1
|
Seelig B, Chen IA. Intellectual frameworks to understand complex biochemical systems at the origin of life. Nat Chem 2025; 17:11-19. [PMID: 39762573 DOI: 10.1038/s41557-024-01698-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/14/2024] [Indexed: 01/11/2025]
Abstract
Understanding the emergence of complex biochemical systems, such as protein translation, is a great challenge. Although synthetic approaches can provide insight into the potential early stages of life, they do not address the equally important question of why the complex systems of life would have evolved. In particular, the intricacies of the mechanisms governing the transfer of information from nucleic acid sequences to proteins make it difficult to imagine how coded protein synthesis could have emerged from a prebiotic soup. Here we discuss the use of intellectual frameworks in studying the emergence of life. We discuss how one such framework, namely the RNA world theory, has spurred research, and provide an overview of its limitations. We suggest that the emergence of coded protein synthesis could be broken into experimentally tractable problems by treating it as a molecular bricolage-a complex system integrating many different parts, each of which originally evolved for uses unrelated to its modern function-to promote a concrete understanding of its origin.
Collapse
Affiliation(s)
- Burckhard Seelig
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA.
- BioTechnology Institute, University of Minnesota, St. Paul, MN, USA.
| | - Irene A Chen
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Lei L, Burton ZF. The 3 31 Nucleotide Minihelix tRNA Evolution Theorem and the Origin of Life. Life (Basel) 2023; 13:2224. [PMID: 38004364 PMCID: PMC10672568 DOI: 10.3390/life13112224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/08/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
There are no theorems (proven theories) in the biological sciences. We propose that the 3 31 nt minihelix tRNA evolution theorem be universally accepted as one. The 3 31 nt minihelix theorem completely describes the evolution of type I and type II tRNAs from ordered precursors (RNA repeats and inverted repeats). Despite the diversification of tRNAome sequences, statistical tests overwhelmingly support the theorem. Furthermore, the theorem relates the dominant pathway for the origin of life on Earth, specifically, how tRNAomes and the genetic code may have coevolved. Alternate models for tRNA evolution (i.e., 2 minihelix, convergent and accretion models) are falsified. In the context of the pre-life world, tRNA was a molecule that, via mutation, could modify anticodon sequences and teach itself to code. Based on the tRNA sequence, we relate the clearest history to date of the chemical evolution of life. From analysis of tRNA evolution, ribozyme-mediated RNA ligation was a primary driving force in the evolution of complexity during the pre-life-to-life transition. TRNA formed the core for the evolution of living systems on Earth.
Collapse
Affiliation(s)
- Lei Lei
- School of Biological Sciences, University of New England, Biddeford, ME 04005, USA;
| | - Zachary Frome Burton
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
3
|
Martínez Giménez JA, Tabares Seisdedos R. A Cofactor-Based Mechanism for the Origin of the Genetic Code. ORIGINS LIFE EVOL B 2022; 52:149-163. [PMID: 36071304 DOI: 10.1007/s11084-022-09628-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/02/2022] [Indexed: 11/24/2022]
Abstract
The origin of the genetic code is probably the central problem of the studies on the origin of life. The key question to answer is the molecular mechanism that allows the association of the amino acids with their triplet codons. We proposed that the codon-anticodon duplex located in the acceptor stem of primitive tRNAs would facilitate the chemical reactions required to synthesize cognate amino acids from simple amino acids (glycine, valine, and aspartic acid) linked to the 3' acceptor end. In our view, various nucleotide-A-derived cofactors (with reactive chemical groups) may be attached to the codon-anticodon duplex, which allows group-transferring reactions from cofactors to simple amino acids, thereby producing the final amino acid. The nucleotide-A-derived cofactors could be incorporated into the RNA duplex (helix) by docking Adenosine (cofactor) into the minor groove via an interaction similar to the A-minor motif, forming a base triple between Adenosine and one complementary base pair of the duplex. Furthermore, we propose that this codon-anticodon duplex could initially catalyze a self-aminoacylation reaction with a simple amino acid. Therefore, the sequence of bases in the codon-anticodon duplex would determine the reactions that occurred during the formation of new amino acids for selective binding of nucleotide-A-derived cofactors.
Collapse
Affiliation(s)
| | - Rafael Tabares Seisdedos
- Departamento de Medicina, Facultad de Medicina de Valencia, (CIBERSAM; INCLIVA-UV), Universidad de Valencia, Av. Blasco Ibañez 17, 46010, Valencia, Spain.
| |
Collapse
|
4
|
Catalytic promiscuity in the RNA World may have aided the evolution of prebiotic metabolism. PLoS Comput Biol 2021; 17:e1008634. [PMID: 33497378 PMCID: PMC7864428 DOI: 10.1371/journal.pcbi.1008634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 02/05/2021] [Accepted: 12/14/2020] [Indexed: 11/19/2022] Open
Abstract
The Metabolically Coupled Replicator System (MCRS) model of early chemical evolution offers a plausible and efficient mechanism for the self-assembly and the maintenance of prebiotic RNA replicator communities, the likely predecessors of all life forms on Earth. The MCRS can keep different replicator species together due to their mandatory metabolic cooperation and limited mobility on mineral surfaces, catalysing reaction steps of a coherent reaction network that produces their own monomers from externally supplied compounds. The complexity of the MCRS chemical engine can be increased by assuming that each replicator species may catalyse more than a single reaction of metabolism, with different catalytic activities of the same RNA sequence being in a trade-off relation: one catalytic activity of a promiscuous ribozyme can increase only at the expense of the others on the same RNA strand. Using extensive spatially explicit computer simulations we have studied the possibility and the conditions of evolving ribozyme promiscuity in an initial community of single-activity replicators attached to a 2D surface, assuming an additional trade-off between replicability and catalytic activity. We conclude that our promiscuous replicators evolve under weak catalytic trade-off, relatively strong activity/replicability trade-off and low surface mobility of the replicators and the metabolites they produce, whereas catalytic specialists benefit from very strong catalytic trade-off, weak activity/replicability trade-off and high mobility. We argue that the combination of conditions for evolving promiscuity are more probable to occur for surface-bound RNA replicators, suggesting that catalytic promiscuity may have been a significant factor in the diversification of prebiotic metabolic reaction networks. Complex biochemical machineries responsible for maintaining the correct ratio of enzymes and genes were highly unlikely to exist at the wake of life. Individual genes must have been subject to competition for resources of replication leading to the competitive exclusion between them, and thus to the loss of genetic information. A feasible scenario that avoids competitive exclusion requires the assumption of mandatory cooperation between the enzymes. A potentially dynamically important but mostly neglected feature of RNA enzymes (ribozymes) is their capacity to catalyse more than a single reaction. Here, we analyse the possibility that this “promiscous” nature of prebiotic ribozymes could have helped the maintenance of early replicator communities cooperating in running a simple metabolism. To do so, we have implemented a spatially explicit computer model simulating the dynamics of replicating entities on a mineral surface–an extension of the Metabolically Coupled Replicator System including the possibility of multiple catalytic activities within the same replicator. Our results suggest that under realistic assumptions of replicator and metabolite mobility and feasible trade-off relations between different catalytic activities of the same RNA replicator molecule, catalytic promiscuity may have indeed helped booting up life through supporting the assembly of minimal metabolisms.
