1
|
Nucleosome positioning in yeasts: methods, maps, and mechanisms. Chromosoma 2014; 124:131-51. [PMID: 25529773 DOI: 10.1007/s00412-014-0501-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 12/02/2014] [Accepted: 12/03/2014] [Indexed: 01/23/2023]
Abstract
Eukaryotic nuclear DNA is packaged into nucleosomes. During the past decade, genome-wide nucleosome mapping across species revealed the high degree of order in nucleosome positioning. There is a conserved stereotypical nucleosome organization around transcription start sites (TSSs) with a nucleosome-depleted region (NDR) upstream of the TSS and a TSS-aligned regular array of evenly spaced nucleosomes downstream over the gene body. As nucleosomes largely impede access to DNA and thereby provide an important level of genome regulation, it is of general interest to understand the mechanisms generating nucleosome positioning and especially the stereotypical NDR-array pattern. We focus here on the most advanced models, unicellular yeasts, and review the progress in mapping nucleosomes and which nucleosome positioning mechanisms are discussed. There are four mechanistic aspects: How are NDRs generated? How are individual nucleosomes positioned, especially those flanking the NDRs? How are nucleosomes evenly spaced leading to regular arrays? How are regular arrays aligned at TSSs? The main candidates for nucleosome positioning determinants are intrinsic DNA binding preferences of the histone octamer, specific DNA binding factors, nucleosome remodeling enzymes, transcription, and statistical positioning. We summarize the state of the art in an integrative model where nucleosomes are positioned by a combination of all these candidate determinants. We highlight the predominance of active mechanisms involving nucleosome remodeling enzymes which may be recruited by DNA binding factors and the transcription machinery. While this mechanistic framework emerged clearly during recent years, the involved factors and their mechanisms are still poorly understood and require future efforts combining in vivo and in vitro approaches.
Collapse
|
2
|
Musladin S, Krietenstein N, Korber P, Barbaric S. The RSC chromatin remodeling complex has a crucial role in the complete remodeler set for yeast PHO5 promoter opening. Nucleic Acids Res 2014; 42:4270-82. [PMID: 24465003 PMCID: PMC3985623 DOI: 10.1093/nar/gkt1395] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Although yeast PHO5 promoter chromatin opening is a founding model for chromatin remodeling, the complete set of involved remodelers remained unknown for a long time. The SWI/SNF and INO80 remodelers cooperate here, but nonessentially, and none of the many tested single or combined remodeler gene mutations could prevent PHO5 promoter opening. RSC, the most abundant and only remodeler essential for viability, was a controversial candidate for the unrecognized remodeling activity but unassessed in vivo. Now we show that remodels the structure of chromatin (RSC) is crucially involved in PHO5 promoter opening. Further, the isw1 chd1 double deletion also delayed chromatin remodeling. Strikingly, combined absence of RSC and Isw1/Chd1 or Snf2 abolished for the first time promoter opening on otherwise sufficient induction in vivo. Together with previous findings, we recognize now a surprisingly complex network of five remodelers (RSC, SWI/SNF, INO80, Isw1 and Chd1) from four subfamilies (SWI/SNF, INO80, ISWI and CHD) as involved in PHO5 promoter chromatin remodeling. This is likely the first described complete remodeler set for a physiological chromatin transition. RSC was hardly involved at the coregulated PHO8 or PHO84 promoters despite cofactor recruitment by the same transactivator and RSC’s presence at all three promoters. Therefore, promoter-specific chromatin rather than transactivators determine remodeler requirements.
Collapse
Affiliation(s)
- Sanja Musladin
- Laboratory of Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb 10000, Croatia and Molecular Biology, Adolf-Butenandt-Institut, University of Munich, Munich 80336, Germany
| | | | | | | |
Collapse
|
3
|
Pointner J, Persson J, Prasad P, Norman-Axelsson U, Strålfors A, Khorosjutina O, Krietenstein N, Svensson JP, Ekwall K, Korber P. CHD1 remodelers regulate nucleosome spacing in vitro and align nucleosomal arrays over gene coding regions in S. pombe. EMBO J 2012; 31:4388-403. [PMID: 23103765 DOI: 10.1038/emboj.2012.289] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 09/28/2012] [Indexed: 11/09/2022] Open
Abstract
Nucleosome positioning governs access to eukaryotic genomes. Many genes show a stereotypic organisation at their 5'end: a nucleosome free region just upstream of the transcription start site (TSS) followed by a regular nucleosomal array over the coding region. The determinants for this pattern are unclear, but nucleosome remodelers are likely critical. Here we study the role of remodelers in global nucleosome positioning in S. pombe and the corresponding changes in expression. We find a striking evolutionary shift in remodeler usage between budding and fission yeast. The S. pombe RSC complex does not seem to be involved in nucleosome positioning, despite its prominent role in S. cerevisiae. While S. pombe lacks ISWI-type remodelers, it has two CHD1-type ATPases, Hrp1 and Hrp3. We demonstrate nucleosome spacing activity for Hrp1 and Hrp3 in vitro, and that together they are essential for linking regular genic arrays to most TSSs in vivo. Impaired arrays in the absence of either or both remodelers may lead to increased cryptic antisense transcription, but overall gene expression levels are only mildly affected.
