1
|
Lysikova DV, Vasileva VY, Chubinskiy-Nadezhdin VI, Morachevskaya EA, Sudarikova AV. Capsazepine activates amiloride-insensitive ENaC-like channels in human leukemia cells. Biochem Biophys Res Commun 2023; 687:149187. [PMID: 37944472 DOI: 10.1016/j.bbrc.2023.149187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
Sodium influx carried out by ion channels is one of the main regulators of water-salt and volume balance in cells of blood origin. Previously, we described amiloride-insensitive ENaC-like channels in human myeloid leukemia K562 cells; the intracellular regulatory mechanisms of the channels are associated with actin cytoskeleton dynamics. Recently, an extracellular mechanism of ENaC-like channels activation in K562 cells by the action of serine protease trypsin has been revealed. The other extracellular pathways that modulate ENaC (epithelial Na+ channel) activity and sodium permeability in transformed blood cells are not yet fully investigated. Here, we study the action of capsazepine (CPZ), as δ-ENaC activator, on single channel activity in K562 cells in whole-cell patch clamp experiments. Addition of CPZ (2 μM) to the extracellular solution caused an activation of sodium channels with typical features; unitary conductance was 15.1 ± 0.8 pS. Amiloride derivative benzamil (50 μM) did not inhibit their activity. Unitary currents and conductance of CPZ-activated channels were higher in Na+-containing extracellular solution than in Li+, that is one of the main fingerprints of δ-ENaC. The results of RT-PCR analysis and immunofluorescence staining also confirmed the expression of δ-hENaC (as well as α-, β-, γ-ENaC) at the mRNA and protein level. These findings allow us to speculate that CPZ activates amiloride-insensitive ENaC-like channels that contain δ-ENaC in К562 cells. Our data reveal a novel extracellular mechanism for ENaC-like activation in human leukemia cells.
Collapse
Affiliation(s)
- Daria V Lysikova
- Institute of Cytology, Russian Academy of Sciences, 194064 Tikhoretsky Ave. 4, St. Petersburg, Russia
| | - Valeria Y Vasileva
- Institute of Cytology, Russian Academy of Sciences, 194064 Tikhoretsky Ave. 4, St. Petersburg, Russia
| | | | - Elena A Morachevskaya
- Institute of Cytology, Russian Academy of Sciences, 194064 Tikhoretsky Ave. 4, St. Petersburg, Russia
| | - Anastasia V Sudarikova
- Institute of Cytology, Russian Academy of Sciences, 194064 Tikhoretsky Ave. 4, St. Petersburg, Russia.
| |
Collapse
|
2
|
Epithelial Sodium Channel Alpha Subunit (αENaC) Is Associated with Inverse Salt Sensitivity of Blood Pressure. Biomedicines 2022; 10:biomedicines10050981. [PMID: 35625718 PMCID: PMC9138231 DOI: 10.3390/biomedicines10050981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/20/2022] [Accepted: 04/20/2022] [Indexed: 01/07/2023] Open
Abstract
Salt sensitivity of blood pressure (BP) refers to an increase in BP following an increase in dietary salt, which is associated with increased incidence of cardiovascular disease and early death. However, decreased sodium intake also increases mortality and morbidity. Inverse salt sensitivity (ISS), defined as a paradoxical increase in BP on a low-salt diet, about 11% of the population, may be the cause of this phenomenon. The epithelial sodium channel (ENaC) is a major regulator of sodium reabsorption in the kidney. In this study, human renal tubular epithelial cells (hRTC) were cultured from the urine of phenotyped salt study participants. αENaC expression was significantly lower in ISS than salt resistant (SR) hRTC, while ENaC-like channel activity was dramatically increased by trypsin treatment in ISS cells analyzed by patch clamp. αENaC expression was also decreased under high-salt treatment and increased by aldosterone treatment in ISS cells. Moreover, the αENaC variant, rs4764586, was more prevalent in ISS. In summary, αENaC may be associated with ISS hypertension on low salt. These findings may contribute to understanding the mechanisms of ISS and low salt effect on morbidity and mortality.
