1
|
Zia S, Sumon MM, Ashik MA, Basar A, Lim S, Oh Y, Park Y, Rahman MM. Potential Inhibitors of Lumpy Skin Disease's Viral Protein (DNA Polymerase): A Combination of Bioinformatics Approaches. Animals (Basel) 2024; 14:1283. [PMID: 38731287 PMCID: PMC11083254 DOI: 10.3390/ani14091283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/07/2024] [Accepted: 04/13/2024] [Indexed: 05/13/2024] Open
Abstract
Lumpy skin disease (LSD), caused by a virus within the Poxviridae family and Capripoxvirus genus, induces nodular skin lesions in cattle. This spreads through direct contact and insect vectors, significantly affecting global cattle farming. Despite the availability of vaccines, their efficacy is limited by poor prophylaxis and adverse effects. Our study aimed to identify the potential inhibitors targeting the LSDV-encoded DNA polymerase protein (gene LSDV039) for further investigation through comprehensive analysis and computational methods. Virtual screening revealed rhein and taxifolin as being potent binders among 380 phytocompounds, with respective affinities of -8.97 and -7.20 kcal/mol. Canagliflozin and tepotinib exhibited strong affinities (-9.86 and -8.86 kcal/mol) among 718 FDA-approved antiviral drugs. Simulating the molecular dynamics of canagliflozin, tepotinib, rhein, and taxifolin highlighted taxifolin's superior stability and binding energy. Rhein displayed compactness in RMSD and RMSF, but fluctuated in Rg and SASA, while canagliflozin demonstrated stability compared to tepotinib. This study highlights the promising potential of using repurposed drugs and phytocompounds as potential LSD therapeutics. However, extensive validation through in vitro and in vivo testing and clinical trials is crucial for their practical application.
Collapse
Affiliation(s)
- Sabbir Zia
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh; (S.Z.); (M.-M.S.); (M.-A.A.); (A.B.)
| | - Md-Mehedi Sumon
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh; (S.Z.); (M.-M.S.); (M.-A.A.); (A.B.)
| | - Md-Ashiqur Ashik
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh; (S.Z.); (M.-M.S.); (M.-A.A.); (A.B.)
| | - Abul Basar
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh; (S.Z.); (M.-M.S.); (M.-A.A.); (A.B.)
| | - Sangjin Lim
- College of Forest & Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea;
| | - Yeonsu Oh
- College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Republic of Korea;
| | - Yungchul Park
- College of Forest & Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea;
| | - Md-Mafizur Rahman
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh; (S.Z.); (M.-M.S.); (M.-A.A.); (A.B.)
| |
Collapse
|
2
|
Wang M, Zhang W, He T, Rong L, Yang Q. Degradation of polycyclic aromatic hydrocarbons in aquatic environments by a symbiotic system consisting of algae and bacteria: green and sustainable technology. Arch Microbiol 2023; 206:10. [PMID: 38059992 DOI: 10.1007/s00203-023-03734-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/27/2023] [Accepted: 11/04/2023] [Indexed: 12/08/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are genotoxic, carcinogenic, and persistent in the environment and are therefore of great concern in the environmental protection field. Due to the inherent recalcitrance, persistence and nonreactivity of PAHs, they are difficult to remediate via traditional water treatment methods. In recent years, microbial remediation has been widely used as an economical and environmentally friendly degradation technology for the treatment of PAH-contaminated water. Various bacterial and microalgal strains are capable of potentially degrading or transforming PAHs through intrinsic metabolic pathways. However, their biodegradation potential is limited by the cytotoxic effects of petroleum hydrocarbons, unfavourable environmental conditions, and biometabolic limitations. To address this limitation, microbial communities, biochemical pathways, enzyme systems, gene organization, and genetic regulation related to PAH degradation have been intensively investigated. The advantages of algal-bacterial cocultivation have been explored, and the limitations of PAHs degradation by monocultures of algae or bacteria have been overcome by algal-bacterial interactions. Therefore, a new model consisting of a "microalgal-bacterial consortium" is becoming a new management strategy for the effective degradation and removal of PAHs. This review first describes PAH pollution control technologies (physical remediation, chemical remediation, bioremediation, etc.) and proposes an algal-bacterial symbiotic system for the degradation of PAHs by analysing the advantages, disadvantages, and PAH degradation performance in this system to fill existing research gaps. Additionally, an algal-bacterial system is systematically developed, and the effects of environmental conditions are explored to optimize the degradation process and improve its technical feasibility. The aim of this paper is to provide readers with an effective green and sustainable remediation technology for removing PAHs from aquatic environments.
Collapse
Affiliation(s)
- Mengying Wang
- Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences (Beijing), Beijing, 100083, People's Republic of China
| | - Wenqing Zhang
- Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences (Beijing), Beijing, 100083, People's Republic of China
| | - Tao He
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Lingyun Rong
- Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences (Beijing), Beijing, 100083, People's Republic of China
| | - Qi Yang
- Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences (Beijing), Beijing, 100083, People's Republic of China.
| |
Collapse
|
3
|
Nageswari P, Swathi K. In silico docking and Molecular Dynamic (MD) simulations studies of selected phytochemicals against Human Glycolate Oxidase (hGOX) and Oxalate oxidase (OxO). Drug Res (Stuttg) 2023; 73:459-464. [PMID: 37487522 DOI: 10.1055/a-2088-3889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Globally, Urolithiasis is the most prevalent urological problem which affects the populations across the ages and races. In recent years, several phytochemicals are being investigated to improve the efficacy and safety of anti-urolithiasis formulations. To develop drugs based on traditional medicines, it is essential to understand the molecular mechanism of action of these drugs. We present the results of in silico docking and molecular dynamic (MD) simulation studies on selected phytochemical including catechin, epicatechin, gallic acid, gallocatechin, epigallocatechin, epigallocatechin 3-o-gallate, 4-methoxy-nor-securine, nor-securinine, and fisetin with human glycolate oxidase (hGOX) and oxalate oxidase (OxO). Gallic acid, gallocatechin and fisetin showed better docking scores than the rest. In MD simulation analysis, stable interactions of the gallic acid with hGOX and OxO; gallocatechin and fisetin with hGOX were observed. It was found that, gallic acid stably interacts withTYR26, LYS 236, ARG 315, and ASP 291 residues of hGOX. On other hand, gallic acid stably interacs with GLU 58 residue of OxO. Gallocatechin, forms stable interactions with TYR 26, ASP 170, ARG 167 and THR 161 of HGOX. In MD simulations, fisetin stably interacted with TYR 26, TRP110 and ARG 263 as we predicted in molecular docking. None of the interactions was formed during the MD simulation of OxO with gallocatechin and fisetin. Together, these results suggest that gallic acid, gallocatechin and fisetin are the potential candidates for the development of phytochemicals for the management of urolithiasis in humans.
Collapse
Affiliation(s)
- Patnam Nageswari
- Institute of Pharmaceutical Technology, Sri Padmavati Mahila Viswavidyalayam, Tirupati, Sri Padmavathi Mahila Viswavidyalayam, India
| | - K Swathi
- Institute of Pharmaceutical Technology, Sri Padmavati Mahila ViswavidyalayamSri Padmavathi Mahila Viswavidyalayam, India
| |
Collapse
|
4
|
Verma M, Trivedi L, Vasudev PG. Interaction Patterns of Pyrazolopyrimidines with Receptor Proteins. J Chem Inf Model 2023; 63:2331-2344. [PMID: 37023262 DOI: 10.1021/acs.jcim.2c01315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Heterocyclic compounds have a prominent role in medicinal chemistry and drug design. They are not only useful as medicinally active compounds but also as a modular structural scaffold for drug design. Therefore, heterocycles are present in many ligands that exhibit a broad spectrum of biological activities. Pyazolopyrimidines are nitrogen heterocycles and are part of many biologically active compounds and marketed drugs. This study examines the non-covalent interactions between the pyrazolopyrimidine rings and receptor proteins through data mining and analysis of high-resolution crystal structures deposited in the Protein Data Bank. The Protein Data Bank contains 471 crystal structures with pyrazolopyrimidine derivatives as ligands, among which 50% contains 1H-pyrazolo[3,4-d]pyrimidines (Pyp1), while 38% contains pyrazolo[1,5-a] pyrimidines (Pyp2). 1H-Pyrazolo[4,3-d]pyrimidines (Pyp3) are found in 11% of the structures, and no structural data is available for pyrazolo[1,5-c]pyrimidine isomers (Pyp4). Among receptor proteins, transferases are found in most examples (67.5%), followed by hydrolases (13.4%) and oxidoreductases (8.9%). Detailed analysis of structures to identify the most prevalent interactions of pyrazolopyrimidines with proteins shows that aromatic π···π interactions are present in ∼91% of the structures and hydrogen bonds/other polar contacts are present in ∼73% of the structures. The centroid-centroid distances (dcent) between the pyrazolopyrimidine rings and aromatic side chains of the proteins have been retrieved from crystal structures recorded at a high resolution (data resolution <2.0 Å). The average value of dcent in pyrazolopyrimidine-protein complexes is 5.32 Å. The information on the geometric parameters of aromatic interactions between the core pyrazolopyrimidine ring and the protein would be helpful in future in silico modeling studies on pyrazolopyrimidine-receptor complexes.