Collapse
Affiliation(s)
- Julia Pointner
- Adolf-Butenandt-Institut, University of Munich, Munich, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Ertel F, Dirac-Svejstrup AB, Hertel CB, Blaschke D, Svejstrup JQ, Korber P. In vitro reconstitution of PHO5 promoter chromatin remodeling points to a role for activator-nucleosome competition in vivo. Mol Cell Biol 2010; 30:4060-76. [PMID: 20566699 PMCID: PMC2916437 DOI: 10.1128/mcb.01399-09] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Revised: 12/01/2009] [Accepted: 06/09/2010] [Indexed: 11/20/2022] Open
Abstract
The yeast PHO5 promoter is a classical model for studying the role of chromatin in gene regulation. To enable biochemical dissection of the mechanism leading to PHO5 activation, we reconstituted the process in vitro. Positioned nucleosomes corresponding to the repressed PHO5 promoter state were assembled using a yeast extract-based in vitro system. Addition of the transactivator Pho4 yielded an extensive DNase I-hypersensitive site resembling induced PHO5 promoter chromatin. Importantly, this remodeling was energy dependent. In contrast, little or no chromatin remodeling was detected at the PHO8 or PHO84 promoter in this in vitro system. Only the PHO5 promoter harbors a high-affinity intranucleosomal Pho4 binding site (UASp) where Pho4 binding can compete with nucleosome formation, prompting us to test the importance of such competition for chromatin remodeling by analysis of UASp mutants in vivo. Indeed, the intranucleosomal location of the UASp element was critical, but not essential, for complete remodeling at the PHO5 promoter in vivo. Further, binding of just the Gal4 DNA binding domain to an intranucleosomal site could increase PHO5 promoter opening. These data establish an auxiliary role for DNA binding competition between Pho4 and histones in PHO5 promoter chromatin remodeling in vivo.
Collapse
Affiliation(s)
- Franziska Ertel
- Adolf-Butenandt-Institut, University of Munich, Schillerstr. 44, 80336 Munich, Germany, Cancer Research UK, London Research Institute, Clare Hall Laboratories, Blanche Lane, South Mimms, Hertfordshire EN6 3LD, United Kingdom
| | - A. Barbara Dirac-Svejstrup
- Adolf-Butenandt-Institut, University of Munich, Schillerstr. 44, 80336 Munich, Germany, Cancer Research UK, London Research Institute, Clare Hall Laboratories, Blanche Lane, South Mimms, Hertfordshire EN6 3LD, United Kingdom
| | - Christina Bech Hertel
- Adolf-Butenandt-Institut, University of Munich, Schillerstr. 44, 80336 Munich, Germany, Cancer Research UK, London Research Institute, Clare Hall Laboratories, Blanche Lane, South Mimms, Hertfordshire EN6 3LD, United Kingdom
| | - Dorothea Blaschke
- Adolf-Butenandt-Institut, University of Munich, Schillerstr. 44, 80336 Munich, Germany, Cancer Research UK, London Research Institute, Clare Hall Laboratories, Blanche Lane, South Mimms, Hertfordshire EN6 3LD, United Kingdom
| | - Jesper Q. Svejstrup
- Adolf-Butenandt-Institut, University of Munich, Schillerstr. 44, 80336 Munich, Germany, Cancer Research UK, London Research Institute, Clare Hall Laboratories, Blanche Lane, South Mimms, Hertfordshire EN6 3LD, United Kingdom
| | - Philipp Korber
- Adolf-Butenandt-Institut, University of Munich, Schillerstr. 44, 80336 Munich, Germany, Cancer Research UK, London Research Institute, Clare Hall Laboratories, Blanche Lane, South Mimms, Hertfordshire EN6 3LD, United Kingdom
| |
Collapse
|
5
|
Schizosaccharomyces pombe genome-wide nucleosome mapping reveals positioning mechanisms distinct from those of Saccharomyces cerevisiae. Nat Struct Mol Biol 2010; 17:251-7. [PMID: 20118936 DOI: 10.1038/nsmb.1741] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Accepted: 11/19/2009] [Indexed: 02/07/2023]
Abstract
Positioned nucleosomes limit the access of proteins to DNA and implement regulatory features encoded in eukaryotic genomes. Here we have generated the first genome-wide nucleosome positioning map for Schizosaccharomyces pombe and annotated transcription start and termination sites genome wide. Using this resource, we found surprising differences from the previously published nucleosome organization of the distantly related yeast Saccharomyces cerevisiae. DNA sequence guides nucleosome positioning differently: for example, poly(dA-dT) elements are not enriched in S. pombe nucleosome-depleted regions. Regular nucleosomal arrays emanate more asymmetrically-mainly codirectionally with transcription-from promoter nucleosome-depleted regions, but promoters harboring the histone variant H2A.Z also show regular arrays upstream of these regions. Regular nucleosome phasing in S. pombe has a very short repeat length of 154 base pairs and requires a remodeler, Mit1, that is conserved in humans but is not found in S. cerevisiae. Nucleosome positioning mechanisms are evidently not universal but evolutionarily plastic.