Collapse
|
5
|
Evolution of Life on Earth: tRNA, Aminoacyl-tRNA Synthetases and the Genetic Code. Life (Basel) 2020; 10:life10030021. [PMID: 32131473 PMCID: PMC7151597 DOI: 10.3390/life10030021] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/13/2020] [Accepted: 02/27/2020] [Indexed: 02/07/2023] Open
Abstract
Life on Earth and the genetic code evolved around tRNA and the tRNA anticodon. We posit that the genetic code initially evolved to synthesize polyglycine as a cross-linking agent to stabilize protocells. We posit that the initial amino acids to enter the code occupied larger sectors of the code that were then invaded by incoming amino acids. Displacements of amino acids follow selection rules. The code sectored from a glycine code to a four amino acid code to an eight amino acid code to an ~16 amino acid code to the standard 20 amino acid code with stops. The proposed patterns of code sectoring are now most apparent from patterns of aminoacyl-tRNA synthetase evolution. The Elongation Factor-Tu GTPase anticodon-codon latch that checks the accuracy of translation appears to have evolved at about the eight amino acid to ~16 amino acid stage. Before evolution of the EF-Tu latch, we posit that both the 1st and 3rd anticodon positions were wobble positions. The genetic code evolved via tRNA charging errors and via enzymatic modifications of amino acids joined to tRNAs, followed by tRNA and aminoacyl-tRNA synthetase differentiation. Fidelity mechanisms froze the code by inhibiting further innovation.
Collapse
|
6
|
Abstract
Transfer RNA (tRNA) is the central intellectual property in the evolution of life on Earth. tRNA evolved from repeats and inverted repeats of known sequence. The anticodon and the T stem-loop-stems are homologs with significant conserved sequence identity. A number of models have been advanced to explain tRNA evolution. No 2-minihelix model or accretion model (built a stem at a time) can be correct, in part because of anticodon and T stem-loop-stem identity. Only a 3-minihelix model is adequate.
Collapse
|
7
|
Abstract
The search for extraterrestrial life, recently fueled by the discovery of exoplanets, requires defined biosignatures. Current biomarkers include those of extremophilic organisms, typically archaea. Yet these cellular organisms are highly complex, which makes it unlikely that similar life forms evolved on other planets. Earlier forms of life on Earth may serve as better models for extraterrestrial life. On modern Earth, the simplest and most abundant biological entities are viroids and viruses that exert many properties of life, such as the abilities to replicate and undergo Darwinian evolution. Viroids have virus-like features, and are related to ribozymes, consisting solely of non-coding RNA, and may serve as more universal models for early life than do cellular life forms. Among the various proposed concepts, such as “proteins-first” or “metabolism-first”, we think that “viruses-first” can be specified to “viroids-first” as the most likely scenario for the emergence of life on Earth, and possibly elsewhere. With this article we intend to inspire the integration of virus research and the biosignatures of viroids and viruses into the search for extraterrestrial life.
Collapse
|
8
|
Abstract
Biological systems reach hierarchical complexity that has no counterpart outside the realm of biology. Undoubtedly, biological entities obey the fundamental physical laws. Can today's physics provide an explanatory framework for understanding the evolution of biological complexity? We argue that the physical foundation for understanding the origin and evolution of complexity can be gleaned at the interface between the theory of frustrated states resulting in pattern formation in glass-like media and the theory of self-organized criticality (SOC). On the one hand, SOC has been shown to emerge in spin-glass systems of high dimensionality. On the other hand, SOC is often viewed as the most appropriate physical description of evolutionary transitions in biology. We unify these two faces of SOC by showing that emergence of complex features in biological evolution typically, if not always, is triggered by frustration that is caused by competing interactions at different organizational levels. Such competing interactions lead to SOC, which represents the optimal conditions for the emergence of complexity. Competing interactions and frustrated states permeate biology at all organizational levels and are tightly linked to the ubiquitous competition for limiting resources. This perspective extends from the comparatively simple phenomena occurring in glasses to large-scale events of biological evolution, such as major evolutionary transitions. Frustration caused by competing interactions in multidimensional systems could be the general driving force behind the emergence of complexity, within and beyond the domain of biology.
Collapse
|
9
|
Rahman MM, Matsumura S, Ikawa Y. Oligomerization of a Bimolecular Ribozyme Modestly Rescues its Structural Defects that Disturb Interdomain Assembly to Form the Catalytic Site. J Mol Evol 2018; 86:431-442. [DOI: 10.1007/s00239-018-9862-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/07/2018] [Indexed: 12/31/2022]
|
10
|
Altstein AD. The progene hypothesis: the nucleoprotein world and how life began. Biol Direct 2015; 10:67. [PMID: 26612610 PMCID: PMC4662029 DOI: 10.1186/s13062-015-0096-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 11/13/2015] [Indexed: 12/16/2022] Open
Abstract
In this article, I review the results of studies on the origin of life distinct from the popular RNA world hypothesis. The alternate scenario postulates the origin of the first bimolecular genetic system (a polynucleotide gene and a polypeptide processive polymerase) with simultaneous replication and translation and includes the following key features: 1. The bimolecular genetic system emerges not from mononucleotides and monoamino acids, but from progenes, namely, trinucleotides aminoacylated on 3'-end by a non-random amino acid (NpNpNp ~ pX ~ Aa, where N--deoxyribo- or ribonucleoside, p--phosphate, X--a bifunctional agent, for example ribose, Aa--amino acid, ~ macroerge bond). Progenes are used as substrates for simultaneous synthesis of a polynucleotide and a polypeptide. Growth of the system is controlled by the growing polypeptide, and the bimolecular genetic system emerges as an extremely rare event. The first living being (virus-like organism protoviroid, Protoviroidum primum) arises and reproduces in prebiotic liposome-like structures using progenes. A population of protoviroids possessing the genetic system evolves in accordance with the Darwinian principle. Early evolution from protoviroid world to protocell world is shortly described. 2. The progene forming mechanism (NpNp + Np ~ pX ~ Aa) makes it possible to explain the emergence of the prebiotic physicochemical group genetic code, as well as the selection of organic compounds for the future genetic system from the racemic environment. 3. The protoviroid is reproduced on a progene basis via replicative transcription-translation (RTT, the first molecular genetic process) that is similar to its modern counterparts. Nothing is required for the emergence and reproduction of the protoviroid except for progenes and conditions for their formation. 4. The general scheme of early evolution is as follows: prebiotic world → protoviroid (nucleoprotein) world → protocell (DNA-RNA-protein) world → LUCA (Last Universal Common Ancestor) → modern cell world. This scheme exclude the existence of an independent RNA world as predecessor of the cellular world.
Collapse
Affiliation(s)
- Anatoly D Altstein
- Institute of Gene Biology RAS, NF Gamaleya Federal Center of Epidemiology and Microbiology, IM Sechenov First Moscow State Medical University, Moscow, Russia.
| |
Collapse
|
11
|
Ma W, Feng Y. Protocells: at the interface of life and non-life. Life (Basel) 2015; 5:447-58. [PMID: 25809963 PMCID: PMC4390862 DOI: 10.3390/life5010447] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Accepted: 02/02/2015] [Indexed: 02/07/2023] Open
Abstract
The cellular form, manifesting as a membrane-bounded system (comprising various functional molecules), is essential to life. The ultimate reason for this is that, typically, one functional molecule can only adopt one “correct” structure to perform one special function (e.g., an enzyme), and thus molecular cooperation is inevitable. While this is particularly true for advanced life with complex functions, it should have already been true for life at its outset with only limited functions, which entailed some sort of primitive cellular form—“protocells”. At the very beginning, the protocells may have even been unable to intervene in the growth of their own membrane, which can be called “pseudo-protocells”. Then, the ability to synthesize membrane components (amphiphiles) may have emerged under selective pressure, leading to “true-protocells”. The emergence of a “chromosome” (with genes linked together)—thus avoiding “gene-loss” during the protocell division, was another key event in the evolution of protocells. Such “unitary-protocells”, containing a central genetic molecule, may have appeared as a milestone—in principle, since then life could evolve endlessly, “gaining” more and more functions by introducing new genes. To synthesize in laboratory these different types of protocells, which stand at the interface between life and non-life, would greatly enhance our understanding on the essence of life.