Collapse
Affiliation(s)
- Meenakshi Verma
- Plant Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 220025, India
| | - Laxmikant Trivedi
- Plant Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India
| | - Prema G Vasudev
- Plant Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 220025, India
| |
Collapse
|
5
|
lixia L, ying Y, hong W, zhe L, Jiqian L. Rapid Detection of Ag+ in Food Using Cholesteric Chiral Artificial Receptor L5. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
6
|
Kumar S, Rao NNS, Reddy KSSVP, Padole MC, Deshpande PA. Enzyme-substrate interactions in orotate-mimetic OPRT inhibitor complexes: a QM/MM analysis. Phys Chem Chem Phys 2023; 25:3472-3484. [PMID: 36637052 DOI: 10.1039/d2cp05406j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Orotate phosphoribosyltransferase (OPRT) catalyses the reversible phosphoribosyl transfer from α-D-5-phosphoribosyl-1-pyrophosphate (PRPP) to orotic acid (OA) to yield orotidine 5'-monophosphate (OMP) during the de novo synthesis of nucleotides. Numerous studies have reported the inhibition of this reaction as a strategy to check diseases like tuberculosis, malaria and cancer. Insight into the inhibition of this reaction is, therefore, of urgent interest. In this study, we implemented a QM/MM framework on OPRT derived from Saccharomyces cerevisiae to obtain insights into the competitive binding of OA and OA-mimetic inhibitors by quantifying their interactions with OPRT. 4-Hydroxy-6-methylpyridin-2(1H) one showed the best inhibiting activity among the structurally similar OA-mimetic inhibitors, as quantified from the binding energetics. Our analysis of protein-ligand interactions unveiled the association of this inhibitory ligand with a strong network of hydrogen bonds, a large contribution of hydrophobic contacts, and bridging water molecules in the binding site. The ortho-substituted CH3 group in the compound resulted in a large population of π-electrons in the aromatic ring of this inhibitor, supporting the ligand binding further.
Collapse
Affiliation(s)
- Shashi Kumar
- Quantum and Molecular Engineering Laboratory, Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| | - N N Subrahmanyeswara Rao
- Quantum and Molecular Engineering Laboratory, Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| | - K S S V Prasad Reddy
- Quantum and Molecular Engineering Laboratory, Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| | - Manjusha C Padole
- Quantum and Molecular Engineering Laboratory, Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| | - Parag A Deshpande
- Quantum and Molecular Engineering Laboratory, Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| |
Collapse
|
7
|
Maschietto F, Qiu T, Wang J, Shi Y, Allen B, Lisi GP, Lolis E, Batista VS. Valproate-coenzyme A conjugate blocks opening of receptor binding domains in the spike trimer of SARS-CoV-2 through an allosteric mechanism. Comput Struct Biotechnol J 2023; 21:1066-1076. [PMID: 36688026 PMCID: PMC9841741 DOI: 10.1016/j.csbj.2023.01.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
The receptor-binding domains (RBDs) of the SARS-CoV-2 spike trimer exhibit "up" and "down" conformations often targeted by neutralizing antibodies. Only in the "up" configuration can RBDs bind to the ACE2 receptor of the host cell and initiate the process of viral multiplication. Here, we identify a lead compound (3-oxo-valproate-coenzyme A conjugate or Val-CoA) that stabilizes the spike trimer with RBDs in the down conformation. Val-CoA interacts with three R408 residues, one from each RBD, which significantly reduces the inter-subunit R408-R408 distance by ∼ 13 Å and closes the central pore formed by the three RBDs. Experimental evidence is presented that R408 is part of a triggering mechanism that controls the prefusion to postfusion state transition of the spike trimer. By stabilizing the RBDs in the down configuration, this and other related compounds can likely attenuate viral transmission. The reported findings for binding of Val-CoA to the spike trimer suggest a new approach for the design of allosteric antiviral drugs that do not have to compete for specific virus-receptor interactions but instead hinder the conformational motion of viral membrane proteins essential for interaction with the host cell. Here, we introduce an approach to target the spike protein by identifying lead compounds that stabilize the RBDs in the trimeric "down" configuration. When these compounds trimerize monomeric RBD immunogens as co-immunogens, they could also induce new types of non-ACE2 blocking antibodies that prevent local cell-to-cell transmission of the virus, providing a novel approach for inhibition of SARS-CoV-2.
Collapse
Affiliation(s)
| | - Tianyin Qiu
- Department of Chemistry, Yale University, New Haven, CT 06520-8449, USA
| | - Jimin Wang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | - Yuanjun Shi
- Department of Chemistry, Yale University, New Haven, CT 06520-8449, USA
| | - Brandon Allen
- Department of Chemistry, Yale University, New Haven, CT 06520-8449, USA
| | - George P. Lisi
- Department of Molecular and Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Elias Lolis
- Department of Pharmacology, Yale University, New Haven, CT 06520-8066, USA
| | - Victor S. Batista
- Department of Chemistry, Yale University, New Haven, CT 06520-8449, USA
| |
Collapse
|
8
|
Srivastava R. Computational Studies on Antibody Drug Conjugates (ADCs) for Precision Oncology. ChemistrySelect 2022. [DOI: 10.1002/slct.202202259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ruby Srivastava
- Bioinformatics CSIR-Centre for Cellular and Molecular Biology, CGCR+CC3 Uppal Rd, IICT Colony, Habsiguda Hyderabad Telangana 500007
| |
Collapse
|
9
|
Friedrich D, Marintchev A, Arthanari H. The metaphorical swiss army knife: The multitude and diverse roles of HEAT domains in eukaryotic translation initiation. Nucleic Acids Res 2022; 50:5424-5442. [PMID: 35552740 PMCID: PMC9177959 DOI: 10.1093/nar/gkac342] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 11/24/2022] Open
Abstract
Biomolecular associations forged by specific interaction among structural scaffolds are fundamental to the control and regulation of cell processes. One such structural architecture, characterized by HEAT repeats, is involved in a multitude of cellular processes, including intracellular transport, signaling, and protein synthesis. Here, we review the multitude and versatility of HEAT domains in the regulation of mRNA translation initiation. Structural and cellular biology approaches, as well as several biophysical studies, have revealed that a number of HEAT domain-mediated interactions with a host of protein factors and RNAs coordinate translation initiation. We describe the basic structural architecture of HEAT domains and briefly introduce examples of the cellular processes they dictate, including nuclear transport by importin and RNA degradation. We then focus on proteins in the translation initiation system featuring HEAT domains, specifically the HEAT domains of eIF4G, DAP5, eIF5, and eIF2Bϵ. Comparative analysis of their remarkably versatile interactions, including protein-protein and protein-RNA recognition, reveal the functional importance of flexible regions within these HEAT domains. Here we outline how HEAT domains orchestrate fundamental aspects of translation initiation and highlight open mechanistic questions in the area.
Collapse
Affiliation(s)
- Daniel Friedrich
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Assen Marintchev
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, MA, USA
| | - Haribabu Arthanari
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
10
|
El Sayed DS, Abdelrehim ESM. Computational details of molecular structure, spectroscopic properties, topological studies and SARS-Cov-2 enzyme molecular docking simulation of substituted triazolo pyrimidine thione heterocycles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 261:120006. [PMID: 34098482 PMCID: PMC8149157 DOI: 10.1016/j.saa.2021.120006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/30/2021] [Accepted: 05/23/2021] [Indexed: 06/12/2023]
Abstract
Investigation the molecular structure of the system requires a detailed experience in dealing with theoretical computational guides to highlight its important role. Molecular structure of three heterocyclic compounds 8,10-diphenylpyrido[3,2-e][1,2,4]triazolo[4,3-c]pyrimidine-3(2H)-thione (HL), 8-phenyl-10-(p-tolyl)pyrido[3,2-e][1,2,4]triazolo[4,3-c]pyrimidine-3(2H)-thione (CH3L) and10-(4-nitrophenyl)-8-phenylpyrido[3,2-e][1,2,4]triazolo[4,3-c]pyrimidine-3(2H)-thione (NO2L) was studied at DFT/B3LYP/6-31G (d,p) level in ethanol solvent. Spectroscopic properties such Infrared (IR, 1H NMR and 13C NMR) and ultraviolet-visible (UV-VIS) analyses were computed. Some quantum and reactivity parameters (HOMO energy, LUMO energy, energy gap, ionization potential, electron affinity, chemical potential, global softness, lipophelicity) were studied, also molecular electrostatic potential (MEP) was performed to indicate the reactive nucleophilic and electrophilic sites. The effects of H-, CH3- and NO2- substituents on heterocyclic ligands were studied and it was found that the electron donation sites concerned with hydrogen and methyl substituents over nitro substituent. Topological analysis using reduced density gradient (RDG) was discussed in details. To predict the relevant antiviral activity of the reported heterocyclic compounds, molecular docking simulation was applied to the crystal structure of SARS-Cov-2 viral Mpro enzyme with 6WTT code and PLpro with 7JRN code. The enzymatic viral protein gives an image about the binding affinity between the target protein receptor and the heterocyclic ligands entitled. The hydrogen bonding interactions were evaluated from molecular docking with different strength for each ligand compound to discuss the efficiency of heterocyclic ligands toward viral inhibition.