Collapse
|
6
|
Differential cofactor requirements for histone eviction from two nucleosomes at the yeast PHO84 promoter are determined by intrinsic nucleosome stability. Mol Cell Biol 2009; 29:2960-81. [PMID: 19307305 DOI: 10.1128/mcb.01054-08] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We showed previously that the strong PHO5 promoter is less dependent on chromatin cofactors than the weaker coregulated PHO8 promoter. In this study we asked if chromatin remodeling at the even stronger PHO84 promoter was correspondingly less cofactor dependent. The repressed PHO84 promoter showed a short hypersensitive region that was flanked upstream and downstream by a positioned nucleosome and contained two transactivator Pho4 sites. Promoter induction generated an extensive hypersensitive and histone-depleted region, yielding two more Pho4 sites accessible. This remodeling was strictly Pho4 dependent, strongly dependent on the remodelers Snf2 and Ino80 and on the histone acetyltransferase Gcn5, and more weakly on the acetyltransferase Rtt109. Importantly, remodeling of each of the two positioned nucleosomes required Snf2 and Ino80 to different degrees. Only remodeling of the upstream nucleosome was strictly dependent on Snf2. Further, remodeling of the upstream nucleosome was more dependent on Ino80 than remodeling of the downstream nucleosome. Both nucleosomes differed in their intrinsic stabilities as predicted in silico and measured in vitro. The causal relationship between the different nucleosome stabilities and the different cofactor requirements was shown by introducing destabilizing mutations in vivo. Therefore, chromatin cofactor requirements were determined by intrinsic nucleosome stabilities rather than correlated to promoter strength.
Collapse
|
7
|
Barbaric S, Luckenbach T, Schmid A, Blaschke D, Hörz W, Korber P. Redundancy of chromatin remodeling pathways for the induction of the yeast PHO5 promoter in vivo. J Biol Chem 2007; 282:27610-21. [PMID: 17631505 DOI: 10.1074/jbc.m700623200] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Induction of the yeast PHO5 and PHO8 genes leads to a prominent chromatin transition at their promoter regions as a prerequisite for transcription activation. Although induction of PHO8 is strictly dependent on Snf2 and Gcn5, there is no chromatin remodeler identified so far that would be essential for the opening of PHO5 promoter chromatin. Nonetheless, the nonessential but significant involvement of cofactors can be identified if the chromatin opening kinetics are delayed in the respective mutants. Using this approach, we have tested individually all 15 viable Snf2 type ATPase deletion mutants for their effect on PHO5 promoter induction and opening. Only the absence of Snf2 and Ino80 showed a strong delay in chromatin remodeling kinetics. The snf2 ino80 double mutation had a synthetic kinetic effect but eventually still allowed strong PHO5 induction. The same was true for the snf2 gcn5 and ino80 gcn5 double mutants. This strongly suggests a complex network of redundant and mutually independent parallel pathways that lead to the remodeling of the PHO5 promoter. Further, chromatin remodeling kinetics at a transcriptionally inactive TATA box-mutated PHO5 promoter were affected neither under wild type conditions nor in the absence of Snf2 or Gcn5. This demonstrates the complete independence of promoter chromatin opening from downstream PHO5 transcription processes. Finally, the histone variant Htz1 has no prominent role for the kinetics of PHO5 promoter chromatin remodeling.
Collapse
|
8
|
Berger H, Pachlinger R, Morozov I, Goller S, Narendja F, Caddick M, Strauss J. The GATA factor AreA regulates localization and in vivo binding site occupancy of the nitrate activator NirA. Mol Microbiol 2006; 59:433-46. [PMID: 16390440 DOI: 10.1111/j.1365-2958.2005.04957.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The GATA factor AreA is a wide-domain regulator in Aspergillus nidulans with transcriptional activation and chromatin remodelling functions. AreA interacts with the nitrate-specific Zn(2)-C(6) cluster protein NirA and both proteins cooperate to synergistically activate nitrate-responsive genes. We have previously established that NirA in vivo DNA binding site occupancy is AreA dependent and in this report we provide a mechanistic explanation for our previous findings. We now show that AreA regulates NirA at two levels: (i) through the regulation of nitrate transporters, AreA affects indirectly the subcellular distribution of NirA which rapidly accumulates in the nucleus following induction; (ii) AreA directly stimulates NirA in vivo target DNA occupancy and does not act indirectly by chromatin remodelling. Simultaneous overexpression of NirA and the nitrate transporter CrnA bypasses the AreA requirement for NirA binding, permits utilization of nitrate and nitrite as sole N-sources in an areA null strain and leads to an AreA-independent nucleosome loss of positioning.
