro incubation of testes with BPA for 1 h. Furthermore, gamma-glutamyl transpeptidase (GGT) and aspartate aminotransferase (AST) activities were analyzed in the liver at 1 h after in vitro BPA incubation of D. rerio. Our data show that the acute in vitro treatment of D. rerio testes with BPA at very low concentration activates plasma membrane ionic channels, such as voltage-dependent calcium channels and calcium-dependent chloride channels, and protein kinase C (PKC), which stimulates Ca2+ influx. In addition, BPA increased cytosolic Ca2+ by activating inositol triphosphate receptor (IP3R) and inhibiting sarco/endoplasmic reticulum calcium ATPase (SERCA) at the endoplasmic reticulum, contributing to intracellular Ca2+ overload. The protein kinases, PKC, MEK 1/2 and PI3K, are involved in the mechanism of action of BPA, which may indicate a crosstalk between the non-genomic initiation effects mediated by PLC/PKC/IP3R signaling and genomic responses of BPA mediated by the estrogen receptor (ESR). In vitro exposure to a higher concentration of BPA caused cell damage and plasma membrane injury with increased LDH release and TAG content; both effects were dependent on intracellular Ca2+ and mediated by IP3R. Furthermore, BPA potentially induced liver damage, as demonstrated by increased GGT activity. In conclusion, in vitro effect of BPA in a low concentration triggers cytosolic Ca2+ overload and activates downstream protein kinases pointing to a crosstalk between its non-genomic and genomic effects of BPA mediated by ESR. Moreover, in vitro exposure to a higher concentration of BPA caused intracellular Ca2+-dependent testicular cell damage and plasma membrane injury. This acute toxicity was reinforced by increased testicular LDH release and GGT activity in the liver.
Collapse
Affiliation(s)
- Hemily Batista-Silva
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, CEP: 88040-900, Florianópolis, Santa Catarina, Brazil; Département Biologie et Sciences de La Terre, Université de Caen Normandie, Caen, Normandie, France
| | - Keyla Rodrigues
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, CEP: 88040-900, Florianópolis, Santa Catarina, Brazil
| | | | - Glen Van Der Kraak
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | | | - Fátima Regina Mena Barreto Silva
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, CEP: 88040-900, Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
3
|
Hater F, Nakel T, Groß-Hardt R. Reproductive Multitasking: The Female Gametophyte. ANNUAL REVIEW OF PLANT BIOLOGY 2020; 71:517-546. [PMID: 32442389 DOI: 10.1146/annurev-arplant-081519-035943] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Fertilization of flowering plants requires the organization of complex tasks, many of which become integrated by the female gametophyte (FG). The FG is a few-celled haploid structure that orchestrates division of labor to coordinate successful interaction with the sperm cells and their transport vehicle, the pollen tube. As reproductive outcome is directly coupled to evolutionary success, the underlying mechanisms are under robust molecular control, including integrity check and repair mechanisms. Here, we review progress on understanding the development and function of the FG, starting with the functional megaspore, which represents the haploid founder cell of the FG. We highlight recent achievements that have greatly advanced our understanding of pollen tube attraction strategies and the mechanisms that regulate plant hybridization and gamete fusion. In addition, we discuss novel insights into plant polyploidization strategies that expand current concepts on the evolution of flowering plants.
Collapse
Affiliation(s)
- Friederike Hater
- Centre for Biomolecular Interactions, University of Bremen, 28359 Bremen, Germany;
| | - Thomas Nakel
- Centre for Biomolecular Interactions, University of Bremen, 28359 Bremen, Germany;
| | - Rita Groß-Hardt
- Centre for Biomolecular Interactions, University of Bremen, 28359 Bremen, Germany;
| |
Collapse
|
4
|
Linsdell P. Architecture and functional properties of the CFTR channel pore. Cell Mol Life Sci 2017; 74:67-83. [PMID: 27699452 PMCID: PMC11107662 DOI: 10.1007/s00018-016-2389-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 09/28/2016] [Indexed: 12/12/2022]
Abstract
The main function of the cystic fibrosis transmembrane conductance regulator (CFTR) is as an ion channel for the movement of small anions across epithelial cell membranes. As an ion channel, CFTR must form a continuous pathway across the cell membrane-referred to as the channel pore-for the rapid electrodiffusional movement of ions. This review summarizes our current understanding of the architecture of the channel pore, as defined by electrophysiological analysis and molecular modeling studies. This includes consideration of the characteristic functional properties of the pore, definition of the overall shape of the entire extent of the pore, and discussion of how the molecular structure of distinct regions of the pore might control different facets of pore function. Comparisons are drawn with closely related proteins that are not ion channels, and also with structurally unrelated proteins with anion channel function. A simple model of pore function is also described.
