1
|
Liu M, Li Y, Yuan X, Rong S, Du J. Novel insights into RNA polymerase II transcription regulation: transcription factors, phase separation, and their roles in cardiovascular diseases. Biochem Cell Biol 2025; 103:1-21. [PMID: 39540550 DOI: 10.1139/bcb-2024-0094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Transcription factors (TFs) are specialized proteins that bind DNA in a sequence-specific manner and modulate RNA polymerase II (Pol II) in multiple steps of the transcription process. Phase separation is a spontaneous or driven process that can form membrane-less organelles called condensates. By creating different liquid phases at active transcription sites, the formation of transcription condensates can reduce the water content of the condensate and lower the dielectric constant in biological systems, which in turn alters the structure and function of proteins and nucleic acids in the condensate. In RNA Pol II transcription, phase separation formation shortens the time at which TFs bind to target DNA sites and promotes transcriptional bursting. RNA Pol II transcription is engaged in developing several diseases, such as cardiovascular disease, by regulating different TFs and mediating the occurrence of phase separation. This review aims to summarize the advances in the molecular mechanisms of RNA Pol II transcriptional regulation, in particular the effect of TFs and phase separation. The role of RNA Pol II transcriptional regulation in cardiovascular disease will be elucidated, providing potential therapeutic targets for the management and treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Mengmeng Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Yingrui Li
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Xin Yuan
- Department of Nephrology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 4000l0, China
| | - Shunkang Rong
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Jianlin Du
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| |
Collapse
|
2
|
Luo J, Ranish J. Isobaric crosslinking mass spectrometry technology for studying conformational and structural changes in proteins and complexes. eLife 2024; 13:RP99809. [PMID: 39540830 PMCID: PMC11563578 DOI: 10.7554/elife.99809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Dynamic conformational and structural changes in proteins and protein complexes play a central and ubiquitous role in the regulation of protein function, yet it is very challenging to study these changes, especially for large protein complexes, under physiological conditions. Here, we introduce a novel isobaric crosslinker, Qlinker, for studying conformational and structural changes in proteins and protein complexes using quantitative crosslinking mass spectrometry. Qlinkers are small and simple, amine-reactive molecules with an optimal extended distance of ~10 Å, which use MS2 reporter ions for relative quantification of Qlinker-modified peptides derived from different samples. We synthesized the 2-plex Q2linker and showed that the Q2linker can provide quantitative crosslinking data that pinpoints key conformational and structural changes in biosensors, binary and ternary complexes composed of the general transcription factors TBP, TFIIA, and TFIIB, and RNA polymerase II complexes.
Collapse
Affiliation(s)
- Jie Luo
- Institute for Systems BiologySeattleUnited States
| | - Jeff Ranish
- Institute for Systems BiologySeattleUnited States
| |
Collapse
|
3
|
Alternate Roles of Sox Transcription Factors beyond Transcription Initiation. Int J Mol Sci 2021; 22:ijms22115949. [PMID: 34073089 PMCID: PMC8198692 DOI: 10.3390/ijms22115949] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/19/2022] Open
Abstract
Sox proteins are known as crucial transcription factors for many developmental processes and for a wide range of common diseases. They were believed to specifically bind and bend DNA with other transcription factors and elicit transcriptional activation or repression activities in the early stage of transcription. However, their functions are not limited to transcription initiation. It has been showed that Sox proteins are involved in the regulation of alternative splicing regulatory networks and translational control. In this review, we discuss the current knowledge on how Sox transcription factors such as Sox2, Sry, Sox6, and Sox9 allow the coordination of co-transcriptional splicing and also the mechanism of SOX4-mediated translational control in the context of RNA polymerase III.