Collapse
Affiliation(s)
- Doaa S El Sayed
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | | |
Collapse
|
11
|
Pandya N, Jain N, Kumar A. Interaction analysis of anti-cancer drug Methotrexate with bcl-2 promoter stabilization and its transcription regulation. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
12
|
Pandey SK. Computational Study on the Structure, Stability, and Electronic Feature Analyses of Trapped Halocarbons inside a Novel Bispyrazole Organic Molecular Cage. ACS OMEGA 2021; 6:11711-11728. [PMID: 34056325 PMCID: PMC8154030 DOI: 10.1021/acsomega.1c01019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/02/2021] [Indexed: 05/23/2023]
Abstract
Computational experiments on a novel crystal (Bharadwaj et al. Cryst. Growth Des. 2019, 19, 369-375) having a series of seven host-guest complexes (HGCs) where the host species belong to the family of a novel bispyrazole organic cryptand (BPOC) and their structural, stability, and the electronic feature analyses have been reported using the quantum chemical calculation approach. This report systematically unravels an inclusive theory-based experiment on the well-known guest solvents (S) like halocarbon solvents [CCl4, CHCl3/CHCl3' (two orientations), CH2Cl2 , C2H4Cl2 , C2H4Br2 , and C2HCl3 ] and a few model chlorofluorocarbons (CFCs) (CClF3 , CCl2F2 , and CCl3F) trapped inside the host (BPOC) cryptand, which are the crux in forming the structures of biological and supramolecular systems. Using the implicitly dispersion-corrected DFT (M06-2X/6-31G*) approach, the BPOC molecular cage and its host-guest capabilities were evaluated for the encapsulation of the above said halocarbon solvents as well as the CFC models. The encapsulated C2H4Br2 solvent inside the BPOC cage is found to be the most stable among all the HGCs; however, common in the solid phase, similar binary complexes have not been formerly examined in any gas/solvent-phase studies of the BPOC host species. Moreover, very interestingly, the stability pattern of the host-guest complexes enhances for the CFC models when the number of Cl atoms is increased. As the halogenated solvents through halogen and H-bonding are very decisive in understanding and controlling chemical reactions, the NCI-plots support the presence of the halogen bonding (C-Cl/Br···π) and H-bonding (C-H···π) interactions playing an imperative role in stabilizing the guests (solvents) inside the hydrophobic cavity. To get more insights, the HOMO-LUMO and MESP plots as well as natural population analyses have also been highlighted. This theoretical study portrays an inclusive information about the structural, stability, and electronic feature analyses of the host-guest assemblies consisting of the halogen and H-bonding interactions at the atomic level where the influences of such halocarbon solvents play crucial roles in comprehending and managing chemical reactions.
Collapse
Affiliation(s)
- Sarvesh Kumar Pandey
- Department
of Inorganic & Physical Chemistry, Indian
Institute of Science Bangalore, Bengaluru, Karnataka 560 012, India
- Department
of Chemistry, Indian Institute of Technology
Kanpu, Kanpur, Uttar Pradesh 208 016, India
| |
Collapse
|
13
|
Ernst O, Failayev H, Athamna M, He H, Tsfadia Y, Zor T. A dual and conflicting role for imiquimod in inflammation: A TLR7 agonist and a cAMP phosphodiesterase inhibitor. Biochem Pharmacol 2020; 182:114206. [DOI: 10.1016/j.bcp.2020.114206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/10/2020] [Accepted: 08/18/2020] [Indexed: 12/14/2022]
|
14
|
Baruah S, Aier M, Puzari A. Fluorescent probe sensor based on (R)-(-)-4-phenyl-2-oxazolidone for effective detection of divalent cations. LUMINESCENCE 2020; 35:1206-1216. [PMID: 32510851 DOI: 10.1002/bio.3830] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/27/2020] [Accepted: 05/06/2020] [Indexed: 01/19/2023]
Abstract
Significant progress attained in sensor science in recent years has resulted in the development of highly efficient fluorescence probes for sensing metal ions. Fluorescent molecular probes based on (R)-(-)-4-phenyl-2-oxazolidone are reported here. Fluorescence studies indicated that the molecular probe could be used successfully to sense divalent metal cations such as Cu2+ , Co2+ , Pb2+ , and Zn2+ . The addition of divalent metal cations to the molecular probe produced a specific interaction pattern under UV-visible and fluorescence spectroscopy. These molecules could detect metal cations using fluorescence quenching. Stern-Volmer plots were used to determine quenching rate coefficients, which were calculated to be 2 × 101 , 1.06 × 103 and 7.39 × 102 M-1 s-1 for copper, cobalt, and zinc respectively. Calculation of limit of detection for heavy metal cations revealed that the reported molecular probes improved the limit of detection compared with available standard data. Limit of quantitation values were also well within the permissible range. The frontier energy gap of highest occupied molecular orbital to the lowest unoccupied molecular orbital was evaluated using the density functional theory approach and Gaussian 09 W software, which complemented the coordination of azetidinones with divalent metal ions.
Collapse
Affiliation(s)
- Shyamal Baruah
- Department of Chemistry, National Institute of Technology Nagaland, Chumukedima, Dimapur, Nagaland, India
| | - Merangmenla Aier
- Department of Chemistry, National Institute of Technology Nagaland, Chumukedima, Dimapur, Nagaland, India
| | - Amrit Puzari
- Department of Chemistry, National Institute of Technology Nagaland, Chumukedima, Dimapur, Nagaland, India
| |
Collapse
|
15
|
Terrazas-López M, Lobo-Galo N, Aguirre-Reyes LG, Bustos-Jaimes I, Marcos-Víquez JÁ, González-Segura L, Díaz-Sánchez ÁG. Interaction of N-succinyl diaminopimelate desuccinylase with orphenadrine and disulfiram. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Garzón V, Bustos RH, G. Pinacho D. Personalized Medicine for Antibiotics: The Role of Nanobiosensors in Therapeutic Drug Monitoring. J Pers Med 2020; 10:E147. [PMID: 32993004 PMCID: PMC7712907 DOI: 10.3390/jpm10040147] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/05/2020] [Accepted: 09/07/2020] [Indexed: 01/01/2023] Open
Abstract
Due to the high bacterial resistance to antibiotics (AB), it has become necessary to adjust the dose aimed at personalized medicine by means of therapeutic drug monitoring (TDM). TDM is a fundamental tool for measuring the concentration of drugs that have a limited or highly toxic dose in different body fluids, such as blood, plasma, serum, and urine, among others. Using different techniques that allow for the pharmacokinetic (PK) and pharmacodynamic (PD) analysis of the drug, TDM can reduce the risks inherent in treatment. Among these techniques, nanotechnology focused on biosensors, which are relevant due to their versatility, sensitivity, specificity, and low cost. They provide results in real time, using an element for biological recognition coupled to a signal transducer. This review describes recent advances in the quantification of AB using biosensors with a focus on TDM as a fundamental aspect of personalized medicine.
Collapse
Affiliation(s)
- Vivian Garzón
- PhD Biosciences Program, Universidad de La Sabana, Chía 140013, Colombia;
| | - Rosa-Helena Bustos
- Therapeutical Evidence Group, Clinical Pharmacology, Universidad de La Sabana, Chía 140013, Colombia;
| | - Daniel G. Pinacho
- Therapeutical Evidence Group, Clinical Pharmacology, Universidad de La Sabana, Chía 140013, Colombia;
| |
Collapse
|
17
|
Hussain M, Qadri T, Hussain Z, Saeed A, Channar PA, Shehzadi SA, Hassan M, Larik FA, Mahmood T, Malik A. Synthesis, antibacterial activity and molecular docking study of vanillin derived 1,4-disubstituted 1,2,3-triazoles as inhibitors of bacterial DNA synthesis. Heliyon 2019; 5:e02812. [PMID: 31768438 PMCID: PMC6872831 DOI: 10.1016/j.heliyon.2019.e02812] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/13/2019] [Accepted: 11/07/2019] [Indexed: 01/03/2023] Open
Abstract
Antimicrobial resistance (AMR) compelled scientists in general while pharmacists, chemists and biologists in specific to believe that we could always remain ahead of the pathogens. The pipeline of new drugs is running gasping and the inducements to develop new antimicrobials to address the global problems of drug resistance are weak. In this pursuit, effective endeavours to prepare new anti-bacterial entities is highly wished. The present study demonstrates successful synthesis of a library of 1,4-disbustituted 1,2,3-triazoles (3a-3k) using Click-chemistry concept and anti-their bacterial potential. In this 1,3-dipolar cycloaddition, the 3-methoxy-4-(prop-2-yn-1-yloxy)benzaldehyde (1) was used as alkyne partner which was synthesized from vanillin and propargyl bromide and further reacted with differently substituted arylpropoxy azides (2a-k) to furnish series of mono and bis1,4-disubstituted-1,2,3-triazoles. All the synthesized compounds were characterized spectroscopically and were evaluated for their initial antimicrobial activity. Preliminary results of antibacterial screening revealed that the synthesized compounds have the highest inhibitory effects compare to the control ciprofloxacin. The compounds 3b and 3g were found to be the most active (MIC: 5 μg/mL, MIC: 10 μg/mL respectively) against various strains of gram-positive and gram-negative bacteria. The molecular docking study against 4GQQ protein with synthesized ligands was performed to see the necessary interactions responsible for anti-bacterial activity. The docking analysis of the most potent compound 3g supported the antibacterial activity exhibiting high inhibition constant and binding energy.