Collapse
Affiliation(s)
- Paul Linsdell
- Department of Physiology and Biophysics, Dalhousie University, PO Box 15000, Halifax, NS, B3H 4R2, Canada.
| |
Collapse
|
5
|
Stolz M, Klapperstück M, Kendzierski T, Detro-Dassen S, Panning A, Schmalzing G, Markwardt F. Homodimeric anoctamin-1, but not homodimeric anoctamin-6, is activated by calcium increases mediated by the P2Y1 and P2X7 receptors. Pflugers Arch 2015; 467:2121-40. [PMID: 25592660 DOI: 10.1007/s00424-015-1687-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 12/23/2014] [Accepted: 01/06/2015] [Indexed: 01/14/2023]
Abstract
The P2X7 receptor (P2X7R) is a ligand-gated ion channel that conducts Na(+), K(+), and Ca(2+) when activated by extracellular ATP. In various cell types, such as secretory epithelia, the P2X7R is co-expressed with Ca(2+)-dependent Cl(-) channels of the TMEM16/anoctamin family. Here, we studied whether the P2X7R and TMEM16A/anoctamin-1 (Ano1) or TMEM16F/anoctamin-6 (Ano6) interact functionally and physically, using oocytes of Xenopus laevis and Ambystoma mexicanum (Axolotl) for heterologous expression. As a control, we co-expressed anoctamin-1 with the P2Y1 receptor (P2Y1R), which induces the release of Ca(2+) from intracellular stores via activating phospholipase C through coupling to Gαq. We found that co-expression of anoctamin-1 with the P2Y1R resulted in a small transient increase in Cl(-) conductance in response to ATP. Co-expression of anoctamin-1 with the P2X7R resulted in a large sustained increase in Cl(-) conductance via Ca(2+) influx through the ATP-opened P2X7R in Xenopus and in Axolotl oocytes, which lack endogenous Ca(2+)-dependent Cl(-) channels. P2Y1R- or P2X7R-mediated stimulation of Ano1 was primarily functional, as demonstrated by the absence of a physically stable interaction between Ano1 and the P2X7R. In the pancreatic cell line AsPC-1, we found the same functional Ca(2+)-dependent interaction of P2X7R and Ano1. The P2X7R-mediated sustained activation of Ano1 may be physiologically relevant to the time course of stimulus-secretion coupling in secretory epithelia. No such increase in Cl(-) conductance could be elicited by activating the P2X7 receptor in either Xenopus oocytes or Axolotl oocytes co-expressing Ano6. The lack of function of Ano6 can, at least in part, be explained by its poor cell-surface expression, resulting from a relatively inefficient exit of the homodimeric Ano6 from the endoplasmic reticulum.
Collapse
Affiliation(s)
- Michaela Stolz
- Molecular Pharmacology, RWTH Aachen University, Wendlingweg 2, D-52074, Aachen, Germany
| | - Manuela Klapperstück
- Julius-Bernstein-Institute for Physiology, Martin-Luther-University Halle-Wittenberg, Magdeburger Str. 6, D-06097, Halle/Saale, Germany
| | - Thomas Kendzierski
- Julius-Bernstein-Institute for Physiology, Martin-Luther-University Halle-Wittenberg, Magdeburger Str. 6, D-06097, Halle/Saale, Germany
| | - Silvia Detro-Dassen
- Molecular Pharmacology, RWTH Aachen University, Wendlingweg 2, D-52074, Aachen, Germany
| | - Anna Panning
- Molecular Pharmacology, RWTH Aachen University, Wendlingweg 2, D-52074, Aachen, Germany
| | - Günther Schmalzing
- Molecular Pharmacology, RWTH Aachen University, Wendlingweg 2, D-52074, Aachen, Germany
| | - Fritz Markwardt
- Julius-Bernstein-Institute for Physiology, Martin-Luther-University Halle-Wittenberg, Magdeburger Str. 6, D-06097, Halle/Saale, Germany.