Collapse
Affiliation(s)
- Harald Berger
- Institut für Angewandte Genetik und Zellbiologie, BOKU-University of Natural Resources and Applied Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
9
|
Korber P, Barbaric S, Luckenbach T, Schmid A, Schermer UJ, Blaschke D, Hörz W. The histone chaperone Asf1 increases the rate of histone eviction at the yeast PHO5 and PHO8 promoters. J Biol Chem 2006; 281:5539-45. [PMID: 16407267 DOI: 10.1074/jbc.m513340200] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic gene expression starts off from a largely obstructive chromatin substrate that has to be rendered accessible by regulated mechanisms of chromatin remodeling. The yeast PHO5 promoter is a well known example for the contribution of positioned nucleosomes to gene repression and for extensive chromatin remodeling in the course of gene induction. Recently, the mechanism of this remodeling process was shown to lead to the disassembly of promoter nucleosomes and the eviction of the constituent histones in trans. This finding called for a histone acceptor in trans and thus made histone chaperones likely to be involved in this process. In this study we have shown that the histone chaperone Asf1 increases the rate of histone eviction at the PHO5 promoter. In the absence of Asf1 histone eviction is delayed, but the final outcome of the chromatin transition is not affected. The same is true for the coregulated PHO8 promoter where induction also leads to histone eviction and where the rate of histone loss is reduced in asf1 strains as well, although less severely. Importantly, the final extent of chromatin remodeling is not affected. We have also presented evidence that Asf1 and the SWI/SNF chromatin remodeling complex work in distinct parallel but functionally overlapping pathways, i.e. they both contribute toward the same outcome without being mutually strictly dependent.
Collapse
Affiliation(s)
- Philipp Korber
- Adolf-Butenandt-Institut, Universität München, Schillerstrasse 44, 80336 Münich, Germany.
| | | | | | | | | | | | | |
Collapse
|
10
|
Guillemette B, Bataille AR, Gévry N, Adam M, Blanchette M, Robert F, Gaudreau L. Variant histone H2A.Z is globally localized to the promoters of inactive yeast genes and regulates nucleosome positioning. PLoS Biol 2005; 3:e384. [PMID: 16248679 PMCID: PMC1275524 DOI: 10.1371/journal.pbio.0030384] [Citation(s) in RCA: 337] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2005] [Accepted: 09/12/2005] [Indexed: 11/18/2022] Open
Abstract
H2A.Z is an evolutionary conserved histone variant involved in transcriptional regulation, antisilencing, silencing, and genome stability. The mechanism(s) by which H2A.Z regulates these various biological functions remains poorly defined, in part due to the lack of knowledge regarding its physical location along chromosomes and the bearing it has in regulating chromatin structure. Here we mapped H2A.Z across the yeast genome at an approximately 300-bp resolution, using chromatin immunoprecipitation combined with tiling microarrays. We have identified 4,862 small regions--typically one or two nucleosomes wide--decorated with H2A.Z. Those "Z loci" are predominantly found within specific nucleosomes in the promoter of inactive genes all across the genome. Furthermore, we have shown that H2A.Z can regulate nucleosome positioning at the GAL1 promoter. Within HZAD domains, the regions where H2A.Z shows an antisilencing function, H2A.Z is localized in a wider pattern, suggesting that the variant histone regulates a silencing and transcriptional activation via different mechanisms. Our data suggest that the incorporation of H2A.Z into specific promoter-bound nucleosomes configures chromatin structure to poise genes for transcriptional activation. The relevance of these findings to higher eukaryotes is discussed.