Collapse
Affiliation(s)
- Wentao Ma
- College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Yu Feng
- College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
12
|
Sankaran N. How the discovery of ribozymes cast RNA in the roles of both chicken and egg in origin-of-life theories. STUDIES IN HISTORY AND PHILOSOPHY OF BIOLOGICAL AND BIOMEDICAL SCIENCES 2012; 43:741-750. [PMID: 22886071 DOI: 10.1016/j.shpsc.2012.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Revised: 06/10/2012] [Accepted: 06/24/2012] [Indexed: 06/01/2023]
Abstract
Scientific theories about the origin-of-life theories have historically been characterized by the chicken-and-egg problem of which essential aspect of life was the first to appear, replication or self-sustenance. By the 1950s the question was cast in molecular terms and DNA and proteins had come to represent the carriers of the two functions. Meanwhile, RNA, the other nucleic acid, had played a capricious role in origin theories. Because it contained building blocks very similar to DNA, biologists recognized early that RNA could store information in its linear sequences. With the discovery in the 1980s that RNA molecules were capable of biological catalysis, a function hitherto ascribed to proteins alone, RNA took on the role of the single entity that could act as both chicken and egg. Within a few years of the discovery of these catalytic RNAs (ribozymes) scientists had formulated an RNA World hypothesis that posited an early phase in the evolution of life where all key functions were performed by RNA molecules. This paper traces the history the role of RNA in origin-of-life theories with a focus on how the discovery of ribozymes influenced the discourse.
Collapse
Affiliation(s)
- Neeraja Sankaran
- History of Science, Technology & Medicine Underwood International College, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul 120-749, Republic of Korea.
| |
Collapse
|
13
|
Giambaşu GM, Lee TS, Scott WG, York DM. Mapping L1 ligase ribozyme conformational switch. J Mol Biol 2012; 423:106-22. [PMID: 22771572 DOI: 10.1016/j.jmb.2012.06.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 05/21/2012] [Accepted: 06/25/2012] [Indexed: 01/10/2023]
Abstract
L1 ligase (L1L) molecular switch is an in vitro optimized synthetic allosteric ribozyme that catalyzes the regioselective formation of a 5'-to-3' phosphodiester bond, a reaction for which there is no known naturally occurring RNA catalyst. L1L serves as a proof of principle that RNA can catalyze a critical reaction for prebiotic RNA self-replication according to the RNA world hypothesis. L1L crystal structure captures two distinct conformations that differ by a reorientation of one of the stems by around 80Å and are presumed to correspond to the active and inactive state, respectively. It is of great interest to understand the nature of these two states in solution and the pathway for their interconversion. In this study, we use explicit solvent molecular simulation together with a novel enhanced sampling method that utilizes concepts from network theory to map out the conformational transition between active and inactive states of L1L. We find that the overall switching mechanism can be described as a three-state/two-step process. The first step involves a large-amplitude swing that reorients stem C. The second step involves the allosteric activation of the catalytic site through distant contacts with stem C. Using a conformational space network representation of the L1L switch transition, it is shown that the connection between the three states follows different topographical patterns: the stem C swing step passes through a narrow region of the conformational space network, whereas the allosteric activation step covers a much wider region and a more diverse set of pathways through the network.
Collapse
Affiliation(s)
- George M Giambaşu
- BioMaPS Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | | | | | | |
Collapse
|
14
|
Shechner DM, Bartel DP. The structural basis of RNA-catalyzed RNA polymerization. Nat Struct Mol Biol 2011; 18:1036-42. [PMID: 21857665 PMCID: PMC3169305 DOI: 10.1038/nsmb.2107] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 06/22/2011] [Indexed: 12/05/2022]
Abstract
Early life presumably required polymerase ribozymes capable of replicating RNA. Known polymerase ribozymes best approximating such replicases use as their catalytic engine an RNA-ligase ribozyme originally selected from random RNA sequences. Here, we report 3.15 Å crystal structures of this ligase trapped in catalytically viable pre-ligation states, with the 3′-hydroxyl nucleophile positioned for in-line attack on the 5′-triphosphate. Guided by metal and solvent-mediated interactions, the 5′-triphosphate hooks into the major groove of the adjoining RNA duplex in an unanticipated conformation. Two phosphates and the nucleophile jointly coordinate an active-site metal ion. Atomic mutagenesis experiments demonstrate that active-site nucleobase and hydroxyl groups also participate directly in catalysis, collectively playing a role that in proteinaceous polymerases is performed by a second metal ion. Thus artificial ribozymes can employ complex catalytic strategies that differ dramatically from those of analogous biological enzymes.
Collapse
Affiliation(s)
- David M Shechner
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA
| | | |
Collapse
|
15
|
Small cofactors may assist protein emergence from RNA world: clues from RNA-protein complexes. PLoS One 2011; 6:e22494. [PMID: 21789260 PMCID: PMC3138788 DOI: 10.1371/journal.pone.0022494] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 06/24/2011] [Indexed: 11/19/2022] Open
Abstract
It is now widely accepted that at an early stage in the evolution of life an RNA world arose, in which RNAs both served as the genetic material and catalyzed diverse biochemical reactions. Then, proteins have gradually replaced RNAs because of their superior catalytic properties in catalysis over time. Therefore, it is important to investigate how primitive functional proteins emerged from RNA world, which can shed light on the evolutionary pathway of life from RNA world to the modern world. In this work, we proposed that the emergence of most primitive functional proteins are assisted by the early primitive nucleotide cofactors, while only a minority are induced directly by RNAs based on the analysis of RNA-protein complexes. Furthermore, the present findings have significant implication for exploring the composition of primitive RNA, i.e., adenine base as principal building blocks.
Collapse
|
16
|
Könnyű B, Czárán T. The evolution of enzyme specificity in the metabolic replicator model of prebiotic evolution. PLoS One 2011; 6:e20931. [PMID: 21698204 PMCID: PMC3116859 DOI: 10.1371/journal.pone.0020931] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 05/12/2011] [Indexed: 11/18/2022] Open
Abstract
The chemical machinery of life must have been catalytic from the outset. Models of the chemical origins have attempted to explain the ecological mechanisms maintaining a minimum necessary diversity of prebiotic replicator enzymes, but little attention has been paid so far to the evolutionary initiation of that diversity. We propose a possible first step in this direction: based on our previous model of a surface-bound metabolic replicator system we try to explain how the adaptive specialization of enzymatic replicator populations might have led to more diverse and more efficient communities of cooperating replicators with two different enzyme activities. The key assumptions of the model are that mutations in the replicator population can lead towards a) both of the two different enzyme specificities in separate replicators: efficient “specialists” or b) a “generalist” replicator type with both enzyme specificities working at less efficiency, or c) a fast-replicating, non-enzymatic “parasite”. We show that under realistic trade-off constraints on the phenotypic effects of these mutations the evolved replicator community will be usually composed of both types of specialists and of a limited abundance of parasites, provided that the replicators can slowly migrate on the mineral surface. It is only at very weak trade-offs that generalists take over in a phase-transition-like manner. The parasites do not seriously harm the system but can freely mutate, therefore they can be considered as pre-adaptations to later, useful functions that the metabolic system can adopt to increase its own fitness.
Collapse
Affiliation(s)
- Balázs Könnyű
- Department of Plant Taxonomy and Ecology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Tamás Czárán
- Theoretical Biology and Ecology Research Group, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
- * E-mail:
| |
Collapse
|
17
|
Fujita Y, Ishikawa J, Furuta H, Ikawa Y. Generation and development of RNA ligase ribozymes with modular architecture through "design and selection". Molecules 2010; 15:5850-65. [PMID: 22273983 PMCID: PMC6257700 DOI: 10.3390/molecules15095850] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 08/12/2010] [Accepted: 08/18/2010] [Indexed: 12/27/2022] Open
Abstract
In vitro selection with long random RNA libraries has been used as a powerful method to generate novel functional RNAs, although it often requires laborious structural analysis of isolated RNA molecules. Rational RNA design is an attractive alternative to avoid this laborious step, but rational design of catalytic modules is still a challenging task. A hybrid strategy of in vitro selection and rational design has been proposed. With this strategy termed “design and selection,” new ribozymes can be generated through installation of catalytic modules onto RNA scaffolds with defined 3D structures. This approach, the concept of which was inspired by the modular architecture of naturally occurring ribozymes, allows prediction of the overall architectures of the resulting ribozymes, and the structural modularity of the resulting ribozymes allows modification of their structures and functions. In this review, we summarize the design, generation, properties, and engineering of four classes of ligase ribozyme generated by design and selection.