Collapse
|
4
|
Rooney RJ. Multiple domains in the 50 kDa form of E4F1 regulate promoter-specific repression and E1A trans-activation. Gene 2020; 754:144882. [PMID: 32535047 DOI: 10.1016/j.gene.2020.144882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/25/2020] [Accepted: 06/06/2020] [Indexed: 11/28/2022]
Abstract
The 50 kDa N-terminal product of the cellular transcription factor E4F1 (p50E4F1) mediates E1A289R trans-activation of the adenovirus E4 gene, and suppresses E1A-mediated transformation by sensitizing cells to cell death. This report shows that while both E1A289R and E1A243R stimulate p50E4F1 DNA binding activity, E1A289R trans-activation, as measured using GAL-p50E4F1 fusion proteins, involves a p50E4F1 transcription regulatory (TR) region that must be promoter-bound and is dependent upon E1A CR3, CR1 and N-terminal domains. Trans-activation is promoter-specific, as GAL-p50E4F1 did not stimulate commonly used artificial promoters and was strongly repressive when competing against GAL-VP16. p50E4F1 and E1A289R stably associate in vivo using the p50E4F1 TR region and E1A CR3, although their association in vitro is indirect and paradoxically disrupted by MAP kinase phosphorylation of E1A289R, which stimulates E4 trans-activation in vivo. Multiple cellular proteins, including TBP, bind the p50E4F1 TR region in vitro. The mechanistic implications for p50E4F1 function are discussed.
Collapse
Affiliation(s)
- Robert J Rooney
- Department of Genetics, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
5
|
Abstract
RNA polymerase II (Pol II) transcribes all protein-coding genes and many noncoding RNAs in eukaryotic genomes. Although Pol II is a complex, 12-subunit enzyme, it lacks the ability to initiate transcription and cannot consistently transcribe through long DNA sequences. To execute these essential functions, an array of proteins and protein complexes interact with Pol II to regulate its activity. In this review, we detail the structure and mechanism of over a dozen factors that govern Pol II initiation (e.g., TFIID, TFIIH, and Mediator), pausing, and elongation (e.g., DSIF, NELF, PAF, and P-TEFb). The structural basis for Pol II transcription regulation has advanced rapidly in the past decade, largely due to technological innovations in cryoelectron microscopy. Here, we summarize a wealth of structural and functional data that have enabled a deeper understanding of Pol II transcription mechanisms; we also highlight mechanistic questions that remain unanswered or controversial.
Collapse
Affiliation(s)
- Allison C Schier
- Department of Biochemistry, University of Colorado, Boulder, Colorado 80303, USA
| | - Dylan J Taatjes
- Department of Biochemistry, University of Colorado, Boulder, Colorado 80303, USA
| |
Collapse
|
6
|
Heiss G, Ploetz E, Voith von Voithenberg L, Viswanathan R, Glaser S, Schluesche P, Madhira S, Meisterernst M, Auble DT, Lamb DC. Conformational changes and catalytic inefficiency associated with Mot1-mediated TBP-DNA dissociation. Nucleic Acids Res 2019; 47:2793-2806. [PMID: 30649478 PMCID: PMC6451094 DOI: 10.1093/nar/gky1322] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 12/21/2018] [Accepted: 01/07/2019] [Indexed: 11/12/2022] Open
Abstract
The TATA-box Binding Protein (TBP) plays a central role in regulating gene expression and is the first step in the process of pre-initiation complex (PIC) formation on promoter DNA. The lifetime of TBP at the promoter site is controlled by several cofactors including the Modifier of transcription 1 (Mot1), an essential TBP-associated ATPase. Based on ensemble measurements, Mot1 can use adenosine triphosphate (ATP) hydrolysis to displace TBP from DNA and various models for how this activity is coupled to transcriptional regulation have been proposed. However, the underlying molecular mechanism of Mot1 action is not well understood. In this work, the interaction of Mot1 with the DNA/TBP complex was investigated by single-pair Förster resonance energy transfer (spFRET). Upon Mot1 binding to the DNA/TBP complex, a transition in the DNA/TBP conformation was observed. Hydrolysis of ATP by Mot1 led to a conformational change but was not sufficient to efficiently disrupt the complex. SpFRET measurements of dual-labeled DNA suggest that Mot1's ATPase activity primes incorrectly oriented TBP for dissociation from DNA and additional Mot1 in solution is necessary for TBP unbinding. These findings provide a framework for understanding how the efficiency of Mot1's catalytic activity is tuned to establish a dynamic pool of TBP without interfering with stable and functional TBP-containing complexes.