Collapse
Affiliation(s)
- Mumtaz Hussain
- Department of Chemistry, University of Karachi, 75270, Karachi, Pakistan
| | - Tahir Qadri
- Department of Chemistry, University of Karachi, 75270, Karachi, Pakistan
| | - Zahid Hussain
- Department of Chemistry, University of Karachi, 75270, Karachi, Pakistan
| | - Aamer Saeed
- Department of Chemistry, Quaid-i-Azam University, 45320, Islamabad, Pakistan
| | - Pervaiz Ali Channar
- Department of Chemistry, Quaid-i-Azam University, 45320, Islamabad, Pakistan
| | - Syeda Aaliya Shehzadi
- Sulaiman Bin Abdullah Aba Al-Khail-Centre for Interdisciplinary Research in Basic Sciences (SA-CIRBS), International Islamic University, 44000, Islamabad, Pakistan
| | - Mubashir Hassan
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Defence Road Campus, Lahore, Pakistan
| | - Fayaz Ali Larik
- Department of Chemistry, Quaid-i-Azam University, 45320, Islamabad, Pakistan
| | - Tarique Mahmood
- Department of Chemistry, University of Karachi, 75270, Karachi, Pakistan
| | - Arif Malik
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Defence Road Campus, Lahore, Pakistan
| |
Collapse
|
18
|
Verma AK, Khan E, Mishra SK, Jain N, Kumar A. Piperine Modulates Protein Mediated Toxicity in Fragile X-Associated Tremor/Ataxia Syndrome through Interacting Expanded CGG Repeat (r(CGG) exp) RNA. ACS Chem Neurosci 2019; 10:3778-3788. [PMID: 31264835 DOI: 10.1021/acschemneuro.9b00282] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
An expansion of CGG tandem repeats in the 5' untranslated region (5'-UTR) of fragile X mental retardation 1 (FMR1) gene causes fragile X-associated tremor/ataxia syndrome (FXTAS). The transcripts of these expanded repeats r(CGG)exp either form RNA foci or undergo the repeat-associated non-ATG (RAN) translation that produces toxic homopolymeric proteins in neuronal cells. The discovery of small molecule modulators that possess a strong binding affinity and high selectivity to these toxic expanded repeats RNA could be a promising therapeutic approach to cure the expanded repeat-associated neurological diseases. Therefore, here we sought to test the therapeutic potential of a natural alkaloid, piperine, by assessing its ability to bind and neutralize the toxicity of r(CGG)exp RNA motif. To accomplish this first, we have determined the affinity of piperine to r(CGG)exp RNA using fluorescence-based binding assay and isothermal titration calorimetry assay. These assays showed that piperine forms a thermodynamically favorable interaction with r(CGG)exp RNA with high selectivity to the G-rich RNA motif. Interaction of piperine with r(CGG)exp motif was further validated using several biophysical techniques such as CD, CD melting, NMR spectroscopy, and gel retardation assay. Moreover, piperine was also found to be effective for improving the r(CGG)exp associated splicing defects and RAN translation in a FXTAS cell model system. Our results effectively provided the evidence that piperine strongly interacts with r(CGG)exp RNA and could be used as a suitable candidate for therapeutic development against FXTAS.
Collapse
Affiliation(s)
- Arun Kumar Verma
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| | - Eshan Khan
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| | - Subodh Kumar Mishra
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| | - Neha Jain
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| | - Amit Kumar
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| |
Collapse
|
19
|
da Silva VBR, Boucherle B, El-Methni J, Hoffmann B, da Silva AL, Fortune A, de Lima MDCA, Thomas A. Could we expect new praziquantel derivatives? A meta pharmacometrics/pharmacoinformatics analysis of all antischistosomal praziquantel derivatives found in the literature. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2019; 30:383-401. [PMID: 31144535 DOI: 10.1080/1062936x.2019.1607898] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 04/11/2019] [Indexed: 06/09/2023]
Abstract
Praziquantel (PZQ) is the first line drug for the treatment of human Schistosoma spp. worm infections. However, it suffers from low activity towards immature stages of the worm, and its prolonged use induces resistance/tolerance. During the last 40 years, 263 PZQ analogues have been synthesized and tested against Schistosoma spp. worms, but less than 10% of them showed significant activity. Here, we propose a rationalization of the chemical space of the PZQ derivatives by a ligand-based approach. First, we constructed an in-house database with all PZQ derivatives available in the literature. This analysis shows a high heterogeneity in the data. Fortunately, all studies include PZQ as a reference, permitting the classification of compounds into three classes according to their activities. Models involving ligand-based pharmacophore and logistic regression were performed. Five physicochemical parameters were identified as the best to explain the biological activity. In the end, we proposed new PZQ derivatives with modifications at positions 1 and 7, we analysed them with our models, and we observed that they can be more active than the previously synthesized derivatives. The main goal of this work was to conduct the most valuable meta-pharmacometrics/pharmacoinformatics analysis with all Praziquantel medicinal chemistry data available in the literature.
Collapse
Affiliation(s)
- V B Ribeiro da Silva
- a CNRS, DPM , Université Grenoble Alpes , Grenoble , France
- b Departamento de Antibióticos (DANTI) , Universidade Federal de Pernambuco (UFPE) , Recife , Brazil
| | - B Boucherle
- a CNRS, DPM , Université Grenoble Alpes , Grenoble , France
| | - J El-Methni
- c MAP5, UMR CNRS , Université Paris Descartes, Sorbonne Paris Cité , Paris , France
| | - B Hoffmann
- d UMR CNRS 7590, Museum National d'Histoire Naturelle, IRD UMR 206, IUC, IMPMC , Sorbonne Universités, UPMC Univ Paris , Paris , France
| | - A L da Silva
- e Universidade Federal do Vale do São Francisco, Univasf, Campus Paulo Afonso , Paulo Afonso , Brazil
| | - A Fortune
- a CNRS, DPM , Université Grenoble Alpes , Grenoble , France
| | - M do Carmo Alves de Lima
- b Departamento de Antibióticos (DANTI) , Universidade Federal de Pernambuco (UFPE) , Recife , Brazil
| | - A Thomas
- a CNRS, DPM , Université Grenoble Alpes , Grenoble , France
| |
Collapse
|
20
|
Ball J, Reis RAG, Agniswamy J, Weber IT, Gadda G. Steric hindrance controls pyridine nucleotide specificity of a flavin-dependent NADH:quinone oxidoreductase. Protein Sci 2018; 28:167-175. [PMID: 30246917 DOI: 10.1002/pro.3514] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/12/2018] [Accepted: 09/17/2018] [Indexed: 02/04/2023]
Abstract
The crystal structure of the NADH:quinone oxidoreductase PA1024 has been solved in complex with NAD+ to 2.2 Å resolution. The nicotinamide C4 is 3.6 Å from the FMN N5 atom, with a suitable orientation for facile hydride transfer. NAD+ binds in a folded conformation at the interface of the TIM-barrel domain and the extended domain of the enzyme. Comparison of the enzyme-NAD+ structure with that of the ligand-free enzyme revealed a different conformation of a short loop (75-86) that is part of the NAD+ -binding pocket. P78, P82, and P84 provide internal rigidity to the loop, whereas Q80 serves as an active site latch that secures the NAD+ within the binding pocket. An interrupted helix consisting of two α-helices connected by a small three-residue loop binds the pyrophosphate moiety of NAD+ . The adenine moiety of NAD+ appears to π-π stack with Y261. Steric constraints between the adenosine ribose of NAD+ , P78, and Q80, control the strict specificity of the enzyme for NADH. Charged residues do not play a role in the specificity of PA1024 for the NADH substrate.