Collapse
Affiliation(s)
- Yuki Fujita
- Graduate School of Engineering, Kyushu University, 819-0395, Fukuoka, Japan
| | - Junya Ishikawa
- Graduate School of Engineering, Kyushu University, 819-0395, Fukuoka, Japan
| | - Hiroyuki Furuta
- Graduate School of Engineering, Kyushu University, 819-0395, Fukuoka, Japan
- International Research Center for Molecular Systems, Kyushu University, 819-0395, Fukuoka, Japan
| | - Yoshiya Ikawa
- Graduate School of Engineering, Kyushu University, 819-0395, Fukuoka, Japan
- International Research Center for Molecular Systems, Kyushu University, 819-0395, Fukuoka, Japan
- PRESTO, Japan Science and Technology Agency, Tokyo 102-0075, Japan
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +81-92-802-2866; Fax: +81-92-802-2865
| |
Collapse
|
18
|
Giambasu GM, Lee TS, Sosa CP, Robertson MP, Scott WG, York DM. Identification of dynamical hinge points of the L1 ligase molecular switch. RNA (NEW YORK, N.Y.) 2010; 16:769-780. [PMID: 20167653 PMCID: PMC2844624 DOI: 10.1261/rna.1897810] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Accepted: 12/19/2009] [Indexed: 05/28/2023]
Abstract
The L1 ligase is an in vitro selected ribozyme that uses a noncanonically base-paired ligation site to catalyze regioselectively and regiospecifically the 5' to 3' phosphodiester bond ligation, a reaction relevant to origin of life hypotheses that invoke an RNA world scenario. The L1 ligase crystal structure revealed two different conformational states that were proposed to represent the active and inactive forms. It remains an open question as to what degree these two conformers persist as stable conformational intermediates in solution, and along what pathway are they able to interconvert. To explore these questions, we have performed a series of molecular dynamics simulations in explicit solvent of the inactive-active conformational switch in L1 ligase. Four simulations were performed departing from both conformers in both the reactant and product states, in addition to a simulation where local unfolding in the active state was induced. From these simulations, along with crystallographic data, a set of four virtual torsion angles that span two evolutionarily conserved and restricted regions were identified as dynamical hinge points in the conformational switch transition. The ligation site visits three distinct states characterized by hydrogen bond patterns that are correlated with the formation of specific contacts that may promote catalysis. The insights gained from these simulations contribute to a more detailed understanding of the coupled catalytic/conformational switch mechanism of L1 ligase that may facilitate the design and engineering of new catalytic riboswitches.
Collapse
Affiliation(s)
- George M Giambasu
- Biomedical Informatics and Computational Biology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | |
Collapse
|
19
|
Enhancing the Prebiotic Relevance of a Set of Covalently Self-Assembling, Autorecombining RNAs Through In Vitro Selection. J Mol Evol 2010; 70:233-41. [DOI: 10.1007/s00239-010-9325-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Accepted: 02/08/2010] [Indexed: 10/19/2022]
|
20
|
Dawid A, Cayrol B, Isambert H. RNA synthetic biology inspired from bacteria: construction of transcription attenuators under antisense regulation. Phys Biol 2009; 6:025007. [PMID: 19571368 DOI: 10.1088/1478-3975/6/2/025007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Among all biopolymers, ribonucleic acids or RNA have unique functional versatility, which led to the early suggestion that RNA alone (or a closely related biopolymer) might have once sustained a primitive form of life based on a single type of biopolymer. This has been supported by the demonstration of processive RNA-based replication and the discovery of 'riboswitches' or RNA switches, which directly sense their metabolic environment. In this paper, we further explore the plausibility of this 'RNA world' scenario and show, through synthetic molecular design guided by advanced RNA simulations, that RNA can also perform elementary regulation tasks on its own. We demonstrate that RNA synthetic regulatory modules directly inspired from bacterial transcription attenuators can efficiently activate or repress the expression of other RNA by merely controlling their folding paths 'on the fly' during transcription through simple RNA-RNA antisense interaction. Factors, such as NTP concentration and RNA synthesis rate, affecting the efficiency of this kinetic regulation mechanism are also studied and discussed in the light of evolutionary constraints. Overall, this suggests that direct coupling among synthesis, folding and regulation of RNAs may have enabled the early emergence of autonomous RNA-based regulation networks in absence of both DNA and protein partners.
Collapse
Affiliation(s)
- Alexandre Dawid
- Institut Curie, Research Division, CNRS UMR168, 11 rue P. & M. Curie, 75005 Paris, France
| | | | | |
Collapse
|
21
|
Pitt JN, Ferré-D'Amaré AR. Structure-guided engineering of the regioselectivity of RNA ligase ribozymes. J Am Chem Soc 2009; 131:3532-40. [PMID: 19220054 DOI: 10.1021/ja8067325] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ribozyme-catalyzed RNA synthesis is central to the RNA world hypothesis. No natural RNA polymerase ribozymes have been discovered. However, ribozymes that catalyze the requisite chemistry, generating a new phosphodiester through attack of a terminal hydroxyl of an RNA on the alpha-phosphate of a triphosphate-activated oligonucleotide, have been isolated by in vitro selection. These experiments often yield ribozymes that generate 2'-5' phosphodiesters rather than conventional 3'-5' linkages. We have determined crystal structures of the duplex formed by the template segment of a representative 2'-5' RNA ligase ribozyme, the class II ligase, and its ligation product. The structures reveal a product-template duplex with a G x A pair at the ligation junction. This sheared pair is flanked on one side by a minor groove-broadening wedge comprised of two unpaired nucleotides. The reported structure of an independently isolated 3'-5' ligase ribozyme, the L1 ligase, shows a product-template duplex that shares the G x A pair with the class II ligase. However, this G x A pair is flanked by G x U wobbles, rather than an unpaired wedge. We demonstrate that these structural differences of the substrate-template duplexes are largely responsible for the divergent regioselectivity of the two ribozymes, independent of their catalytic moieties, by constructing chimeras. The L1 ligase with a class II substrate-template duplex shows a 30-fold increase in 2'-5' bond synthesis, while the class II ligase with an L1 substrate-template duplex produces 3'-5' bonds exclusively. These results demonstrate how local geometry inherent to the substrate-template duplexes controls the regioselectivity of ribozyme-catalyzed RNA ligation reactions.
Collapse
Affiliation(s)
- Jason N Pitt
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington 98195, USA
| | | |
Collapse
|
22
|
Loakes D, Holliger P. Darwinian chemistry: towards the synthesis of a simple cell. MOLECULAR BIOSYSTEMS 2009; 5:686-94. [PMID: 19562107 DOI: 10.1039/b904024b] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The total synthesis of a simple cell is in many ways the ultimate challenge in synthetic biology. Outlined eight years ago in a visionary article by Szostak et al. (J. W. Szostak, D. P. Bartel and P. L. Luisi, Nature, 2001, 409, 387), the chances of success seemed remote. However, recent progress in nucleic acid chemistry, directed evolution and membrane biophysics have brought the prospect of a simple synthetic cell with life-like properties such as growth, division, heredity and evolution within reach. Success in this area will not only revolutionize our understanding of abiogenesis but provide a fertile test-bed for models of prebiotic chemistry and early evolution. Last but not least, a robust "living" protocell may provide a versatile and safe chassis for embedding synthetic devices and systems.