Collapse
Affiliation(s)
- Gregor Heiss
- Department für Chemie, Center for Nanoscience (CeNS), Center for Integrated Protein Science Munich (CIPSM) and Nanosystems Initiative Munich (NIM), Ludwig-Maximilians-Universität, München 81377, Germany
| | - Evelyn Ploetz
- Department für Chemie, Center for Nanoscience (CeNS), Center for Integrated Protein Science Munich (CIPSM) and Nanosystems Initiative Munich (NIM), Ludwig-Maximilians-Universität, München 81377, Germany
| | - Lena Voith von Voithenberg
- Department für Chemie, Center for Nanoscience (CeNS), Center for Integrated Protein Science Munich (CIPSM) and Nanosystems Initiative Munich (NIM), Ludwig-Maximilians-Universität, München 81377, Germany
| | - Ramya Viswanathan
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - Samson Glaser
- Department für Chemie, Center for Nanoscience (CeNS), Center for Integrated Protein Science Munich (CIPSM) and Nanosystems Initiative Munich (NIM), Ludwig-Maximilians-Universität, München 81377, Germany
| | - Peter Schluesche
- Department für Chemie, Center for Nanoscience (CeNS), Center for Integrated Protein Science Munich (CIPSM) and Nanosystems Initiative Munich (NIM), Ludwig-Maximilians-Universität, München 81377, Germany
| | - Sushi Madhira
- Department für Chemie, Center for Nanoscience (CeNS), Center for Integrated Protein Science Munich (CIPSM) and Nanosystems Initiative Munich (NIM), Ludwig-Maximilians-Universität, München 81377, Germany
| | - Michael Meisterernst
- Institut für Molekulare Tumorbiologie, Westfälische Wilhelms-Universität, Münster 48149, Germany
| | - David T Auble
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - Don C Lamb
- Department für Chemie, Center for Nanoscience (CeNS), Center for Integrated Protein Science Munich (CIPSM) and Nanosystems Initiative Munich (NIM), Ludwig-Maximilians-Universität, München 81377, Germany
| |
Collapse
|
7
|
Lis M, Walther D. The orientation of transcription factor binding site motifs in gene promoter regions: does it matter? BMC Genomics 2016; 17:185. [PMID: 26939991 PMCID: PMC4778318 DOI: 10.1186/s12864-016-2549-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 02/27/2016] [Indexed: 12/23/2022] Open
Abstract
Background Gene expression is to large degree regulated by the specific binding of protein transcription factors to cis-regulatory transcription factor binding sites in gene promoter regions. Despite the identification of hundreds of binding site sequence motifs, the question as to whether motif orientation matters with regard to the gene expression regulation of the respective downstream genes appears surprisingly underinvestigated. Results We pursued a statistical approach by probing 293 reported non-palindromic transcription factor binding site and ten core promoter motifs in Arabidopsis thaliana for evidence of any relevance of motif orientation based on mapping statistics and effects on the co-regulation of gene expression of the respective downstream genes. Although positional intervals closer to the transcription start site (TSS) were found with increased frequencies of motifs exhibiting orientation preference, a corresponding effect with regard to gene expression regulation as evidenced by increased co-expression of genes harboring the favored orientation in their upstream sequence could not be established. Furthermore, we identified an intrinsic orientational asymmetry of sequence regions close to the TSS as the likely source of the identified motif orientation preferences. By contrast, motif presence irrespective of orientation was found associated with pronounced effects on gene expression co-regulation validating the pursued approach. Inspecting motif pairs revealed statistically preferred orientational arrangements, but no consistent effect with regard to arrangement-dependent gene expression regulation was evident. Conclusions Our results suggest that for the motifs considered here, either no specific orientation rendering them functional across all their instances exists with orientational requirements instead depending on gene-locus specific additional factors, or that the binding orientation of transcription factors may generally not be relevant, but rather the event of binding itself. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2549-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Monika Lis
- Max Planck Institute for Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany.
| | - Dirk Walther
- Max Planck Institute for Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany.