Collapse
Affiliation(s)
- Jacob Ball
- Department of Chemistry, Georgia State University, Atlanta, Georgia, 30302-3965
| | - Renata A G Reis
- Department of Chemistry, Georgia State University, Atlanta, Georgia, 30302-3965
| | - Johnson Agniswamy
- School of Biology, Centers for Georgia State University, Atlanta, Georgia, 30302-3965
| | - Irene T Weber
- Department of Chemistry, Georgia State University, Atlanta, Georgia, 30302-3965.,School of Biology, Centers for Georgia State University, Atlanta, Georgia, 30302-3965.,Biotechnology and Drug Design, Georgia State University, Atlanta, Georgia, 30302-3965.,Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, 30302-3965
| | - Giovanni Gadda
- Department of Chemistry, Georgia State University, Atlanta, Georgia, 30302-3965.,School of Biology, Centers for Georgia State University, Atlanta, Georgia, 30302-3965.,Biotechnology and Drug Design, Georgia State University, Atlanta, Georgia, 30302-3965.,Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, 30302-3965
| |
Collapse
|
21
|
Krishna Deepak RNV, Abdullah A, Talwar P, Fan H, Ravanan P. Identification of FDA-approved drugs as novel allosteric inhibitors of human executioner caspases. Proteins 2018; 86:1202-1210. [PMID: 30194780 DOI: 10.1002/prot.25601] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 09/03/2018] [Accepted: 09/04/2018] [Indexed: 01/10/2023]
Abstract
The regulation of apoptosis is a tightly coordinated process and caspases are its chief regulators. Of special importance are the executioner caspases, caspase-3/7, the activation of which irreversibly sets the cell on the path of death. Dysregulation of apoptosis, particularly an increased rate of cell death lies at the root of numerous human diseases. Although several peptide-based inhibitors targeting the homologous active site region of caspases have been developed, owing to their non-specific activity and poor pharmacological properties their use has largely been restricted. Thus, we sought to identify FDA-approved drugs that could be repurposed as novel allosteric inhibitors of caspase-3/7. In this study, we virtually screened a catalog of FDA-approved drugs targeting an allosteric pocket located at the dimerization interface of caspase-3/7. From among the top-scoring hits we short-listed 5 compounds for experimental validation. Our enzymatic assays using recombinant caspase-3 suggested that 4 out of the 5 drugs effectively inhibited caspase-3 enzymatic activity in vitro with IC50 values ranging ~10-55 μM. Structural analysis of the docking poses show the 4 compounds forming specific non-covalent interactions at the allosteric pocket suggesting that these molecules could disrupt the adjacently-located active site. In summary, we report the identification of 4 novel non-peptide allosteric inhibitors of caspase-3/7 from among FDA-approved drugs.
Collapse
Affiliation(s)
- R N V Krishna Deepak
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Ahmad Abdullah
- Apoptosis and Cell Survival Research Laboratory, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, India
| | - Priti Talwar
- Apoptosis and Cell Survival Research Laboratory, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, India
| | - Hao Fan
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore.,Department of Biological Sciences, National University of Singapore, Singapore.,Centre for Computational Biology, DUKE-NUS Medical School, Singapore
| | - Palaniyandi Ravanan
- Apoptosis and Cell Survival Research Laboratory, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, India
| |
Collapse
|
22
|
SureshKumar P, Thomas J, Poornima V. Structural insights on bioremediation of polycyclic aromatic hydrocarbons using microalgae: a modelling-based computational study. ENVIRONMENTAL MONITORING AND ASSESSMENT 2018; 190:92. [PMID: 29356900 DOI: 10.1007/s10661-017-6459-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 12/29/2017] [Indexed: 06/07/2023]
Abstract
Research on bioremediation of polycyclic aromatic hydrocarbons (PAHs) has established that several remediating microbial species are capable of degrading only low molecular weight (LMW)-PAHs, whereas high molecular weight (HMW)-PAHs are hardly degradable. In the present study, the efficiency of degradation of both LMW and HMW-PAHs by cytochrome P450 monooxygenase (CYP) of microalgae was studied. CYP have a key role in the detoxification of xenobiotics. So far, the structure of CYP in microalgae is not predicted; the protein structure was constructed by molecular modelling in the current study using the available template of microalgal CYP. Modelled microalgae 3D structures were docked against 38 different PAH compounds, and the information regarding the interaction between protein and PAHs viz. binding sites along with mode of interactions was investigated. We report that CYP from the microalgae Haematococcus pluvialis and Parachlorella kessleri was found to possess broad oxidising capability towards both LMW and HMW-PAHs. P. kessleri showed a least value with extra precision glide score of - 10.23 and glide energy of - 23.48 kcal/mol. PAHs bind to CYP active sites at Lys 69, Trp 96, Gln 397 and Arg 398 through intermolecular hydrogen bonding. Also, study revealed that PAHs interacted with CYP active sites through intermolecular hydrogen bonding, hydrophobic bonding, π-π interactions and van der waals interactions. Thus, structural elucidation study confirms that microalgae Parachlorella kessleri have the capacity to remediate HMW more efficiently than other microorganisms. Our results provide a framework in understanding the structure and the possible binding sites of CYP protein for degradation of PAH and that could be a screening tool in identifying the phycoremediation potential.
Collapse
Affiliation(s)
- Pandian SureshKumar
- Algae Biomass Research Laboratory, Department of Biosciences and Technology, Karunya University, Coimbatore, Tamil Nadu, India
| | - Jibu Thomas
- Algae Biomass Research Laboratory, Department of Biosciences and Technology, Karunya University, Coimbatore, Tamil Nadu, India.
| | - Vasudevan Poornima
- Biochematics Laboratory, Department of Bioinformatics, Bharathiar University, Coimbatore, Tamil Nadu, India
| |
Collapse
|
23
|
Brylinski M. Aromatic interactions at the ligand-protein interface: Implications for the development of docking scoring functions. Chem Biol Drug Des 2017; 91:380-390. [PMID: 28816025 DOI: 10.1111/cbdd.13084] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 06/29/2017] [Accepted: 08/11/2017] [Indexed: 12/22/2022]
Abstract
The ability to design and fine-tune non-covalent interactions between organic ligands and proteins is indispensable to rational drug development. Aromatic stacking has long been recognized as one of the key constituents of ligand-protein interfaces. In this communication, we employ a two-parameter geometric model to conduct a large-scale statistical analysis of aromatic contacts in the experimental and computer-generated structures of ligand-protein complexes, considering various combinations of aromatic amino acid residues and ligand rings. The geometry of interfacial π-π stacking in crystal structures accords with experimental and theoretical data collected for simple systems, such as the benzene dimer. Many contemporary ligand docking programs implicitly treat aromatic stacking with van der Waals and Coulombic potentials. Although this approach generally provides a sufficient specificity to model aromatic interactions, the geometry of π-π contacts in high-scoring docking conformations could still be improved. The comprehensive analysis of aromatic geometries at ligand-protein interfaces lies the foundation for the development of type-specific statistical potentials to more accurately describe aromatic interactions in molecular docking. A Perl script to detect and calculate the geometric parameters of aromatic interactions in ligand-protein complexes is available at https://github.com/michal-brylinski/earomatic. The dataset comprising experimental complex structures and computer-generated models is available at https://osf.io/rztha/.
Collapse
Affiliation(s)
- Michal Brylinski
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA.,Center for Computation & Technology, Louisiana State University, Baton Rouge, LA, USA
| |
Collapse
|
24
|
Akher FB, Ebrahimi A, Mostafavi N. Characterization of π-stacking interactions between aromatic amino acids and quercetagetin. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2016.08.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
25
|
Ramachandran B, Kesavan S, Rajkumar T. Molecular modeling and docking of small molecule inhibitors against NEK2. Bioinformation 2016; 12:62-68. [PMID: 28104962 PMCID: PMC5237649 DOI: 10.6026/97320630012062] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 03/18/2016] [Accepted: 03/19/2016] [Indexed: 11/23/2022] Open
Abstract
Aberrant expression of NEK2 (NIMA-related kinase 2) is indicated in a wide variety of human cancers. NEK2 is highly correlated to multi drug resistance by activating drug efflux activity. Identification of new small molecule inhibitors targeted against NEK2 therefore, facilitates to increase drug sensitivity of cancer cells, by stabilizing drug influx and minimizes the dose of therapeutic drug. Our work investigates to screen for optimal small molecule inhibitors against NEK2. In this study, we used a computational approach by modeling NEK2 protein using I-TASSER (Iterative Threading ASSEmbly Refinement) software. The modeled structure was subjected to protein preparation wizard; to add hydrogens and to optimize the protonation states of His, Gln and Asn residues. Active site of the modeled protein was identified using SiteMap tool of Schrodinger package. We further carried out docking studies by means of Glide, with various ligands downloaded from EDULISS database. Based on glide score, potential ligands were screened and their interaction with NEK2 was identified. The best hits were further screened for Lipinski's rule for drug-likeliness, bioactivity scoring and ADME properties. Thus, we report two (didemethylchlorpromazine and 2-[5-fluoro-1Hindol- 3-yl] propan-1-amine) compounds that have successfully satisfied all in silico parameters, necessitating further in vitro and in vivo studies.