Collapse
Affiliation(s)
- David Loakes
- Medical Research Council, Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 0QH, UK
| | | |
Collapse
|
23
|
Fujita Y, Furuta H, Ikawa Y. Tailoring RNA modular units on a common scaffold: a modular ribozyme with a catalytic unit for beta-nicotinamide mononucleotide-activated RNA ligation. RNA (NEW YORK, N.Y.) 2009; 15:877-88. [PMID: 19307294 PMCID: PMC2673081 DOI: 10.1261/rna.1461309] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Accepted: 02/04/2009] [Indexed: 05/17/2023]
Abstract
A novel ribozyme that accelerates the ligation of beta-nicotinamide mononucleotide (beta-NMN)-activated RNA fragments was isolated and characterized. This artificial ligase ribozyme (YFL ribozyme) was isolated by a "design and selection" strategy, in which a modular catalytic unit was generated on a rationally designed modular scaffold RNA. Biochemical analyses of the YFL ribozyme revealed that it catalyzes RNA ligation in a template-dependent manner, and its activity is highly dependent on its architecture, which consists of a modular scaffold and a catalytic unit. As the design and selection strategy was used for generation of DSL ribozyme, isolation of the YFL ribozyme indicated the versatility of this strategy for generation of functional RNAs with modular architectures. The catalytic unit of the YFL ribozyme accepts not only beta-NMN but also inorganic pyrophosphate and adenosine monophosphate as leaving groups for RNA ligation. This versatility of the YFL ribozyme provides novel insight into the possible roles of beta-NMN (or NADH) in the RNA world.
Collapse
Affiliation(s)
- Yuki Fujita
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | | | | |
Collapse
|
24
|
Vourekas A, Stamatopoulou V, Toumpeki C, Tsitlaidou M, Drainas D. Insights into functional modulation of catalytic RNA activity. IUBMB Life 2008; 60:669-83. [PMID: 18636557 DOI: 10.1002/iub.105] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
RNA molecules play critical roles in cell biology, and novel findings continuously broaden their functional repertoires. Apart from their well-documented participation in protein synthesis, it is now apparent that several noncoding RNAs (i.e., micro-RNAs and riboswitches) also participate in the regulation of gene expression. The discovery of catalytic RNAs had profound implications on our views concerning the evolution of life on our planet at a molecular level. A characteristic attribute of RNA, probably traced back to its ancestral origin, is the ability to interact with and be modulated by several ions and molecules of different sizes. The inhibition of ribosome activity by antibiotics has been extensively used as a therapeutical approach, while activation and substrate-specificity alteration have the potential to enhance the versatility of ribozyme-based tools in translational research. In this review, we will describe some representative examples of such modulators to illustrate the potential of catalytic RNAs as tools and targets in research and clinical approaches.
Collapse
Affiliation(s)
- Anastassios Vourekas
- Department of Biological Chemistry, School of Medicine, University of Patras, Rio-Patras, Greece
| | | | | | | | | |
Collapse
|
25
|
Mulkidjanian AY, Galperin MY. Physico-chemical and evolutionary constraints for the formation and selection of first biopolymers: towards the consensus paradigm of the abiogenic origin of life. Chem Biodivers 2007; 4:2003-15. [PMID: 17886857 DOI: 10.1002/cbdv.200790167] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
During the last two decades, the common school of thought has split into two, so that the problem of the origin of life is tackled in the framework of either the 'replication first' paradigm or the 'metabolism first' scenario. The first paradigm suggests that the life started from the spontaneous emergence of the first, supposedly RNA-based 'replicators' and considers in much detail their further evolution in the so-called 'RNA world'. The alternative hypothesis of 'metabolism first' derives the life from increasingly complex autocatalytic chemical cycles. In this work, we emphasize the role of selection during the pre-biological stages of evolution and focus on the constraints that are imposed by physical, chemical, and biological laws. We try to demonstrate that the 'replication first' and 'metabolism first' hypotheses complement, rather than contradict, each other. We suggest that life on Earth has started from a 'metabolism-driven replication'; the suggested scenario might serve as a consensus scheme in the framework of which the molecular details of origin of life can be further elaborated. The key feature of the scenario is the participation of the UV irradiation both as driving and selecting forces during the earlier stages of evolution.
Collapse
|
26
|
Forterre P, Gribaldo S. The origin of modern terrestrial life. HFSP JOURNAL 2007; 1:156-68. [PMID: 19404443 PMCID: PMC2640990 DOI: 10.2976/1.2759103] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Accepted: 06/22/2007] [Indexed: 11/19/2022]
Abstract
The study of the origin of life covers many areas of expertise and requires the input of various scientific communities. In recent years, this research field has often been viewed as part of a broader agenda under the name of "exobiology" or "astrobiology." In this review, we have somewhat narrowed this agenda, focusing on the origin of modern terrestrial life. The adjective "modern" here means that we did not speculate on different forms of life that could have possibly appeared on our planet, but instead focus on the existing forms (cells and viruses). We try to briefly present the state of the art about alternative hypotheses discussing not only the origin of life per se, but also how life evolved to produce the modern biosphere through a succession of steps that we would like to characterize as much as possible.
Collapse
Affiliation(s)
- Patrick Forterre
- Institut Pasteur, 25 rue du Docteur Roux,
75015 Paris et Université Paris-Sud, CNRS, UMR 8621, 91405, Crsay-Cedex,
France
| | | |
Collapse
|
27
|
Zaher HS, Unrau PJ. Selection of an improved RNA polymerase ribozyme with superior extension and fidelity. RNA (NEW YORK, N.Y.) 2007; 13:1017-26. [PMID: 17586759 PMCID: PMC1894930 DOI: 10.1261/rna.548807] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2007] [Accepted: 04/14/2007] [Indexed: 05/13/2023]
Abstract
Our current understanding of biology suggests that early life relied predominantly on RNA for catalysis and replication. Here, we report the isolation of an RNA polymerase ribozyme called B6.61 that exhibits superior extension and fidelity relative to its progenitor, the Round-18 polymerase. The B6.61 polymerase was selected from a mutagenized pool containing approximately 9 x 10(14) sequence variants through the use of a novel large-scale in vitro compartmentalization system. B6.61 polymerized all tested primer-template (PT) complexes faster than the Round-18 variant. For one PT, B6.61 exhibited dramatically faster elongation past one full helical turn and incorporated at least 20 nucleotides of sequence, setting a new extension record for an RNA polymerase ribozyme. The increased efficiency of the B6.61 construct was related to improvements in fidelity, with the new variant incorporating less incorrect wobble base pairs than its parent. This new polymerase demonstrates the feasibility of evolving an artificial RNA replicase ribozyme in the foreseeable future.