| |
Collapse
|
6
|
Ni YL, Kuan AS, Chen TY. Activation and inhibition of TMEM16A calcium-activated chloride channels. PLoS One 2014; 9:e86734. [PMID: 24489780 PMCID: PMC3906059 DOI: 10.1371/journal.pone.0086734] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 12/16/2013] [Indexed: 11/19/2022] Open
Abstract
Calcium-activated chloride channels (CaCC) encoded by family members of transmembrane proteins of unknown function 16 (TMEM16) have recently been intensely studied for functional properties as well as their physiological roles as chloride channels in various tissues. One technical hurdle in studying these channels is the well-known channel rundown that frequently impairs the precision of electrophysiological measurements for the channels. Using experimental protocols that employ fast-solution exchange, we circumvented the problem of channel rundown by normalizing the Ca2+-induced current to the maximally-activated current obtained within a time period in which the channel rundown was negligible. We characterized the activation of the TMEM16A-encoded CaCC (also called ANO1) by Ca2+, Sr2+, and Ba2+, and discovered that Mg2+ competes with Ca2+ in binding to the divalent-cation binding site without activating the channel. We also studied the permeability of the ANO1 pore for various anions and found that the anion occupancy in the pore–as revealed by the permeability ratios of these anions–appeared to be inversely correlated with the apparent affinity of the ANO1 inhibition by niflumic acid (NFA). On the other hand, the NFA inhibition was neither affected by the degree of the channel activation nor influenced by the types of divalent cations used for the channel activation. These results suggest that the NFA inhibition of ANO1 is likely mediated by altering the pore function but not through changing the channel gating. Our study provides a precise characterization of ANO1 and documents factors that can affect divalent cation activation and NFA inhibition of ANO1.
Collapse
Affiliation(s)
- Yu-Li Ni
- Department of Neurology, Center for Neuroscience, University of California Davis, Davis, California, United States of America
| | - Ai-Seon Kuan
- Department of Neurology, Center for Neuroscience, University of California Davis, Davis, California, United States of America
| | - Tsung-Yu Chen
- Department of Neurology, Center for Neuroscience, University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
7
|
Marin M. Calcium Signaling in Xenopus oocyte. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 740:1073-94. [DOI: 10.1007/978-94-007-2888-2_49] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
8
|
Linsdell P. Mechanism of chloride permeation in the cystic fibrosis transmembrane conductance regulator chloride channel. Exp Physiol 2005; 91:123-9. [PMID: 16157656 DOI: 10.1113/expphysiol.2005.031757] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) functions as a Cl- channel important in transepithelial salt and water transport. While there is a paucity of direct structural information on CFTR, much has been learned about the molecular determinants of the CFTR Cl- channel pore region and the mechanism of Cl- permeation through the pore from indirect structure-function studies. The first and sixth transmembrane regions of the CFTR protein play major roles in forming the channel pore and determining its functional properties by interacting with permeating Cl- ions. Positively charged amino acid side-chains are involved in attracting negatively charged Cl- ions into the pore region, where they interact briefly with a number of discrete sites on the pore walls. The pore appears able to accommodate more than one Cl- ion at a time, and Cl- ions bound inside the pore are probably sensitive to one another's presence. Repulsive interactions between Cl- ions bound concurrently within the pore may be important in ensuring rapid movement of Cl- ions through the pore. Chloride ion binding sites also interact with larger anions that can occlude the pore and block Cl- permeation, thus inhibiting CFTR function. Other ions besides Cl- are capable of passing through the pore, and specific amino acid residues that may be important in allowing the channel to discriminate between different anions have been identified. This brief review summarizes these mechanistic insights and tries to incorporate them into a simple cartoon model depicting the interactions between the channel and Cl- ions that are important for ion translocation.
Collapse
Affiliation(s)
- Paul Linsdell
- Department of Physiology & Biophysics, Dalhousie University, Halifax, Canada.
| |
Collapse
|
9
|
Abstract
Calcium-activated chloride channels (CaCCs) play important roles in cellular physiology, including epithelial secretion of electrolytes and water, sensory transduction, regulation of neuronal and cardiac excitability, and regulation of vascular tone. This review discusses the physiological roles of these channels, their mechanisms of regulation and activation, and the mechanisms of anion selectivity and conduction. Despite the fact that CaCCs are so broadly expressed in cells and play such important functions, understanding these channels has been limited by the absence of specific blockers and the fact that the molecular identities of CaCCs remains in question. Recent status of the pharmacology and molecular identification of CaCCs is evaluated.