| |
Collapse
|
8
|
Hieb AR, Gansen A, Böhm V, Langowski J. The conformational state of the nucleosome entry-exit site modulates TATA box-specific TBP binding. Nucleic Acids Res 2014; 42:7561-76. [PMID: 24829456 PMCID: PMC4081063 DOI: 10.1093/nar/gku423] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The TATA binding protein (TBP) is a critical transcription factor used for nucleating assembly of the RNA polymerase II machinery. TBP binds TATA box elements with high affinity and kinetic stability and in vivo is correlated with high levels of transcription activation. However, since most promoters use less stable TATA-less or TATA-like elements, while also competing with nucleosome occupancy, further mechanistic insight into TBP's DNA binding properties and ability to access chromatin is needed. Using bulk and single-molecule FRET, we find that TBP binds a minimal consensus TATA box as a two-state equilibrium process, showing no evidence for intermediate states. However, upon addition of flanking DNA sequence, we observe non-specific cooperative binding to multiple DNA sites that compete for TATA-box specificity. Thus, we conclude that TBP binding is defined by a branched pathway, wherein TBP initially binds with little sequence specificity and is thermodynamically positioned by its kinetic stability to the TATA box. Furthermore, we observed the real-time access of TBP binding to TATA box DNA located within the DNA entry–exit site of the nucleosome. From these data, we determined salt-dependent changes in the nucleosome conformation regulate TBP's access to the TATA box, where access is highly constrained under physiological conditions, but is alleviated by histone acetylation and TFIIA.
Collapse
Affiliation(s)
- Aaron R Hieb
- Division Biophysics of Macromolecules, German Cancer Research Center, D-69120 Heidelberg, Germany
| | - Alexander Gansen
- Division Biophysics of Macromolecules, German Cancer Research Center, D-69120 Heidelberg, Germany
| | - Vera Böhm
- Division Biophysics of Macromolecules, German Cancer Research Center, D-69120 Heidelberg, Germany
| | - Jörg Langowski
- Division Biophysics of Macromolecules, German Cancer Research Center, D-69120 Heidelberg, Germany
| |
Collapse
|
9
|
Yang J, Cao J, Wang Y, Xu J, Zhou Z, Gu X, Liu X, Wen H, Wu H, Cheng C. Transcription initiation factor IIB involves in Schwann cell differentiation after rat sciatic nerve crush. J Mol Neurosci 2012; 49:491-8. [PMID: 22869340 DOI: 10.1007/s12031-012-9865-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Accepted: 07/23/2012] [Indexed: 12/16/2022]
Abstract
Transcription Initiation Factor IIB (TFIIB), as a general transcription factor, plays an essential role in preinitiation complex assembly and transcription initiation by recruiting RNA polymerase II to the promoter. However, its distribution and function in peripheral system lesion and repair were still unknown. Here, we investigated the spatiotemporal expression of TFIIB in an acute sciatic nerve crush model in adult rats. Western blot analysis revealed that TFIIB was expressed in normal sciatic nerve. It gradually increased, reached a peak at the seventh day after crush, and then returned to the normal level at 4 weeks. We observed that TFIIB expressed mainly increased in Schwann cells and co-localized with Oct-6. In vitro, we induced Schwann cell differentiation with cyclic adenosine monophosphate (cAMP) and found that TFIIB expression was increased in the differentiated process. TFIIB-specific siRNA inhibited cAMP-induced Schwann cell morphological change and the expression of P0. Collectively, we hypothesized peripheral nerve crush-induced upregulation of TFIIB in the sciatic nerve was associated with Schwann cell differentiation.
Collapse
Affiliation(s)
- Jiao Yang
- Department of Immunology, Medical College, Nantong University, 19 Qi-Xiu Road, Nantong, Jiangsu Province, 226001, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
The TATA box binding protein (TBP) is the platform for assembly of archaeal and eukaryotic transcription preinitiation complexes. Ancestral gene duplication and fusion events have produced the saddle-shaped TBP molecule, with its two direct-repeat subdomains and pseudo-two-fold symmetry. Collectively, eukaryotic TBPs have diverged from their present-day archaeal counterparts, which remain highly symmetrical. The similarity of the N- and C-halves of archaeal TBPs is especially pronounced in the Methanococcales and Thermoplasmatales, including complete conservation of their N- and C-terminal stirrups; along with helix H'1, the C-terminal stirrup of TBP forms the main interface with TFB/TFIIB. Here, we show that, in stark contrast to its eukaryotic counterparts, multiple substitutions in the C-terminal stirrup of Methanocaldococcus jannaschii (Mja) TBP do not completely abrogate basal transcription. Using DNA affinity cleavage, we show that, by assembling TFB through its conserved N-terminal stirrup, Mja TBP is in effect ambidextrous with regard to basal transcription. In contrast, substitutions in either its N- or the C-terminal stirrup abrogate activated transcription in response to the Lrp-family transcriptional activator Ptr2.