Collapse
Affiliation(s)
- Hani S Zaher
- Department of Molecular Biology and Biochemistry, Simon Fraser University, BC, Canada
| | | |
Collapse
|
28
|
Koonin EV. The cosmological model of eternal inflation and the transition from chance to biological evolution in the history of life. Biol Direct 2007; 2:15. [PMID: 17540027 PMCID: PMC1892545 DOI: 10.1186/1745-6150-2-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Accepted: 05/31/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recent developments in cosmology radically change the conception of the universe as well as the very notions of "probable" and "possible". The model of eternal inflation implies that all macroscopic histories permitted by laws of physics are repeated an infinite number of times in the infinite multiverse. In contrast to the traditional cosmological models of a single, finite universe, this worldview provides for the origin of an infinite number of complex systems by chance, even as the probability of complexity emerging in any given region of the multiverse is extremely low. This change in perspective has profound implications for the history of any phenomenon, and life on earth cannot be an exception. HYPOTHESIS Origin of life is a chicken and egg problem: for biological evolution that is governed, primarily, by natural selection, to take off, efficient systems for replication and translation are required, but even barebones cores of these systems appear to be products of extensive selection. The currently favored (partial) solution is an RNA world without proteins in which replication is catalyzed by ribozymes and which serves as the cradle for the translation system. However, the RNA world faces its own hard problems as ribozyme-catalyzed RNA replication remains a hypothesis and the selective pressures behind the origin of translation remain mysterious. Eternal inflation offers a viable alternative that is untenable in a finite universe, i.e., that a coupled system of translation and replication emerged by chance, and became the breakthrough stage from which biological evolution, centered around Darwinian selection, took off. A corollary of this hypothesis is that an RNA world, as a diverse population of replicating RNA molecules, might have never existed. In this model, the stage for Darwinian selection is set by anthropic selection of complex systems that rarely but inevitably emerge by chance in the infinite universe (multiverse). CONCLUSION The plausibility of different models for the origin of life on earth directly depends on the adopted cosmological scenario. In an infinite universe (multiverse), emergence of highly complex systems by chance is inevitable. Therefore, under this cosmology, an entity as complex as a coupled translation-replication system should be considered a viable breakthrough stage for the onset of biological evolution. REVIEWERS This article was reviewed by Eric Bapteste, David Krakauer, Sergei Maslov, and Itai Yanai.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| |
Collapse
|
29
|
Wolf YI, Koonin EV. On the origin of the translation system and the genetic code in the RNA world by means of natural selection, exaptation, and subfunctionalization. Biol Direct 2007; 2:14. [PMID: 17540026 PMCID: PMC1894784 DOI: 10.1186/1745-6150-2-14] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Accepted: 05/31/2007] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The origin of the translation system is, arguably, the central and the hardest problem in the study of the origin of life, and one of the hardest in all evolutionary biology. The problem has a clear catch-22 aspect: high translation fidelity hardly can be achieved without a complex, highly evolved set of RNAs and proteins but an elaborate protein machinery could not evolve without an accurate translation system. The origin of the genetic code and whether it evolved on the basis of a stereochemical correspondence between amino acids and their cognate codons (or anticodons), through selectional optimization of the code vocabulary, as a "frozen accident" or via a combination of all these routes is another wide open problem despite extensive theoretical and experimental studies. Here we combine the results of comparative genomics of translation system components, data on interaction of amino acids with their cognate codons and anticodons, and data on catalytic activities of ribozymes to develop conceptual models for the origins of the translation system and the genetic code. RESULTS Our main guide in constructing the models is the Darwinian Continuity Principle whereby a scenario for the evolution of a complex system must consist of plausible elementary steps, each conferring a distinct advantage on the evolving ensemble of genetic elements. Evolution of the translation system is envisaged to occur in a compartmentalized ensemble of replicating, co-selected RNA segments, i.e., in a RNA World containing ribozymes with versatile activities. Since evolution has no foresight, the translation system could not evolve in the RNA World as the result of selection for protein synthesis and must have been a by-product of evolution drive by selection for another function, i.e., the translation system evolved via the exaptation route. It is proposed that the evolutionary process that eventually led to the emergence of translation started with the selection for ribozymes binding abiogenic amino acids that stimulated ribozyme-catalyzed reactions. The proposed scenario for the evolution of translation consists of the following steps: binding of amino acids to a ribozyme resulting in an enhancement of its catalytic activity; evolution of the amino-acid-stimulated ribozyme into a peptide ligase (predecessor of the large ribosomal subunit) yielding, initially, a unique peptide activating the original ribozyme and, possibly, other ribozymes in the ensemble; evolution of self-charging proto-tRNAs that were selected, initially, for accumulation of amino acids, and subsequently, for delivery of amino acids to the peptide ligase; joining of the peptide ligase with a distinct RNA molecule (predecessor of the small ribosomal subunit) carrying a built-in template for more efficient, complementary binding of charged proto-tRNAs; evolution of the ability of the peptide ligase to assemble peptides using exogenous RNAs as template for complementary binding of charged proteo-tRNAs, yielding peptides with the potential to activate different ribozymes; evolution of the translocation function of the protoribosome leading to the production of increasingly longer peptides (the first proteins), i.e., the origin of translation. The specifics of the recognition of amino acids by proto-tRNAs and the origin of the genetic code depend on whether or not there is a physical affinity between amino acids and their cognate codons or anticodons, a problem that remains unresolved. CONCLUSION We describe a stepwise model for the origin of the translation system in the ancient RNA world such that each step confers a distinct advantage onto an ensemble of co-evolving genetic elements. Under this scenario, the primary cause for the emergence of translation was the ability of amino acids and peptides to stimulate reactions catalyzed by ribozymes. Thus, the translation system might have evolved as the result of selection for ribozymes capable of, initially, efficient amino acid binding, and subsequently, synthesis of increasingly versatile peptides. Several aspects of this scenario are amenable to experimental testing.
Collapse
Affiliation(s)
- Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
30
|
de Roos ADG. Modelling evolution on design-by-contract predicts an origin of life through an abiotic double-stranded RNA world. Biol Direct 2007; 2:12. [PMID: 17466073 PMCID: PMC1866227 DOI: 10.1186/1745-6150-2-12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Accepted: 04/27/2007] [Indexed: 11/17/2022] Open
Abstract
Background It is generally believed that life first evolved from single-stranded RNA (ssRNA) that both stored genetic information and catalyzed the reactions required for self-replication. Presentation of the hypothesis By modeling early genome evolution on the engineering paradigm design-by-contract, an alternative scenario is presented in which life started with the appearance of double-stranded RNA (dsRNA) as an informational storage molecule while catalytic single-stranded RNA was derived from this dsRNA template later in evolution. Testing the hypothesis It was investigated whether this scenario could be implemented mechanistically by starting with abiotic processes. Double-stranded RNA could be formed abiotically by hybridization of oligoribonucleotides that are subsequently non-enzymatically ligated into a double-stranded chain. Thermal cycling driven by the diurnal temperature cycles could then replicate this dsRNA when strands of dsRNA separate and later rehybridize and ligate to reform dsRNA. A temperature-dependent partial replication of specific regions of dsRNA could produce the first template-based generation of catalytic ssRNA, similar to the developmental gene transcription process. Replacement of these abiotic processes by enzymatic processes would guarantee functional continuity. Further transition from a dsRNA to a dsDNA world could be based on minor mutations in template and substrate recognition sites of an RNA polymerase and would leave all existing processes intact. Implications of the hypothesis Modeling evolution on a design pattern, the 'dsRNA first' hypothesis can provide an alternative mechanistic evolutionary scenario for the origin of our genome that preserves functional continuity. Reviewers This article was reviewed by Anthony Poole, Eugene Koonin and Eugene Shakhnovich
Collapse
Affiliation(s)
- Albert D G de Roos
- Syncyte BioIntelligence, PO Box 600, 1000 AP Amsterdam, The Netherlands.
| |
Collapse
|
31
|
Abstract
Life originated, according to the RNA World hypothesis, from self-replicating ribozymes that catalyzed ligation of RNA fragments. We have solved the 2.6 angstrom crystal structure of a ligase ribozyme that catalyzes regiospecific formation of a 5' to 3' phosphodiester bond between the 5'-triphosphate and the 3'-hydroxyl termini of two RNA fragments. Invariant residues form tertiary contacts that stabilize a flexible stem of the ribozyme at the ligation site, where an essential magnesium ion coordinates three phosphates. The structure of the active site permits us to suggest how transition-state stabilization and a general base may catalyze the ligation reaction required for prebiotic RNA assembly.