Collapse
|
3
|
Liu S, Lin Z. Vascular Smooth Muscle Cells Mechanosensitive Regulators and Vascular Remodeling. J Vasc Res 2021; 59:90-113. [PMID: 34937033 DOI: 10.1159/000519845] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 09/23/2021] [Indexed: 11/19/2022] Open
Abstract
Blood vessels are subjected to mechanical loads of pressure and flow, inducing smooth muscle circumferential and endothelial shear stresses. The perception and response of vascular tissue and living cells to these stresses and the microenvironment they are exposed to are critical to their function and survival. These mechanical stimuli not only cause morphological changes in cells and vessel walls but also can interfere with biochemical homeostasis, leading to vascular remodeling and dysfunction. However, the mechanisms underlying how these stimuli affect tissue and cellular function, including mechanical stimulation-induced biochemical signaling and mechanical transduction that relies on cytoskeletal integrity, are unclear. This review focuses on signaling pathways that regulate multiple biochemical processes in vascular mesangial smooth muscle cells in response to circumferential stress and are involved in mechanosensitive regulatory molecules in response to mechanotransduction, including ion channels, membrane receptors, integrins, cytoskeletal proteins, nuclear structures, and cascades. Mechanoactivation of these signaling pathways is closely associated with vascular remodeling in physiological or pathophysiological states.
Collapse
Affiliation(s)
- Shangmin Liu
- Ji Hua Institute of Biomedical Engineering Technology, Ji Hua Laboratory, Foshan, China, .,Medical Research Center, Guangdong Academy of Medical Sciences, Guangdong General Hospital, Guangzhou, China,
| | - Zhanyi Lin
- Ji Hua Institute of Biomedical Engineering Technology, Ji Hua Laboratory, Foshan, China.,Institute of Geriatric Medicine, Guangdong Academy of Medical Sciences, Guangdong General Hospital, Guangzhou, China
| |
Collapse
|
4
|
Fancher IS. Cardiovascular mechanosensitive ion channels-Translating physical forces into physiological responses. CURRENT TOPICS IN MEMBRANES 2021; 87:47-95. [PMID: 34696889 DOI: 10.1016/bs.ctm.2021.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cells and tissues are constantly exposed to mechanical stress. In order to respond to alterations in mechanical stimuli, specific cellular machinery must be in place to rapidly convert physical force into chemical signaling to achieve the desired physiological responses. Mechanosensitive ion channels respond to such physical stimuli in the order of microseconds and are therefore essential components to mechanotransduction. Our understanding of how these ion channels contribute to cellular and physiological responses to mechanical force has vastly expanded in the last few decades due to engineering ingenuities accompanying patch clamp electrophysiology, as well as sophisticated molecular and genetic approaches. Such investigations have unveiled major implications for mechanosensitive ion channels in cardiovascular health and disease. Therefore, in this chapter I focus on our present understanding of how biophysical activation of various mechanosensitive ion channels promotes distinct cell signaling events with tissue-specific physiological responses in the cardiovascular system. Specifically, I discuss the roles of mechanosensitive ion channels in mediating (i) endothelial and smooth muscle cell control of vascular tone, (ii) mechano-electric feedback and cell signaling pathways in cardiomyocytes and cardiac fibroblasts, and (iii) the baroreflex.
Collapse
Affiliation(s)
- Ibra S Fancher
- Department of Kinesiology and Applied Physiology, College of Health Sciences, University of Delaware, Newark, DE, United States.
| |
Collapse
|
5
|
Baldin JP, Barth D, Fronius M. Epithelial Na + Channel (ENaC) Formed by One or Two Subunits Forms Functional Channels That Respond to Shear Force. Front Physiol 2020; 11:141. [PMID: 32256376 PMCID: PMC7090232 DOI: 10.3389/fphys.2020.00141] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/11/2020] [Indexed: 12/19/2022] Open
Abstract
Canonical epithelial sodium channels (ENaCs) are heterotrimers formed by α, β, and γ ENaC subunits in vertebrates and belong to the Degenerin/ENaC family of proteins. Proteins from this family form mechanosensitive channels throughout the animal kingdom. Activity of canonical ENaC is regulated by shear force (SF) mediating Na+ absorption in the kidney and vascular tone of arteries. Expression analysis suggests that non-canonical ENaC, formed by single or only two subunits, exist in certain tissues, but it is unknown if these channels respond to SF. α, β, γ, and δ ENaC subunits were expressed either alone or in combinations of two subunits in Xenopus oocytes. Amiloride-sensitive currents and the responses to SF were assessed using two-electrode voltage clamp recordings. With the exception of γ ENaC, all homomeric channels provided amiloride-sensitive currents and responded to SF applied via a fluid stream directed onto the oocytes. Channels containing two subunits were also activated by SF. Here, the presence of the γ ENaC subunit when co-expressed with α or δ augmented the SF response in comparison to the αβγ/δβγ ENaC. Overall, we provide evidence that non-canonical ENaC can form channels that respond to SF. This supports a potential function of non-canonical ENaC as mechanosensors in epithelial, vascular, and sensory cells.