Collapse
Affiliation(s)
- Benoît Guillemette
- 1 Centre de Recherche sur les Mécanismes du Fonctionnement Cellulaire, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Alain R Bataille
- 2 Laboratoire de Chromatine et Expression du Génome, Institut de Recherches Cliniques de Montréal, Montréal, Québec, Canada
| | - Nicolas Gévry
- 1 Centre de Recherche sur les Mécanismes du Fonctionnement Cellulaire, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Maryse Adam
- 1 Centre de Recherche sur les Mécanismes du Fonctionnement Cellulaire, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Mathieu Blanchette
- 3 McGill Center for Bioinformatics, Lyman Duff Medical Building, Montréal, Québec, Canada
| | - François Robert
- 2 Laboratoire de Chromatine et Expression du Génome, Institut de Recherches Cliniques de Montréal, Montréal, Québec, Canada
| | - Luc Gaudreau
- 1 Centre de Recherche sur les Mécanismes du Fonctionnement Cellulaire, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
11
|
Nourani A, Utley RT, Allard S, Côté J. Recruitment of the NuA4 complex poises the PHO5 promoter for chromatin remodeling and activation. EMBO J 2004; 23:2597-607. [PMID: 15175650 PMCID: PMC449761 DOI: 10.1038/sj.emboj.7600230] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2003] [Accepted: 04/15/2004] [Indexed: 01/08/2023] Open
Abstract
The remodeling of the promoter chromatin structure is a key event for the induction of the PHO5 gene. Two DNA-binding proteins Pho2 and Pho4 are critical for this step. We found that the NuA4 histone acetyltransferase complex is essential for PHO5 transcriptional induction without affecting Pho4 translocation upon phosphate starvation. Our data also indicate that NuA4 is critical for the chromatin remodeling event that occurs over the PHO5 promoter prior to activation. Using Chromatin IP analysis, we found that Esa1-dependent histone H4 acetylation at the PHO5 promoter correlates with specific recruitment of the NuA4 complex to this locus under repressing conditions. We demonstrate that the homeodomain transcriptional activator Pho2 is responsible for this recruitment in vivo and interacts directly with the NuA4 complex. Finally, we show that Pho4 is unable to bind the PHO5 promoter without prior action of NuA4. These results indicate that, before induction, NuA4 complex recruitment by Pho2 is an essential event that presets the PHO5 promoter for subsequent binding by Pho4, chromatin remodeling and transcription.
Collapse
Affiliation(s)
- Amine Nourani
- Laval University Cancer Research Center, Hôtel-Dieu de Québec (CHUQ), Quebec City, Canada
| | - Rhea T Utley
- Laval University Cancer Research Center, Hôtel-Dieu de Québec (CHUQ), Quebec City, Canada
| | - Stéphane Allard
- Laval University Cancer Research Center, Hôtel-Dieu de Québec (CHUQ), Quebec City, Canada
| | - Jacques Côté
- Laval University Cancer Research Center, Hôtel-Dieu de Québec (CHUQ), Quebec City, Canada
- Laval University Cancer Research Center, Hôtel-Dieu de Québec (CHUQ), 9 McMahon Street, Quebec City, QC G1R 2J6 Canada. Tel: +1 418 525 4444; ext. 15545; Fax: +1 418 691 5439; E-mail:
| |
Collapse
|
12
|
Barbaric S, Reinke H, Hörz W. Multiple mechanistically distinct functions of SAGA at the PHO5 promoter. Mol Cell Biol 2003; 23:3468-76. [PMID: 12724405 PMCID: PMC164768 DOI: 10.1128/mcb.23.10.3468-3476.2003] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Our previous studies have shown that the rate of chromatin remodeling and consequently the rate of PHO5 activation are strongly decreased in the absence of Gcn5 histone acetyltransferase activity. Using chromatin immunoprecipitation, we demonstrate that SAGA is physically recruited to the PHO5 promoter. Recruitment is dependent on the specific activator Pho4 and occurs only under inducing conditions. Spt3, another subunit of SAGA, also plays a role in PHO5 activation but has a function that is completely different from that of Gcn5. An SPT3 deletion severely compromises the PHO5 promoter and reduces the extent of transcriptional activation by diminishing the binding of the TATA binding protein to the promoter without, however, affecting the rate or the extent of chromatin remodeling. A gcn5 spt3 double mutant shows a synthetic phenotype almost as severe as that observed for an spt7 or spt20 mutant. The latter two mutations are known to prevent the assembly of the complex and consequently lead to the loss of all SAGA functions. The absence of the Ada2 subunit causes a strong delay in chromatin remodeling and promoter activation that closely resembles the delay observed in the absence of Gcn5. A deletion of only the Ada2 SANT domain has exactly the same effect, strongly suggesting that Ada2 controls Gcn5 activity by virtue of its SANT domain. Finally, the Gcn5 bromodomain also contributes to but is not essential for Gcn5 function at the PHO5 promoter. Taken together, the results provide a detailed and differentiated description of the role of SAGA as a coactivator at the PHO5 promoter.