Collapse
Affiliation(s)
- Michael P Robertson
- Center for the Molecular Biology of RNA and Department of Chemistry and Biochemistry, Robert L. Sinsheimer Laboratories, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | | |
Collapse
|
32
|
Hayden EJ, Lehman N. Self-assembly of a group I intron from inactive oligonucleotide fragments. ACTA ACUST UNITED AC 2006; 13:909-18. [PMID: 16931340 DOI: 10.1016/j.chembiol.2006.06.014] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Revised: 06/16/2006] [Accepted: 06/26/2006] [Indexed: 10/24/2022]
Abstract
The Azoarcus group I ribozyme was broken into four fragments, 39-63 nucleotides long, that can self-assemble into covalently contiguous ribozymes via RNA-directed recombination events. The fragments have no activity individually yet can cooperate through base pairing and tertiary interactions to produce stable trans complexes at 48 degrees C. These complexes can then catalyze a sequence of energy-neutral recombination reactions utilizing other oligomers as substrates, assembling covalent versions of the ribozyme. Up to 17% of the original fragments are converted into approximately 200 nucleotide products in 8 hr. Assembly occurs primarily by only one of many possible pathways, and the reaction is driven in the correct and forward direction by the burial of key base-pairing regions in stems after recombination. Autocatalysis, and hence self-replication, is inferred by a reaction rate increase upon doping the reaction with full-length RNA.
Collapse
Affiliation(s)
- Eric J Hayden
- Department of Chemistry, Portland State University, P.O. Box 751, Portland, OR 97207, USA
| | | |
Collapse
|
33
|
Matsuura T, Yomo T. In vitro evolution of proteins. J Biosci Bioeng 2006; 101:449-56. [PMID: 16935245 DOI: 10.1263/jbb.101.449] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2006] [Accepted: 05/08/2006] [Indexed: 11/17/2022]
Abstract
Consecutive rounds of diversification and selection of the fittest is believed to be the main driving force for the evolution of life. For the evolution of life to proceed, all living cells are surrounded by a lipid bilayer that separates their own genes from the external environment and from those of other organisms. In this way, the genetic information of an individual is replicated on the basis of their phenotype; thus the enrichment of the fittest will occur. Hence, evolution is based on linkage between genotype and phenotype owing to the surrounding of the genetic material with a barrier. The linkage between genotype and phenotype is also known to be essential for the directed evolution of proteins. Indeed, systems for molecular evolution, including phage display, ribosome display, and in vitro compartmentalization, all satisfy this requirement in different ways. These systems have been shown to be powerful tools for high-throughput screening for the functions of proteins, screening as many as <10(12) molecules in 1 d. These selection systems in combination with various gene libraries yield proteins with improved or altered biophysical properties, and may even allow the generation of proteins with novel functions.
Collapse
Affiliation(s)
- Tomoaki Matsuura
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | |
Collapse
|
34
|
Ma W, Yu C. Intramolecular RNA replicase: possibly the first self-replicating molecule in the RNA world. ORIGINS LIFE EVOL B 2006; 36:413-20. [PMID: 16909330 DOI: 10.1007/s11084-005-9006-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2005] [Accepted: 11/17/2005] [Indexed: 10/24/2022]
Abstract
Although there is more and more evidence suggested the existence of an RNA World during the origin of life, the scenario concerning the origin of the RNA World remains blurry. Usually it is speculated that it originated from a prebiotic nucleotide pool, during which a self-replicating RNA synthesis ribozyme may have emerged as the first ribozyme - the RNA replicase. However, there is yet no ersuasive supposition for the mechanism for the self-favouring feature of the replicase, thus the speculation remains unconvincing. Here we suggest that intramolecular catalysis is a possible solution. Two RNA synthesis ribozymes may be integrated into one RNA molecule, as two functional domains which could catalyze the copy of each other. Thus the RNA molecule could self-replicate and be referred to as "intramolecular replicase" here. Computational simulation to get insight into the dynamic mechanism of emergence of the intramolecular replicase from a nucleotide pool is valuable and would be included in a following work of our group.
Collapse
Affiliation(s)
- Wentao Ma
- College of Life Sciences, Wuhan University, Wuhan, 430072, PR China.
| | | |
Collapse
|
35
|
Shapiro R. Small molecule interactions were central to the origin of life. QUARTERLY REVIEW OF BIOLOGY 2006; 81:105-25. [PMID: 16776061 DOI: 10.1086/506024] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Many scientists believe life began with the spontaneous formation of a replicator. This idea has been supported by "prebiotic" syntheses carried out by chemists using modern apparatus and purified reagents. The probability that such reactions would take place spontaneously on the early Earth is minute. These points are illustrated here by considering the often cited oligomerization of activated RNA components by clay minerals. A more likely alternative for the origin of life is one in which a collection of small organic molecules multiply their numbers through catalyzed reaction cycles, driven by a flow of available free energy. Although a number of possible systems of this type have been discussed, no experimental demonstration has been made. The inclusion of a "driver" reaction, directly coupled to the energy source, may lead to a solution.
Collapse
Affiliation(s)
- Robert Shapiro
- Department of Chemistry, New York University New York, New York 10003-6688, USA.
| |
Collapse
|
36
|
Ma W, Yu C, Zhang W. Monte Carlo simulation of early molecular evolution in the RNA World. Biosystems 2006; 90:28-39. [PMID: 17014951 DOI: 10.1016/j.biosystems.2006.06.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2005] [Revised: 06/17/2006] [Accepted: 06/19/2006] [Indexed: 11/19/2022]
Abstract
The origin of life remains a highly speculative field, mainly due to the shortage of our knowledge on prebiotic chemistry and basic understanding on the essence of life. In this context, computer simulation is expected to play an important role. For instance, the scenario concerning the genesis of the widely accepted RNA World remains blurry, though we have gathered some circumstantial evidence and fragmented knowledge on several supposed stages, including formation of polynucleotides from a prebiotic nucleotide pool, emergence of RNA replicases (RNA molecules catalyzing their own replication), and evolution of RNA replicases. It is highly valuable to simulate the stages as a continuous process to evaluate the plausibility of the supposition and study the rules involved. Here we construct a computer simulation on the process using Monte Carlo method. It demonstrates that primordial RNA replicases may appear and spread in a nucleotide pool provided they could recognize their own sequence and their complements as catalytic targets, and then may evolve to more efficient RNA replicases. Apart from its indication on the genesis of the RNA World, the vivid simulation of emergence of the "first replicative molecules" and their subsequent evolution is impressive and may help to get insight into "how could self-replication and Darwinian evolution, two key features of life, emerge in a non-life background?" thus improve our understanding of "what is life" when studying origins of life.
Collapse
Affiliation(s)
- Wentao Ma
- College of Life Sciences, Wuhan University, Wuhan 430072, PR China.
| | | | | |
Collapse
|
37
|
Lupi O, Dadalti P, Cruz E, Sanberg PR. Are prions related to the emergence of early life? Med Hypotheses 2006; 67:1027-33. [PMID: 16814482 DOI: 10.1016/j.mehy.2006.04.056] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Accepted: 04/28/2006] [Indexed: 11/17/2022]
Abstract
DNA and RNA are the modern cellular molecules related to the storage and processing of the genetic information. However, in the Earth primeval environment conditions, these two molecules are far from being the best option for this function due to their great complexity and sensibility to heat. Experiments have been showing that proteins are very stable and reliable molecules even in very extreme conditions and, under certain circumstances, could be related to the transmission of certain phenotypes that are inherited in a non-Mendelian manner. Prions, infective proteins that are associated to several neurological diseases among mammals by replacing their dominant native state of prion protein by a misfolded one, are remarkably resistant to even the most extreme environments. Furthermore, prions are also associated to the transmission of certain fungal traits in an epigenetical model. These two characteristics support the hypothesis that prions are a possible relic of early stage peptide evolution and may represent the reminiscence of a very ancient analogical code of biological transmission of information rather than the digital one represented by modern nucleic acids.