Collapse
Affiliation(s)
- Balaji Ramachandran
- Department of Molecular Oncology, Cancer Institute (W.I.A), No.38, Sardar Patel Road, Adyar, Chennai - 600 036
| | - Sabitha Kesavan
- Department of Molecular Oncology, Cancer Institute (W.I.A), No.38, Sardar Patel Road, Adyar, Chennai - 600 036
| | - Thangarajan Rajkumar
- Department of Molecular Oncology, Cancer Institute (W.I.A), No.38, Sardar Patel Road, Adyar, Chennai - 600 036
| |
Collapse
|
26
|
Kaplan E, Guichou JF, Chaloin L, Kunzelmann S, Leban N, Serpersu EH, Lionne C. Aminoglycoside binding and catalysis specificity of aminoglycoside 2″-phosphotransferase IVa: A thermodynamic, structural and kinetic study. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1860:802-13. [PMID: 26802312 PMCID: PMC4769084 DOI: 10.1016/j.bbagen.2016.01.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 12/08/2015] [Accepted: 01/12/2016] [Indexed: 12/29/2022]
Abstract
BACKGROUND Aminoglycoside O-phosphotransferases make up a large class of bacterial enzymes that is widely distributed among pathogens and confer a high resistance to several clinically used aminoglycoside antibiotics. Aminoglycoside 2″-phosphotransferase IVa, APH(2″)-IVa, is an important member of this class, but there is little information on the thermodynamics of aminoglycoside binding and on the nature of its rate-limiting step. METHODS We used isothermal titration calorimetry, electrostatic potential calculations, molecular dynamics simulations and X-ray crystallography to study the interactions between the enzyme and different aminoglycosides. We determined the rate-limiting step of the reaction by the means of transient kinetic measurements. RESULTS For the first time, Kd values were determined directly for APH(2″)-IVa and different aminoglycosides. The affinity of the enzyme seems to anti-correlate with the molecular weight of the ligand, suggesting a limited degree of freedom in the binding site. The main interactions are electrostatic bonds between the positively charged amino groups of aminoglycosides and Glu or Asp residues of APH. In spite of the significantly different ratio Kd/Km, there is no large difference in the transient kinetics obtained with the different aminoglycosides. We show that a product release step is rate-limiting for the overall reaction. CONCLUSIONS APH(2″)-IVa has a higher affinity for aminoglycosides carrying an amino group in 2' and 6', but tighter bindings do not correlate with higher catalytic efficiencies. As with APH(3')-IIIa, an intermediate containing product is preponderant during the steady state. GENERAL SIGNIFICANCE This intermediate may constitute a good target for future drug design.
Collapse
Affiliation(s)
- Elise Kaplan
- CNRS, FRE3689 - Université de Montpellier, Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé, F-34293 Montpellier, France
| | - Jean-François Guichou
- CNRS, UMR5048 - Université de Montpellier, Centre de Biochimie Structurale, F-34090 Montpellier, France; INSERM, U1054, F-34090 Montpellier, France
| | - Laurent Chaloin
- CNRS, FRE3689 - Université de Montpellier, Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé, F-34293 Montpellier, France
| | | | - Nadia Leban
- CNRS, FRE3689 - Université de Montpellier, Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé, F-34293 Montpellier, France
| | - Engin H Serpersu
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Corinne Lionne
- CNRS, FRE3689 - Université de Montpellier, Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé, F-34293 Montpellier, France.
| |
Collapse
|
27
|
Delarami HS, Ebrahimi A. Theoretical investigation of the backbone···π and π···π stacking interactions in substituted-benzene||3-methyl-2′-deoxyadenosine: a perspective to the DNA repair. Mol Phys 2015. [DOI: 10.1080/00268976.2015.1118569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Hojat Samareh Delarami
- Computational Quantum Chemistry Laboratory, Department of Chemistry, University of Sistan and Baluchestan, Zahedan, Iran
| | - Ali Ebrahimi
- Computational Quantum Chemistry Laboratory, Department of Chemistry, University of Sistan and Baluchestan, Zahedan, Iran
| |
Collapse
|
28
|
Conformational Preferences of π–π Stacking Between Ligand and Protein, Analysis Derived from Crystal Structure Data Geometric Preference of π–π Interaction. Interdiscip Sci 2015; 7:211-20. [DOI: 10.1007/s12539-015-0263-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 04/01/2014] [Accepted: 06/03/2015] [Indexed: 10/23/2022]
|
29
|
Lopata A, Jambrina PG, Sharma PK, Brooks BR, Toth J, Vertessy BG, Rosta E. Mutations Decouple Proton Transfer from Phosphate Cleavage in the dUTPase Catalytic Reaction. ACS Catal 2015. [DOI: 10.1021/cs502087f] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Anna Lopata
- Institute
of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest H1113, Hungary
| | - Pablo G. Jambrina
- Department
of Chemistry, King’s College London, London SE1 1DB, United Kingdom
| | - Pankaz K. Sharma
- College
of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Korea
| | - Bernard R. Brooks
- Laboratory
of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, Maryland 20892-9314, United States
| | - Judit Toth
- Institute
of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest H1113, Hungary
| | - Beata G. Vertessy
- Institute
of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest H1113, Hungary
- Department
of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Budapest H1111, Hungary
| | - Edina Rosta
- Department
of Chemistry, King’s College London, London SE1 1DB, United Kingdom
| |
Collapse
|
30
|
Nishio M, Umezawa Y, Fantini J, Weiss MS, Chakrabarti P. CH-π hydrogen bonds in biological macromolecules. Phys Chem Chem Phys 2015; 16:12648-83. [PMID: 24836323 DOI: 10.1039/c4cp00099d] [Citation(s) in RCA: 335] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This is a sequel to the previous Perspective "The CH-π hydrogen bond in chemistry. Conformation, supramolecules, optical resolution and interactions involving carbohydrates", which featured in a PCCP themed issue on "Weak Hydrogen Bonds - Strong Effects?": Phys. Chem. Chem. Phys., 2011, 13, 13873-13900. Evidence that weak hydrogen bonds play an enormously important role in chemistry and biochemistry has now accumulated to an extent that the rigid classical concept of hydrogen bonds formulated by Pauling needs to be seriously revised and extended. The concept of a more generalized hydrogen bond definition is indispensable for understanding the folding mechanisms of proteins. The CH-π hydrogen bond, a weak molecular force occurring between a soft acid CH and a soft base π-electron system, among all is one of the most important and plays a functional role in defining the conformation and stability of 3D structures as well as in many molecular recognition events. This concept is also valuable in structure-based drug design efforts. Despite their frequent occurrence in organic molecules and bio-molecules, the importance of CH-π hydrogen bonds is still largely unknown to many chemists and biochemists. Here we present a review that deals with the evidence, nature, characteristics and consequences of the CH-π hydrogen bond in biological macromolecules (proteins, nucleic acids, lipids and polysaccharides). It is hoped that the present Perspective will show the importance of CH-π hydrogen bonds and stimulate interest in the interactions of biological macromolecules, one of the most fascinating fields in bioorganic chemistry. Implication of this concept is enormous and valuable in the scientific community.
Collapse
Affiliation(s)
- Motohiro Nishio
- The CHPI Institute, 705-6-338, Minamioya, Machida-shi, Tokyo 194-0031, Japan.
| | | | | | | | | |
Collapse
|
31
|
Kumar V, Weng YC, Geldenhuys WJ, Wang D, Han X, Messing RO, Chou WH. Generation and characterization of ATP analog-specific protein kinase Cδ. J Biol Chem 2014; 290:1936-51. [PMID: 25505183 DOI: 10.1074/jbc.m114.598698] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To better study the role of PKCδ in normal function and disease, we developed an ATP analog-specific (AS) PKCδ that is sensitive to specific kinase inhibitors and can be used to identify PKCδ substrates. AS PKCδ showed nearly 200 times higher affinity (Km) and 150 times higher efficiency (kcat/Km) than wild type (WT) PKCδ toward N(6)-(benzyl)-ATP. AS PKCδ was uniquely inhibited by 1-(tert-butyl)-3-(1-naphthyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine (1NA-PP1) and 1-(tert-butyl)-3-(2-methylbenzyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine (2MB-PP1) but not by other 4-amino-5-(4-methylphenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP1) analogs tested, whereas WT PKCδ was insensitive to all PP1 analogs. To understand the mechanisms for specificity and affinity of these analogs, we created in silico WT and AS PKCδ homology models based on the crystal structure of PKCι. N(6)-(Benzyl)-ATP and ATP showed similar positioning within the purine binding pocket of AS PKCδ, whereas N(6)-(benzyl)-ATP was displaced from the pocket of WT PKCδ and was unable to interact with the glycine-rich loop that is required for phosphoryl transfer. The adenine rings of 1NA-PP1 and 2MB-PP1 matched the adenine ring of ATP when docked in AS PKCδ, and this interaction prevented the potential interaction of ATP with Lys-378, Glu-428, Leu-430, and Phe-633 residues. 1NA-PP1 failed to effectively dock within WT PKCδ. Other PP1 analogs failed to interact with either AS PKCδ or WT PKCδ. These results provide a structural basis for the ability of AS PKCδ to efficiently and specifically utilize N(6)-(benzyl)-ATP as a phosphate donor and for its selective inhibition by 1NA-PP1 and 2MB-PP1. Such homology modeling could prove useful in designing molecules to target PKCδ and other kinases to understand their function in cell signaling and to identify unique substrates.