Collapse
Affiliation(s)
- Mohamed Ouhammouch
- Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0634, USA.
| | | | | |
Collapse
|
11
|
Seila AC, Calabrese JM, Levine SS, Yeo GW, Rahl PB, Flynn RA, Young RA, Sharp PA. Divergent transcription from active promoters. Science 2008; 322:1849-51. [PMID: 19056940 PMCID: PMC2692996 DOI: 10.1126/science.1162253] [Citation(s) in RCA: 715] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Transcription initiation by RNA polymerase II (RNAPII) is thought to occur unidirectionally from most genes. Here, we present evidence of widespread divergent transcription at protein-encoding gene promoters. Transcription start site-associated RNAs (TSSa-RNAs) nonrandomly flank active promoters, with peaks of antisense and sense short RNAs at 250 nucleotides upstream and 50 nucleotides downstream of TSSs, respectively. Northern analysis shows that TSSa-RNAs are subsets of an RNA population 20 to 90 nucleotides in length. Promoter-associated RNAPII and H3K4-trimethylated histones, transcription initiation hallmarks, colocalize at sense and antisense TSSa-RNA positions; however, H3K79-dimethylated histones, characteristic of elongating RNAPII, are only present downstream of TSSs. These results suggest that divergent transcription over short distances is common for active promoters and may help promoter regions maintain a state poised for subsequent regulation.
Collapse
Affiliation(s)
- Amy C. Seila
- Koch Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - J. Mauro Calabrese
- Koch Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Stuart S. Levine
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, Massachusetts 02142, USA
| | - Gene W. Yeo
- Salk Institute, Crick-Jacobs Center for Theoretical and Computational Biology., 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Peter B. Rahl
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, Massachusetts 02142, USA
| | - Ryan A. Flynn
- Koch Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Richard A. Young
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, Massachusetts 02142, USA
| | - Phillip A. Sharp
- Koch Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
12
|
Su M, Lee D, Ganss B, Sodek J. Stereochemical analysis of the functional significance of the conserved inverted CCAAT and TATA elements in the rat bone sialoprotein gene promoter. J Biol Chem 2006; 281:9882-90. [PMID: 16495225 DOI: 10.1074/jbc.m508364200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Basal transcription of the bone sialoprotein gene is mediated by highly conserved inverted CCAAT (ICE; ATTGG) and TATA elements (TTTATA) separated by precisely 21 nucleotides. Here we studied the importance of the relative position and orientation of the CCAAT and TATA elements in the proximal promoter by measuring the transcriptional activity of a series of mutated reporter constructs in transient transfection assays. Whereas inverting the TTTATA (wild type) to a TATAAA (consensus TATA) sequence increased transcription slightly, transcription was reduced when the flanking dinucleotides were also inverted. In contrast, reversing the ATTGG (wild type; ICE) to a CCAAT (RICE) sequence caused a marked reduction in transcription, whereas both transcription and NF-Y binding were progressively increased with the simultaneous inversion of flanking nucleotides (f-RICE-f). Reducing the distance between the ICE and TATA elements produced cyclical changes in transcriptional activity that correlated with progressive alterations in the relative positions of the CCAAT and TATA elements on the face of the DNA helix. Minimal transcription was observed after 5 nucleotides were deleted (equivalent to approximately one half turn of the helix), whereas transcription was fully restored after deleting 10 nucleotides (approximately one full turn of the DNA helix), transcriptional activity being progressively lost with deletions beyond 10 nucleotides. In comparison, when deletions were made with the ICE in the reversed (f-RICE-f) orientation transcriptional activity was progressively lost with no recovery. These results show that, although transcription can still occur when the CCAAT box is reversed and/or displaced relative to the TATA box, the activity is dependent upon the flexibility of the intervening DNA helix needed to align the NF-Y complex on the CCAAT box with preinitiation complex proteins that bind to the TATA box. Thus, the precise location and orientation of the CCAAT element is necessary for optimizing basal transcription of the bone sialoprotein gene.