Collapse
Affiliation(s)
- Omar Lupi
- Post-Graduation Course of Dermatology (UFRJ, UNI-RIO and Instituto de Dermatologia Prof. Rubem Azulay/Santa Casa do Rio de Janeiro), Rua Frei Leandro, 16/501, 22.470-210 Rio de Janeiro, RJ, Brazil
| | | | | | | |
Collapse
|
38
|
Lawrence MS, Bartel DP. New ligase-derived RNA polymerase ribozymes. RNA (NEW YORK, N.Y.) 2005; 11:1173-80. [PMID: 15987804 PMCID: PMC1370801 DOI: 10.1261/rna.2110905] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2005] [Accepted: 05/20/2005] [Indexed: 05/03/2023]
Abstract
The search is underway for a catalytic RNA molecule capable of self-replication. Finding such a ribozyme would lend crucial support to the RNA World hypothesis, which holds that very early life-forms relied on RNA for both replicating and storing genetic information. We previously reported an RNA polymerase isolated from a pool of variants of an existing RNA ligase ribozyme. Here we report eight additional ligase-derived polymerase ribozymes isolated from this pool. Because each of them is a new potential starting point for further in vitro evolution and engineering, together they substantially enrich the set of candidates from which an RNA replicase ribozyme might eventually emerge.
Collapse
Affiliation(s)
- Michael S Lawrence
- Whitehead Institute for Biomedical Research/Biology Department, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | | |
Collapse
|
39
|
Vlassov AV, Kazakov SA, Johnston BH, Landweber LF. The RNA World on Ice: A New Scenario for the Emergence of RNA Information. J Mol Evol 2005; 61:264-73. [PMID: 16044244 DOI: 10.1007/s00239-004-0362-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2004] [Accepted: 04/08/2005] [Indexed: 10/25/2022]
Abstract
The RNA world hypothesis refers to a hypothetical era prior to coded peptide synthesis, where RNA was the major structural, genetic, and catalytic agent. Though it is a widely accepted scenario, a number of vexing difficulties remain. In this review we focus on a missing link of the RNA world hypothesis-primitive miniribozymes, in particular ligases, and discuss the role of these molecules in the evolution of RNA size and complexity. We argue that prebiotic conditions associated with freezing, rather than "warm and wet" conditions, could have been of key importance in the early RNA world.
Collapse
|
40
|
Abstract
Metabolism and replication are generally considered essential features of biological life. Workers in the field of the origin of life are mostly split into two groups, depending on which of these two functions is postulated to have occurred first. Because of difficulties encountered by the replication-first (or genetics-first) approach, some workers have postulated that a highly developed metabolism must have originated before replication and the formation of a genetic apparatus. However, as supporters of a replication-first approach have pointed out, and as is discussed in this article, the alternative metabolism-first approach has fundamental problems that have not been sufficiently addressed.
Collapse
Affiliation(s)
- Frank Al Anet
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
41
|
Copley SD, Smith E, Morowitz HJ. A mechanism for the association of amino acids with their codons and the origin of the genetic code. Proc Natl Acad Sci U S A 2005; 102:4442-7. [PMID: 15764708 PMCID: PMC555468 DOI: 10.1073/pnas.0501049102] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2004] [Indexed: 11/18/2022] Open
Abstract
The genetic code has certain regularities that have resisted mechanistic interpretation. These include strong correlations between the first base of codons and the precursor from which the encoded amino acid is synthesized and between the second base of codons and the hydrophobicity of the encoded amino acid. These regularities are even more striking in a projection of the modern code onto a simpler code consisting of doublet codons encoding a set of simple amino acids. These regularities can be explained if, before the emergence of macromolecules, simple amino acids were synthesized in covalent complexes of dinucleotides with alpha-keto acids originating from the reductive tricarboxylic acid cycle or reductive acetate pathway. The bases and phosphates of the dinucleotide are proposed to have enhanced the rates of synthetic reactions leading to amino acids in a small-molecule reaction network that preceded the RNA translation apparatus but created an association between amino acids and the first two bases of their codons that was retained when translation emerged later in evolution.
Collapse
Affiliation(s)
- Shelley D Copley
- Cooperative Institute for Research in Environmental Sciences, Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA.
| | | | | |
Collapse
|
42
|
Calderone CT, Liu DR. Nucleic-acid-templated synthesis as a model system for ancient translation. Curr Opin Chem Biol 2004; 8:645-53. [PMID: 15556410 DOI: 10.1016/j.cbpa.2004.09.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The translation of nucleic acids into synthetic structures with expanded functional potential has been the subject of considerable research, with applications including small-molecule and polymer evolution, reaction discovery and sensing. Here, we review properties of nucleic-acid-templated synthesis in the context of requirements for prebiotic translation. This analysis highlights the chemical possibilities of ancient translation systems, as well as challenges that these systems may have faced.
Collapse
Affiliation(s)
- Christopher T Calderone
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA
| | | |
Collapse
|
43
|
Ikawa Y, Tsuda K, Matsumura S, Inoue T. De novo synthesis and development of an RNA enzyme. Proc Natl Acad Sci U S A 2004; 101:13750-5. [PMID: 15365187 PMCID: PMC518828 DOI: 10.1073/pnas.0405886101] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Arbitrary manipulation of molecular recognition at the atomic level has many applications. However, systematic design and de novo synthesis of an artificial enzyme based on such manipulation has been a long-standing challenge in the field of chemistry and biotechnology. In this report, we developed an artificial RNA ligase by implementing a synthetic strategy that fuses a series of 3D molecular modelings based on naturally occurring RNA-RNA recognition motifs with a small-scale combinatorial synthesis of a modular catalytic unit. The resulting ligase produces a 3'-5' linkage in a template-directed manner for any combinations of two nucleotides at the reaction site. The reaction rate is 10(6)-fold over that of the uncatalyzed reaction with a yield higher than those of previously reported ligase ribozymes. The strategy may be applicable to the synthesis and development of a variety of nonnatural functional RNAs with defined 3D structures.
Collapse
Affiliation(s)
- Yoshiya Ikawa
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | |
Collapse
|
44
|
Abstract
Cloning DNA typically involves the joining of target DNAs with vector constructs by enzymatic ligation. A commonly used enzyme for this reaction is bacteriophage T4 DNA ligase, which requires ATP as the energy source to catalyze the otherwise unfavorable formation of a phosphodiester bond. Using in vitro selection, we have isolated a DNA sequence that catalyzes the ligation of DNA in the absence of protein enzymes. We have used the action of two catalytic DNAs, an ATP-dependent self-adenylating deoxyribozyme (AppDNA) and a self-ligating deoxyribozyme, to create a ligation system that covalently joins oligonucleotides via the formation of a 3',5'-phosphodiester linkage. The two-step process is conducted in separate reaction vessels wherein the products of deoxyribozyme adenylation are purified before their use as substrates for deoxyribozyme ligation. The final ligation step of the deoxyribozyme-catalyzed sequence of reactions mimics the final step of the T4 DNA ligase reaction. The initial rate constant (k(obs)) of the optimized deoxyribozyme ligase was found to be 1 x 10(-)(4) min(-)(1). Under these conditions, the ligase deoxyribozyme promotes DNA ligation at least 10(5)-fold faster than that generated by a simple DNA template. The self-ligating deoxyribozyme has also been reconfigured to generate a trans-acting construct that joins separate DNA oligonucleotides of defined sequence. However, the sequence requirements of the AppDNA and that of the 3' terminus of the deoxyribozyme ligase limit the range of sequences that can be ligated.
Collapse
Affiliation(s)
- Alavattam Sreedhara
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103, USA
| | | | | |
Collapse
|
45
|
Abstract
We list, without thinking, the four base types that make up DNA as adenine, guanine, cytosine and thymine. But why are there four? This question is now all the more relevant as organic chemists have synthesized new base pairs that can be incorporated into nucleic acids. Here, I argue that there are theoretical, experimental and computational reasons to believe that having four base types is a frozen relic from the RNA world, when RNA was genetic as well as enzymatic material.
Collapse
|