Collapse
Affiliation(s)
- Jan-Peter Baldin
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Daniel Barth
- Institute of Physiology, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen, Germany
| | - Martin Fronius
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.,HeartOtago, University of Otago, Dunedin, New Zealand
| |
Collapse
|
6
|
Chambers L, Dorrance AM. Regulation of ion channels in the microcirculation by mineralocorticoid receptor activation. CURRENT TOPICS IN MEMBRANES 2020; 85:151-185. [PMID: 32402638 DOI: 10.1016/bs.ctm.2020.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The mineralocorticoid receptor (MR) has classically been studied in the renal epithelium for its role in regulating sodium and water balance and, subsequently, blood pressure. However, the MR also plays a critical role in the microvasculature by regulating ion channel expression and function. Activation of the MR by its endogenous agonist aldosterone results in translocation of the MR into the nucleus, where it can act as a transcription factor. Although most of the actions of the aldosterone can be attributed to its genomic activity though MR activation, it can also act by nongenomic mechanisms. Activation of this ubiquitous receptor increases the expression of epithelial sodium channels (ENaC) in both the endothelium and smooth muscle cells of peripheral and cerebral vessels. MR activation also regulates activity of calcium channels, calcium-activated potassium channels, and various transient receptor potential (TRP) channels. Modification of these ion channels results in a myriad of negative consequences, including impaired endothelium-dependent vasodilation, alterations in generation of myogenic tone, and increased inflammation and oxidative stress. Taken together, these studies demonstrate the importance of studying the impact of the MR on ion channel function in the vasculature. While research in this area has made advances in recent years, there are still many large gaps in knowledge that need to be filled. Crucial future directions of study include defining the molecular mechanisms involved in this interaction, as well as elucidating the potential sex differences that may exist, as these areas of understanding are currently lacking.
Collapse
Affiliation(s)
- Laura Chambers
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
| | - Anne M Dorrance
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States.
| |
Collapse
|
7
|
Downs CA, Johnson NM, Coca C, Helms MN. Angiotensin II regulates δ-ENaC in human umbilical vein endothelial cells. Microvasc Res 2018; 116:26-33. [DOI: 10.1016/j.mvr.2017.10.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/19/2017] [Accepted: 10/15/2017] [Indexed: 11/24/2022]
|
8
|
Folgering JHA, Sharif-Naeini R, Dedman A, Patel A, Delmas P, Honoré E. Molecular basis of the mammalian pressure-sensitive ion channels: focus on vascular mechanotransduction. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2008; 97:180-95. [PMID: 18343483 DOI: 10.1016/j.pbiomolbio.2008.02.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Mechano-gated ion channels are implicated in a variety of neurosensory functions ranging from touch sensitivity to hearing. In the heart, rhythm disturbance subsequent to mechanical effects is also associated with the activation of stretch-sensitive ion channels. Arterial autoregulation in response to hemodynamic stimuli, a vital process required for protection against hypertension-induced injury, is similarly dependent on the activity of force-sensitive ion channels. Seminal work in prokaryotes and invertebrates, including the nematode Caenorhabditis elegans and the fruit fly drosophila, greatly helped to identify the molecular basis of volume regulation, hearing and touch sensitivity. In mammals, more recent findings have indicated that members of several structural family of ion channels, namely the transient receptor potential (TRP) channels, the amiloride-sensitive ENaC/ASIC channels and the potassium channels K2P and Kir are involved in cellular mechanotransduction. In the present review, we will focus on the molecular and functional properties of these channel subunits and will emphasize on their role in the pressure-dependent arterial myogenic constriction and the flow-mediated vasodilation.
Collapse
Affiliation(s)
- Joost H A Folgering
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS-UMR6097, 660 route des Lucioles, Sophia Antipolis, 06560 Valbonne, France
| | | | | | | | | | | |
Collapse
|