Collapse
Affiliation(s)
- Slobodan Barbaric
- Laboratory of Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia
| | | | | |
Collapse
|
13
|
Flinn EM, Wallberg AE, Hermann S, Grant PA, Workman JL, Wright APH. Recruitment of Gcn5-containing complexes during c-Myc-dependent gene activation. Structure and function aspects. J Biol Chem 2002; 277:23399-406. [PMID: 11973336 DOI: 10.1074/jbc.m201704200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The N-terminal domain of c-Myc plays a key role in cellular transformation and is involved in both activation and repression of target genes as well as in modulated proteolysis of c-Myc via the proteasome. Given this functional complexity, it has been difficult to clarify the structures within the N terminus that contribute to these different processes as well as the mechanisms by which they function. We have used a simplified yeast model system to identify the primary determinants within the N terminus for (i) chromatin remodeling of a promoter, (ii) gene activation from a chromatin template in vivo, and (iii) interaction with highly purified Gcn5 complexes as well as other chromatin-remodeling complexes in vitro. The results identify two regions that contain autonomous chromatin opening and gene activation activity, but both regions are required for efficient interaction with chromatin-remodeling complexes in vitro. The conserved Myc boxes do not play a direct role in gene activation, and Myc box II is not generally required for in vitro interactions with remodeling complexes. The yeast SAGA complex, which is orthologous to the human GCN5-TRRAP complex that interacts with Myc in human cells, plays a role in Myc-mediated chromatin opening at the promoter but may also be involved in later steps of gene activation.
Collapse
Affiliation(s)
- Elizabeth M Flinn
- Section for Natural Sciences, Södertörns Högskola, Box 4101, Huddinge 141 04, Sweden
| | | | | | | | | | | |
Collapse
|
14
|
Adam M, Robert F, Larochelle M, Gaudreau L. H2A.Z is required for global chromatin integrity and for recruitment of RNA polymerase II under specific conditions. Mol Cell Biol 2001; 21:6270-9. [PMID: 11509669 PMCID: PMC87352 DOI: 10.1128/mcb.21.18.6270-6279.2001] [Citation(s) in RCA: 172] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Evolutionarily conserved variant histone H2A.Z has been recently shown to regulate gene transcription in Saccharomyces cerevisiae. Here we show that loss of H2A.Z in this organism negatively affects the induction of GAL genes. Importantly, fusion of the H2A.Z C-terminal region to S phase H2A without its corresponding C-terminal region can mediate the variant histone's specialized function in GAL1-10 gene induction, and it restores the slow-growth phenotype of cells with a deletion of HTZ1. Furthermore, we show that the C-terminal region of H2A.Z can interact with some components of the transcriptional apparatus. In cells lacking H2A.Z, recruitment of RNA polymerase II and TATA-binding protein to the GAL1-10 promoters is significantly diminished under inducing conditions. Unexpectedly, we also find that H2A.Z is required to globally maintain chromatin integrity under GAL gene-inducing conditions. We hypothesize that H2A.Z can positively regulate gene transcription, at least in part, by modulating interactions with RNA polymerase II-associated factors at certain genes under specific cell growth conditions.
Collapse
Affiliation(s)
- M Adam
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| | | | | | | |
Collapse
|
15
|
Munsterkötter M, Barbaric S, Hörz W. Transcriptional regulation of the yeast PHO8 promoter in comparison to the coregulated PHO5 promoter. J Biol Chem 2000; 275:22678-85. [PMID: 10801809 DOI: 10.1074/jbc.m001409200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Expression of the PHO8 and PHO5 genes that encode a nonspecific alkaline and acid phosphatase, respectively, is regulated in response to the P(i) concentration in the medium by the same transcription factors. Upon induction by phosphate starvation, both promoters undergo characteristic chromatin remodeling, yet the extent of remodeling at the PHO8 promoter is significantly lower than at PHO5. Despite the coordinate regulation of the two promoters, the PHO8 promoter is almost 10 times weaker than PHO5. Here we show that of two Pho4 binding sites that had been previously mapped at the PHO8 promoter in vitro, only the high affinity one, UASp2, is functional in vivo. Activation of the PHO8 promoter is partially Pho2-dependent. However, unlike at PHO5, Pho4 can bind strongly to its binding site in the absence of Pho2 and remodel chromatin in a Pho2-independent manner. Replacement of the inactive UASp1 element by the UASp1 element from the PHO5 promoter results in more extensive chromatin remodeling and a concomitant 2-fold increase in promoter activity. In contrast, replacement of the high affinity UASp2 site with the corresponding site from PHO5 precludes chromatin remodeling completely and as a consequence promoter activation, despite efficient binding of Pho4 to this site. Deletion of the promoter region normally covered by nucleosomes -3 and -2 results in a 2-fold increase in promoter activity, further supporting a repressive role of these nucleosomes. These data show that there can be strong binding of Pho4 to a UAS element without any chromatin remodeling and promoter activation. The close correlation between promoter activity and the extent of chromatin disruption strongly suggests that the low level of PHO8 induction in comparison with PHO5 is partly due to the inability of Pho4 to achieve complete chromatin remodeling at this promoter.