Collapse
Affiliation(s)
- Ming Su
- Canadian Institutes of Health Research Group in Matrix Dynamics, Faculty of Dentistry, University of Toronto, 234 FitzGerald Building, 150 College Street, Toronto, Ontario M5S 3E2, Canada.
| | | | | | | |
Collapse
|
13
|
Spencer JV, Arndt KM. A TATA binding protein mutant with increased affinity for DNA directs transcription from a reversed TATA sequence in vivo. Mol Cell Biol 2002; 22:8744-55. [PMID: 12446791 PMCID: PMC139874 DOI: 10.1128/mcb.22.24.8744-8755.2002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The TATA-binding protein (TBP) nucleates the assembly and determines the position of the preinitiation complex at RNA polymerase II-transcribed genes. We investigated the importance of two conserved residues on the DNA binding surface of Saccharomyces cerevisiae TBP to DNA binding and sequence discrimination. Because they define a significant break in the twofold symmetry of the TBP-TATA interface, Ala100 and Pro191 have been proposed to be key determinants of TBP binding orientation and transcription directionality. In contrast to previous predictions, we found that substitution of an alanine for Pro191 did not allow recognition of a reversed TATA box in vivo; however, the reciprocal change, Ala100 to proline, resulted in efficient utilization of this and other variant TATA sequences. In vitro assays demonstrated that TBP mutants with the A100P and P191A substitutions have increased and decreased affinity for DNA, respectively. The TATA binding defect of TBP with the P191A mutation could be intragenically suppressed by the A100P substitution. Our results suggest that Ala100 and Pro191 are important for DNA binding and sequence recognition by TBP, that the naturally occurring asymmetry of Ala100 and Pro191 is not essential for function, and that a single amino acid change in TBP can lead to elevated DNA binding affinity and recognition of a reversed TATA sequence.
Collapse
Affiliation(s)
- J Vaughn Spencer
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | |
Collapse
|
14
|
Erie DA. The many conformational states of RNA polymerase elongation complexes and their roles in the regulation of transcription. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1577:224-39. [PMID: 12213654 DOI: 10.1016/s0167-4781(02)00454-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Transcription is highly regulated both by protein factors and by specific RNA or DNA sequence elements. Central to this regulation is the ability of RNA polymerase (RNAP) to adopt multiple conformational states during elongation. This review focuses on the mechanism of transcription elongation and the role of different conformational states in the regulation of elongation and termination. The discussion centers primarily on data from structural and functional studies on Escherichia coli RNAP. To introduce the players, a brief introduction to the general mechanism of elongation, the regulatory proteins, and the conformational states is provided. The role of each of the conformational states in elongation is then discussed in detail. Finally, an integrated mechanism of elongation is presented, bringing together the panoply of experiments.
Collapse
Affiliation(s)
- Dorothy A Erie
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290, USA.
| |
Collapse
|
15
|
Yaghmai R, Cutting GR. Optimized regulation of gene expression using artificial transcription factors. Mol Ther 2002; 5:685-94. [PMID: 12027552 DOI: 10.1006/mthe.2002.0610] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A major focus in the basic science of gene therapy is the study of factors involved in target-specific regulation of gene expression. Optimization of artificial or "designer" transcription factors capable of specific regulation of target genes is a prerequisite to developing practical applications in human subjects. In this paper, we present a systematic and combinatorial approach to optimize engineered transcription factors using designed zinc-finger proteins fused to transcriptional effector domains derived from the naturally occurring activators (VP16 or P65) or repressor (KRAB) proteins. We also demonstrate effective targeting of artificial transcription factors to regulate gene expression from three different constitutive viral promoters (SV40, CMV, RSV). Achieving a desired level of gene expression from a targeted region depended on several variables, including target site affinities for various DNA-binding domains, the nature of the activator domain, the particular cell type used, and the position of the target site with respect to the core promoter. Hence, several aspects of the artificial transcription factors should be simultaneously evaluated to ensure the optimum level of gene expression from a given target site in a given cell type. Our observations and our optimization approach have substantial implications for designing safe and effective artificial transcription factors for cell-based and therapeutic uses.
Collapse
Affiliation(s)
- Reza Yaghmai
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins Hospital, 600 North Wolfe St., Blalock 1008, Baltimore, Maryland 21287-4922, USA.
| | | |
Collapse
|
16
|
Affiliation(s)
- J Soppa
- Institute for Microbiology, Biocentre Niederursel, J. W. Goethe University Frankfurt, D-60439 Frankfurt, Germany
| |
Collapse
|