Collapse
Affiliation(s)
- Varun Kumar
- From the Department of Biological Sciences, School of Biomedical Sciences, Kent State University, Kent, Ohio 44242
| | - Yi-Chinn Weng
- From the Department of Biological Sciences, School of Biomedical Sciences, Kent State University, Kent, Ohio 44242
| | - Werner J Geldenhuys
- the Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, Ohio 44272
| | - Dan Wang
- the Ernest Gallo Clinic and Research Center, Department of Neurology, University of California, San Francisco, Emeryville, California 94608, and
| | - Xiqian Han
- From the Department of Biological Sciences, School of Biomedical Sciences, Kent State University, Kent, Ohio 44242
| | - Robert O Messing
- the Ernest Gallo Clinic and Research Center, Department of Neurology, University of California, San Francisco, Emeryville, California 94608, and the Division of Pharmacology and Toxicology, College of Pharmacy, University of Texas, Austin, Texas 78712
| | - Wen-Hai Chou
- From the Department of Biological Sciences, School of Biomedical Sciences, Kent State University, Kent, Ohio 44242, the Ernest Gallo Clinic and Research Center, Department of Neurology, University of California, San Francisco, Emeryville, California 94608, and
| |
Collapse
|
32
|
Da Costa G, Bondon A, Coutant J, Curmi P, Monti JP. Intermolecular interactions between the neurotensin and the third extracellular loop of human neurotensin 1 receptor. J Biomol Struct Dyn 2013; 31:1381-92. [DOI: 10.1080/07391102.2012.736776] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
33
|
Usha S, Selvaraj S. Structure-wise discrimination of cytosine, thymine, and uracil by proteins in terms of their nonbonded interactions. J Biomol Struct Dyn 2013; 32:1686-704. [DOI: 10.1080/07391102.2013.832384] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
34
|
Ahmad E, Rabbani G, Zaidi N, Khan MA, Qadeer A, Ishtikhar M, Singh S, Khan RH. Revisiting ligand-induced conformational changes in proteins: essence, advancements, implications and future challenges. J Biomol Struct Dyn 2013; 31:630-48. [DOI: 10.1080/07391102.2012.706081] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
35
|
de Aquino RAN, Modolo LV, Alves RB, de Fátima Â. Synthesis, kinetic studies and molecular modeling of novel tacrine dimers as cholinesterase inhibitors. Org Biomol Chem 2013; 11:8395-409. [DOI: 10.1039/c3ob41762j] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
36
|
Thermodynamical properties of protein kinase with adenine inhibitors. CHINESE SCIENCE BULLETIN-CHINESE 2013. [DOI: 10.1007/s11434-012-5611-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
37
|
Romanowska J, Reuter N, Trylska J. Comparing aminoglycoside binding sites in bacterial ribosomal RNA and aminoglycoside modifying enzymes. Proteins 2012; 81:63-80. [PMID: 22907688 DOI: 10.1002/prot.24163] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 08/02/2012] [Accepted: 08/09/2012] [Indexed: 11/10/2022]
Abstract
Aminoglycoside antibiotics are used against severe bacterial infections. They bind to the bacterial ribosomal RNA and interfere with the translation process. However, bacteria produce aminoglycoside modifying enzymes (AME) to resist aminoglycoside actions. AMEs form a variable group and yet they specifically recognize and efficiently bind aminoglycosides, which are also diverse in terms of total net charge and the number of pseudo-sugar rings. Here, we present the results of 25 molecular dynamics simulations of three AME representatives and aminoglycoside ribosomal RNA binding site, unliganded and complexed with an aminoglycoside, kanamycin A. A comparison of the aminoglycoside binding sites in these different receptors revealed that the enzymes efficiently mimic the nucleic acid environment of the ribosomal RNA binding cleft. Although internal dynamics of AMEs and their interaction patterns with aminoglycosides differ, the energetical analysis showed that the most favorable sites are virtually the same in the enzymes and RNA. The most copied interactions were of electrostatic nature, but stacking was also replicated in one AME:kanamycin complex. In addition, we found that some water-mediated interactions were very stable in the simulations of the complexes. We show that our simulations reproduce well findings from NMR or X-ray structural studies, as well as results from directed mutagenesis. The outcomes of our analyses provide new insight into aminoglycoside resistance mechanism that is related to the enzymatic modification of these drugs.
Collapse
Affiliation(s)
- Julia Romanowska
- Department of Biophysics, Faculty of Physics, University of Warsaw, Hoża 69, 00-681 Warsaw, Poland.
| | | | | |
Collapse
|
38
|
Structure and function of a serine carboxypeptidase adapted for degradation of the protein synthesis antibiotic microcin C7. Proc Natl Acad Sci U S A 2012; 109:4425-30. [PMID: 22388748 DOI: 10.1073/pnas.1114224109] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Several classes of naturally occurring antimicrobials exert their antibiotic activity by specifically targeting aminoacyl-tRNA synthetases, validating these enzymes as drug targets. The aspartyl tRNA synthetase "Trojan horse" inhibitor microcin C7 (McC7) consists of a nonhydrolyzable aspartyl-adenylate conjugated to a hexapeptide carrier that facilitates active import into bacterial cells through an oligopeptide transport system. Subsequent proteolytic processing releases the toxic compound inside the cell. Producing strains of McC7 must protect themselves against autotoxicity that may result from premature processing. The mccF gene confers resistance against endogenous and exogenous McC7 by hydrolyzing the amide bond that connects the peptide and nucleotide moieties of McC7. We present here crystal structures of MccF, in complex with various ligands. The MccF structure is similar to that of dipeptide ld-carboxypeptidase, but with an additional loop proximal to the active site that serves as the primary determinant for recognition of adenylated substrates. Wild-type MccF only hydrolyzes the naturally occurring aspartyl phosphoramidate McC7 and synthetic peptidyl sulfamoyl adenylates that contain anionic side chains. We show that substitutions of two active site MccF residues result in a specificity switch toward aromatic aminoacyl-adenylate substrates. These results suggest how MccF-like enzymes may be used to avert various toxic aminoacyl-adenylates that accumulate during antibiotic biosynthesis or in normal metabolism of the cell.
Collapse
|
39
|
Matesanz R, Diaz JF, Corzana F, Santana AG, Bastida A, Asensio JL. Multiple keys for a single lock: the unusual structural plasticity of the nucleotidyltransferase (4')/kanamycin complex. Chemistry 2012; 18:2875-89. [PMID: 22298309 DOI: 10.1002/chem.201101888] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 12/05/2011] [Indexed: 11/09/2022]
Abstract
The most common mode of bacterial resistance to aminoglycoside antibiotics is the enzyme-catalysed chemical modification of the drug. Over the last two decades, significant efforts in medicinal chemistry have been focused on the design of non- inactivable antibiotics. Unfortunately, this strategy has met with limited success on account of the remarkably wide substrate specificity of aminoglycoside-modifying enzymes. To understand the mechanisms behind substrate promiscuity, we have performed a comprehensive experimental and theoretical analysis of the molecular-recognition processes that lead to antibiotic inactivation by Staphylococcus aureus nucleotidyltransferase 4'(ANT(4')), a clinically relevant protein. According to our results, the ability of this enzyme to inactivate structurally diverse polycationic molecules relies on three specific features of the catalytic region. First, the dominant role of electrostatics in aminoglycoside recognition, in combination with the significant extension of the enzyme anionic regions, confers to the protein/antibiotic complex a highly dynamic character. The motion deduced for the bound antibiotic seem to be essential for the enzyme action and probably provide a mechanism to explore alternative drug inactivation modes. Second, the nucleotide recognition is exclusively mediated by the inorganic fragment. In fact, even inorganic triphosphate can be employed as a substrate. Third, ANT(4') seems to be equipped with a duplicated basic catalyst that is able to promote drug inactivation through different reactive geometries. This particular combination of features explains the enzyme versatility and renders the design of non-inactivable derivatives a challenging task.