Collapse
Affiliation(s)
- M Munsterkötter
- Adolf-Butenandt-Institut, Molekularbiologie, Universität München, Schillerstrasse 44, 80336 München, Germany
| | | | | |
Collapse
|
16
|
Then Bergh F, Flinn EM, Svaren J, Wright AP, Hörz W. Comparison of nucleosome remodeling by the yeast transcription factor Pho4 and the glucocorticoid receptor. J Biol Chem 2000; 275:9035-42. [PMID: 10722753 DOI: 10.1074/jbc.275.12.9035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Chromatin reorganization of the PHO5 and murine mammary tumor virus (MMTV) promoters is triggered by binding of either Pho4 or the glucocorticoid receptor (GR), respectively. In order to compare the ability of Pho4 and GR to remodel chromatin and activate transcription, hybrid promoter constructs were created by insertion of the MMTV B nucleosome sequence into the PHO5 promoter and then transformed into a yeast strain expressing GR. Activation of either Pho4 (by phosphate depletion) or GR (by hormone addition) resulted in only slight induction of hybrid promoter activity. However, simultaneous activation of both Pho4 and GR resulted in synergistic activation to levels exceeding that of the wild type PHO5 promoter. Under these conditions, Pho4 completely disrupted the nucleosome containing its binding site. In contrast, GR had little effect on the stability of the MMTV B nucleosome. A minimal transactivation domain of the GR fused to the Pho4 DNA-binding domain is capable of efficiently disrupting the nucleosome with a Pho4-binding site, whereas the complementary hybrid protein (Pho4 activation domain, GR DNA-binding domain) does not labilize the B nucleosome. Therefore, we conclude that significant activation by Pho4 requires nucleosome disruption, whereas equivalent transcriptional activation by GR is not accompanied by overt perturbation of nucleosome structure. Our results show that the DNA-binding domains of the two factors play critical roles in determining how chromatin structure is modified during promoter activation.
Collapse
Affiliation(s)
- F Then Bergh
- Institut für Physiologische Chemie, Universität München, Schillerstrasse 44, D-80336 München, Sweden
| | | | | | | | | |
Collapse
|
17
|
McAndrew PC, Svaren J, Martin SR, Hörz W, Goding CR. Requirements for chromatin modulation and transcription activation by the Pho4 acidic activation domain. Mol Cell Biol 1998; 18:5818-27. [PMID: 9742099 PMCID: PMC109168 DOI: 10.1128/mcb.18.10.5818] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Perhaps the best characterized example of an activator-induced chromatin transition is found in the activation of the Saccharomyces cerevisiae acid phosphatase gene PHO5 by the basic helix-loop-helix (bHLH) transcription factor Pho4. Transcription activation of the PHO5 promoter by Pho4 is accompanied by the remodeling of four positioned nucleosomes which is dependent on the Pho4 activation domain but independent of transcription initiation. Whether the requirements for transcription activation through the TATA sequence are different from those necessary for the chromatin transition remains a major outstanding question. In an attempt to understand better the ability of Pho4 to activate transcription and to remodel chromatin, we have initiated a detailed characterization of the Pho4 activation domain. Using both deletion and point mutational analysis, we have defined residues between positions 75 and 99 as being both essential and sufficient to mediate transcription activation. Significantly, there is a marked concordance between the ability of mutations in the Pho4 activation domain to induce chromatin opening and transcription activation. Interestingly, the requirements for transcription activation within the Pho4 activation domain differ significantly if fused to a heterologous bHLH-leucine zipper DNA-binding domain. The implications for transcription activation by Pho4 are discussed.
Collapse
Affiliation(s)
- P C McAndrew
- Eukaryotic Transcription Laboratory, Marie Curie Research Institute, The Chart, Oxted, Surrey RH8 0TL, United Kingdom
| | | | | | | | | |
Collapse
|
18
|
Gregory PD, Barbaric S, Hörz W. Analyzing chromatin structure and transcription factor binding in yeast. Methods 1998; 15:295-302. [PMID: 9740717 DOI: 10.1006/meth.1998.0633] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The study of chromatin, once thought to be a purely structural matrix serving to compact the DNA of the genome into the nucleus, is of increasing value for our understanding of how DNA functions in the cell. This article provides two basic procedures for the study of chromatin in vivo. The first is a DNase I-based method for the treatment of isolated nuclei to resolve the chromatin structure of a particular region; the second employs dimethyl sulfate footprinting of whole cells in vivo to determine the binding of factors to cis elements in the locus of interest. Specific examples illustrating the techniques described are given from our work on the regulation of the yeast PHO8 gene, but have also been successfully and reliably applied to the study of many other yeast loci. These procedures make it possible to correlate the binding of a transactivator with an altered or perturbed chromatin organization at a specific locus.