Collapse
Affiliation(s)
- Criss Hartzell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | | | |
Collapse
|
10
|
Fuller MD, Zhang ZR, Cui G, Kubanek J, McCarty NA. Inhibition of CFTR channels by a peptide toxin of scorpion venom. Am J Physiol Cell Physiol 2004; 287:C1328-41. [PMID: 15240343 DOI: 10.1152/ajpcell.00162.2004] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Peptide toxins have been valuable probes in efforts to identify amino acid residues that line the permeation pathway of cation-selective channels. However, no peptide toxins have been identified that interact with known anion-selective channels such as the cystic fibrosis transmembrane conductance regulator (CFTR). CFTR channels are expressed in epithelial cells and are associated with several genetic disorders, including cystic fibrosis and polycystic kidney disease. Several organic inhibitors have been used to investigate the structure of the Cl−permeation pathway in CFTR. However, investigations of the wider cytoplasmic vestibule have been hindered by the lack of a high-affinity blocker that interacts with residues in this area. In this study we show that venom of the scorpion Leiurus quinquestriatus hebraeus reversibly inhibits CFTR, in a voltage-independent manner, by decreasing single-channel mean burst duration and open probability only when applied to the cytoplasmic surface of phosphorylated channels. Venom was able to decrease burst duration and open probability even when CFTR channels were locked open by treatment with either vanadate or adenosine 5′-(β,γ-imido)triphosphate, and block was strengthened on reduction of extracellular Cl−concentration, suggesting inhibition by a pore-block mechanism. Venom had no effect on ATP-dependent macroscopic opening rate in channels studied by inside-out macropatches. Interestingly, the inhibitory activity was abolished by proteinase treatment. We conclude that a peptide toxin contained in the scorpion venom inhibits CFTR channels by a pore-block mechanism; these experiments provide the first step toward isolation of the active component, which would be highly valuable as a probe for CFTR structure and function.
Collapse
Affiliation(s)
- Matthew D Fuller
- Program in Molecular and Systems Pharacology, Emory University, Atlanta, Georgia 30322-3090, USA
| | | | | | | | | |
Collapse
|
11
|
Gong X, Linsdell P. Maximization of the rate of chloride conduction in the CFTR channel pore by ion–ion interactions. Arch Biochem Biophys 2004; 426:78-82. [PMID: 15130785 DOI: 10.1016/j.abb.2004.03.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2004] [Revised: 03/23/2004] [Indexed: 11/20/2022]
Abstract
Multi-ion pore behaviour has been identified in many Cl(-) channel types but its biophysical significance is uncertain. Here, we show that mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel that disrupt anion-anion interactions within the pore are associated with drastically reduced single channel conductance. These results are consistent with models suggesting that rapid Cl(-) permeation in CFTR results from repulsive ion-ion interactions between Cl(-) ions bound concurrently inside the pore. Naturally occurring mutations that disrupt these interactions can result in cystic fibrosis.
Collapse
Affiliation(s)
- Xiandi Gong
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada B3H 1X5
| | | |
Collapse
|
12
|
Qu Z, Wei RW, Hartzell HC. Characterization of Ca2+-activated Cl- currents in mouse kidney inner medullary collecting duct cells. Am J Physiol Renal Physiol 2003; 285:F326-35. [PMID: 12724129 DOI: 10.1152/ajprenal.00034.2003] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ca2+-activated Cl- (ClCa) channels were characterized biophysically and pharmacologically in a mouse kidney inner medullary collecting duct cell line, IMCD-K2. Whole cell recording was performed with symmetrical N-methyl-d-glucamine chloride (NMDG)-Cl in the intracellular and extracellular solutions, and the intracellular Ca2+ concentration ([Ca2+]i) was adjusted with Ca2+-EGTA buffers. The amplitude of the current was dependent on [Ca2+]i. [Ca2+]i <800 nM strongly activated outwardly rectifying Cl- currents, whereas high Ca2+ (21 microM) elicited time-independent currents that did not rectify. The currents activated at low [Ca2+] exhibited time-dependent activation and deactivation. The affinity of the channel for Ca2+ was voltage dependent. The EC50 for Ca2+ was approximately 0.4 microM at +100 mV and approximately 1.0 microM at -100 mV. The Cl- channel blocker niflumic acid in the bath equally inhibited both inward and outward currents reversibly, with a Ki = 7.6 microM. DIDS, diphenylamine-2-carboxylic acid, and anthracene-9-carboxylic acid reversibly inhibited outward currents in a voltage-dependent manner. DTT slowly inhibited the currents, but tamoxifen did not. Comparing the biophysical and pharmacological properties, we conclude that IMCD-K2 cells express the same type of ClCa channels as those we have described in detail in Xenopus laevis oocytes (Qu Z and Hartzell HC. J Biol Chem 276: 18423-18429, 2001).
Collapse
Affiliation(s)
- Zhiqiang Qu
- Department of Cell Biology, Emory Univ. School of Medicine, 615 Michael St., Atlanta, GA 30322-3030, USA.
| | | | | |
Collapse
|