Collapse
Affiliation(s)
- Ruth Matesanz
- Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
40
|
Faraldos JA, González V, Senske M, Allemann RK. Templating effects in aristolochene synthase catalysis: elimination versus cyclisation. Org Biomol Chem 2011; 9:6920-3. [PMID: 21870004 DOI: 10.1039/c1ob06184d] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Analysis of the products generated by mutants of aristolochene synthase from P. roqueforti (PR-AS) revealed the prominent structural role played by the aliphatic residue Leu 108 in maintaining the productive conformation of farnesyl diphosphate to ensure C1-C10 (σ-bond) ring-closure and hence (+)-aristolochene production.
Collapse
Affiliation(s)
- Juan A Faraldos
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, United Kingdom
| | | | | | | |
Collapse
|
41
|
π-π interaction of quinacridone derivatives. J Comput Chem 2011; 32:2055-63. [DOI: 10.1002/jcc.21782] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 01/05/2011] [Accepted: 02/09/2011] [Indexed: 11/07/2022]
|
42
|
Škedelj V, Tomašić T, Mašič LP, Zega A. ATP-binding site of bacterial enzymes as a target for antibacterial drug design. J Med Chem 2011; 54:915-29. [PMID: 21235241 DOI: 10.1021/jm101121s] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Veronika Škedelj
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | | | | | | |
Collapse
|
43
|
Vacas T, Corzana F, Jiménez-Osés G, González C, Gómez AM, Bastida A, Revuelta J, Asensio JL. Role of Aromatic Rings in the Molecular Recognition of Aminoglycoside Antibiotics: Implications for Drug Design. J Am Chem Soc 2010; 132:12074-90. [DOI: 10.1021/ja1046439] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tatiana Vacas
- Instituto de Química Orgánica General (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain, Departamento de Química, Universidad de La Rioja, UA-CSIC, Logroño, Spain, Departamento de Química Orgánica y Química Física. Universidad de Zaragoza-CSIC, Zaragoza, Spain, and Instituto de Química Física Rocasolano (CSIC), Madrid, Spain
| | - Francisco Corzana
- Instituto de Química Orgánica General (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain, Departamento de Química, Universidad de La Rioja, UA-CSIC, Logroño, Spain, Departamento de Química Orgánica y Química Física. Universidad de Zaragoza-CSIC, Zaragoza, Spain, and Instituto de Química Física Rocasolano (CSIC), Madrid, Spain
| | - Gonzalo Jiménez-Osés
- Instituto de Química Orgánica General (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain, Departamento de Química, Universidad de La Rioja, UA-CSIC, Logroño, Spain, Departamento de Química Orgánica y Química Física. Universidad de Zaragoza-CSIC, Zaragoza, Spain, and Instituto de Química Física Rocasolano (CSIC), Madrid, Spain
| | - Carlos González
- Instituto de Química Orgánica General (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain, Departamento de Química, Universidad de La Rioja, UA-CSIC, Logroño, Spain, Departamento de Química Orgánica y Química Física. Universidad de Zaragoza-CSIC, Zaragoza, Spain, and Instituto de Química Física Rocasolano (CSIC), Madrid, Spain
| | - Ana M. Gómez
- Instituto de Química Orgánica General (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain, Departamento de Química, Universidad de La Rioja, UA-CSIC, Logroño, Spain, Departamento de Química Orgánica y Química Física. Universidad de Zaragoza-CSIC, Zaragoza, Spain, and Instituto de Química Física Rocasolano (CSIC), Madrid, Spain
| | - Agatha Bastida
- Instituto de Química Orgánica General (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain, Departamento de Química, Universidad de La Rioja, UA-CSIC, Logroño, Spain, Departamento de Química Orgánica y Química Física. Universidad de Zaragoza-CSIC, Zaragoza, Spain, and Instituto de Química Física Rocasolano (CSIC), Madrid, Spain
| | - Julia Revuelta
- Instituto de Química Orgánica General (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain, Departamento de Química, Universidad de La Rioja, UA-CSIC, Logroño, Spain, Departamento de Química Orgánica y Química Física. Universidad de Zaragoza-CSIC, Zaragoza, Spain, and Instituto de Química Física Rocasolano (CSIC), Madrid, Spain
| | - Juan Luis Asensio
- Instituto de Química Orgánica General (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain, Departamento de Química, Universidad de La Rioja, UA-CSIC, Logroño, Spain, Departamento de Química Orgánica y Química Física. Universidad de Zaragoza-CSIC, Zaragoza, Spain, and Instituto de Química Física Rocasolano (CSIC), Madrid, Spain
| |
Collapse
|
44
|
Pecsi I, Leveles I, Harmat V, Vertessy BG, Toth J. Aromatic stacking between nucleobase and enzyme promotes phosphate ester hydrolysis in dUTPase. Nucleic Acids Res 2010; 38:7179-86. [PMID: 20601405 PMCID: PMC2978360 DOI: 10.1093/nar/gkq584] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Aromatic interactions are well-known players in molecular recognition but their catalytic role in biological systems is less documented. Here, we report that a conserved aromatic stacking interaction between dUTPase and its nucleotide substrate largely contributes to the stabilization of the associative type transition state of the nucleotide hydrolysis reaction. The effect of the aromatic stacking on catalysis is peculiar in that uracil, the aromatic moiety influenced by the aromatic interaction is relatively distant from the site of hydrolysis at the alpha-phosphate group. Using crystallographic, kinetics, optical spectroscopy and thermodynamics calculation approaches we delineate a possible mechanism by which rate acceleration is achieved through the remote π–π interaction. The abundance of similarly positioned aromatic interactions in various nucleotide hydrolyzing enzymes (e.g. most families of ATPases) raises the possibility of the reported phenomenon being a general component of the enzymatic catalysis of phosphate ester hydrolysis.
Collapse
Affiliation(s)
- Ildiko Pecsi
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, Budapest, Hungary
| | | | | | | | | |
Collapse
|
45
|
Revuelta J, Corzana F, Bastida A, Asensio J. The Unusual Nucleotide Recognition Properties of the Resistance Enzyme ANT(4′): Inorganic Tri/Polyphosphate as a Substrate for Aminoglycoside Inactivation. Chemistry 2010; 16:8635-40. [DOI: 10.1002/chem.201000641] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
46
|
Santoni G, Mba M, Bonchio M, Nugent W, Zonta C, Licini G. Stereoselective Control by Face-to-Face Versus Edge-to-Face Aromatic Interactions: The Case ofC3-TiIVAmino Trialkolate Sulfoxidation Catalysts. Chemistry 2010; 16:645-54. [DOI: 10.1002/chem.200902072] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
47
|
Parente A, Berisio R, Chambery A, Di Maro A. Type 1 Ribosome-Inactivating Proteins from the Ombú Tree (Phytolacca dioica L.). TOXIC PLANT PROTEINS 2010. [DOI: 10.1007/978-3-642-12176-0_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
48
|
Norris AL, Serpersu EH. NMR detected hydrogen-deuterium exchange reveals differential dynamics of antibiotic- and nucleotide-bound aminoglycoside phosphotransferase 3'-IIIa. J Am Chem Soc 2009; 131:8587-94. [PMID: 19463004 DOI: 10.1021/ja901685h] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this work, hydrogen-deuterium exchange detected by NMR spectroscopy is used to determine the dynamic properties of the aminoglycoside phosphotransferase 3'-IIIa (APH), a protein of intense interest due to its involvement in conferring antibiotic resistance to both gram negative and gram positive microorganisms. This represents the first characterization of dynamic properties of an aminoglycoside-modifying enzyme. Herein we describe in vitro dynamics of apo, binary, and ternary complexes of APH with kanamycin A, neomycin B, and metal-nucleotide. Regions of APH in different complexes that are superimposable in crystal structures show remarkably different dynamic behavior. A complete exchange of backbone amides is observed within the first 15 h of exposure to D(2)O in the apo form of this 31 kDa protein. Binding of aminoglycosides to the enzyme induces significant protection against exchange, and approximately 30% of the amides remain unexchanged up to 95 h after exposure to D(2)O. Our data also indicate that neomycin creates greater solvent protection and overall enhanced structural stability to APH than kanamycin. Surprisingly, nucleotide binding to the enzyme-aminoglycoside complex increases solvent accessibility of a number of amides and is responsible for destabilization of a nearby beta-sheet, thus providing a rational explanation for previously observed global thermodynamic parameters. Our data also provide a molecular basis for broad substrate selectivity of APH.
Collapse
Affiliation(s)
- Adrianne L Norris
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, Tennessee, 37996, USA
| | | |
Collapse
|
49
|
Imai Y, Inoue Y, Nakanishi I, Kitaura K. Cl-π Interactions in Protein-Ligand Complexes. ACTA ACUST UNITED AC 2009. [DOI: 10.1002/qsar.200860168] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
50
|
Nishio M, Umezawa Y, Honda K, Tsuboyama S, Suezawa H. CH/π hydrogen bonds in organic and organometallic chemistry. CrystEngComm 2009. [DOI: 10.1039/b902318f] [Citation(s) in RCA: 481] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|