Collapse
Affiliation(s)
- P D Gregory
- Institut für Physiologische Chemie, Universität München, Germany
| | | | | |
Collapse
|
19
|
Barbaric S, Münsterkötter M, Goding C, Hörz W. Cooperative Pho2-Pho4 interactions at the PHO5 promoter are critical for binding of Pho4 to UASp1 and for efficient transactivation by Pho4 at UASp2. Mol Cell Biol 1998; 18:2629-39. [PMID: 9566882 PMCID: PMC110642 DOI: 10.1128/mcb.18.5.2629] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The activation of the PHO5 gene in Saccharomyces cerevisiae in response to phosphate starvation critically depends on two transcriptional activators, the basic helix-loop-helix protein Pho4 and the homeodomain protein Pho2. Pho4 acts through two essential binding sites corresponding to the regulatory elements UASp1 and UASp2. Mutation of either of them results in a 10-fold decrease in promoter activity, and mutation of both sites renders the promoter totally uninducible. The role of Pho4 appears relatively straightforward, but the mechanism of action of Pho2 had remained elusive. By in vitro footprinting, we have recently mapped multiple Pho2 binding sites adjacent to the Pho4 sites, and by mutating them individually or in combination, we now show that each of them contributes to PHO5 promoter activity. Their function is not only to recruit Pho2 to the promoter but to allow cooperative binding of Pho4 together with Pho2. Cooperativity requires DNA binding of Pho2 to its target sites and Pho2-Pho4 interactions. A Pho4 derivative lacking the Pho2 interaction domain is unable to activate the promoter, but testing of UASp1 and UASp2 individually in a minimal CYC1 promoter reveals a striking difference between the two UAS elements. UASp1 is fully inactive, presumably because the Pho4 derivative is not recruited to its binding site. In contrast, UASp2 activates strongly in a Pho2-independent manner. From in vivo footprinting experiments and activity measurements with a promoter variant containing two UASp2 elements, we conclude that at UASp2, Pho2 is mainly required for the ability of Pho4 to transactivate.
Collapse
Affiliation(s)
- S Barbaric
- Institut für Physiologische Chemie, Universität München, Munich, Germany
| | | | | | | |
Collapse
|
20
|
Gregory PD, Schmid A, Zavari M, Lui L, Berger SL, Hörz W. Absence of Gcn5 HAT activity defines a novel state in the opening of chromatin at the PHO5 promoter in yeast. Mol Cell 1998; 1:495-505. [PMID: 9660934 DOI: 10.1016/s1097-2765(00)80050-7] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Histone acetyltransferase (HAT) activity has been demonstrated for several transcriptional activators, formally connecting chromatin modification with gene regulation. However, no effect on chromatin has been demonstrated. We have investigated the role of the HAT Gcn5 at the nucleosomally regulated PHO5 promoter. Under conditions of constitutive submaximal activation (i.e., in the absence of the negative regulator Pho80), deletion of Gcn5 determines a novel randomized nucleosomal organization across the promoter and leads to a dramatic reduction in activity. Furthermore, mutation of amino acids critical for Gcn5 HAT activity is sufficient to generate this structure. This intermediate state in chromatin opening gives way to the fully open structure upon maximal induction (phosphate starvation), even in the absence of Gcn5. Thus, Gcn5 is shown to affect directly the remodeling of chromatin in vivo.
Collapse
Affiliation(s)
- P D Gregory
- Institut für Physiologische Chemie, Universität München, Germany
| | | | | | | | | | | |
Collapse
|
21
|
Gaudreau L, Schmid A, Blaschke D, Ptashne M, Hörz W. RNA polymerase II holoenzyme recruitment is sufficient to remodel chromatin at the yeast PHO5 promoter. Cell 1997; 89:55-62. [PMID: 9094714 DOI: 10.1016/s0092-8674(00)80182-8] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We examine transcriptional activation and chromatin remodeling at the PHO5 promoter in yeast by fusion proteins that are thought to act by recruiting the RNA polymerase II holoenzyme to DNA in the absence of a classic activating region. These hybrid proteins (e.g., Gal11+Pho4 or Gal4(58-97)+Pho4 in the presence of a GAL11P allele) efficiently activated transcription and remodeled chromatin. Similar chromatin remodeling was observed at a PHO5 promoter deleted for TATA and thus unable to support transcription. We conclude that recruitment of the holoenzyme or associated proteins suffices for chromatin remodeling. We also show that the SWI/SNF complex is required neither for efficient transcription of the wild-type PHO5 nor the GAL1 promoters, and we observe nearly complete chromatin remodeling at PHO5 in the absence of Snf2.
Collapse
Affiliation(s)
- L Gaudreau
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | | | | | |
Collapse
|