1
|
Khadake RM, Arora V, Gupta P, Rode AB. Harnessing Synthetic Riboswitches for Tunable Gene Regulation in Mammalian Cells. Chembiochem 2025:e202401015. [PMID: 39995098 DOI: 10.1002/cbic.202401015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/22/2025] [Accepted: 02/24/2025] [Indexed: 02/26/2025]
Abstract
RNA switches regulated by specific inducer molecules have become a powerful synthetic biology tool for precise gene regulation in mammalian systems. The engineered RNA switches can be integrated with natural RNA-mediated gene regulatory functions as a modular and customizable approach to probe and control cellular behavior. RNA switches have been used to advance synthetic biology applications, including gene therapy, bio-production, and cellular reprogramming. This review explores recent progress in the design and functional implementation of synthetic riboswitches in mammalian cells based on diverse RNA regulation mechanisms by highlighting recent studies and emerging technologies. We also discuss challenges such as off-target effects, system stability, and ligand delivery in complex biological environments. In conclusion, this review emphasizes the potential of synthetic riboswitches as a platform for customizable gene regulation in diverse biomedical applications.
Collapse
Affiliation(s)
- Rushikesh M Khadake
- Laboratory of Synthetic Biology, Regional Centre for Biotechnology (RCB), 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad Rd, Faridabad (NCR Delhi), Haryana, 121001
| | - Vaani Arora
- Laboratory of Synthetic Biology, Regional Centre for Biotechnology (RCB), 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad Rd, Faridabad (NCR Delhi), Haryana, 121001
| | - Payal Gupta
- Laboratory of Synthetic Biology, Regional Centre for Biotechnology (RCB), 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad Rd, Faridabad (NCR Delhi), Haryana, 121001
| | - Ambadas B Rode
- Laboratory of Synthetic Biology, Regional Centre for Biotechnology (RCB), 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad Rd, Faridabad (NCR Delhi), Haryana, 121001
| |
Collapse
|
2
|
Zheng L, Ye Q, Wang M, Sun F, Chen Q, Yu X, Wang Y, Liang P. Research Progress in Small-Molecule Detection Using Aptamer-Based SERS Techniques. BIOSENSORS 2025; 15:29. [PMID: 39852080 PMCID: PMC11764255 DOI: 10.3390/bios15010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/22/2024] [Accepted: 01/06/2025] [Indexed: 01/26/2025]
Abstract
Nucleic acid aptamers are single-stranded oligonucleotides that are selected through exponential enrichment (SELEX) technology from synthetic DNA/RNA libraries. These aptamers can specifically recognize and bind to target molecules, serving as specific recognition elements. Surface-enhanced Raman scattering (SERS) spectroscopy is an ultra-sensitive, non-destructive analytical technique that can rapidly acquire the "fingerprint information" of the measured molecules. It has been widely applied in qualitative and trace analysis across various fields, including food safety, environmental monitoring, and biomedical applications. Small molecules, such as toxins, antibiotics, and pesticides, have significant biological effects and are harmful to both human health and the environment. In this paper, we mainly introduced the application and the research progress of SERS detection with aptamers (aptamer-based SERS techniques) in the field of small-molecule detection, particularly in the analysis of pesticide (animal) residues, antibiotics, and toxins. And the progress and prospect of combining the two methods in detection were reviewed.
Collapse
Affiliation(s)
- Li Zheng
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China; (L.Z.); (Q.Y.); (M.W.)
| | - Qingdan Ye
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China; (L.Z.); (Q.Y.); (M.W.)
| | - Mengmeng Wang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China; (L.Z.); (Q.Y.); (M.W.)
| | - Fan Sun
- Key Laboratory of Microbiological Metrology, Measurement & Bio-Product Quality Security, State Administration for Market Regulation, Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (F.S.); (X.Y.)
| | - Qiang Chen
- College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou 310018, China;
| | - Xiaoping Yu
- Key Laboratory of Microbiological Metrology, Measurement & Bio-Product Quality Security, State Administration for Market Regulation, Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (F.S.); (X.Y.)
| | - Yufeng Wang
- Key Laboratory of Microbiological Metrology, Measurement & Bio-Product Quality Security, State Administration for Market Regulation, Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (F.S.); (X.Y.)
| | - Pei Liang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China; (L.Z.); (Q.Y.); (M.W.)
| |
Collapse
|
3
|
Guo L, Zhang S, Du X, Zhou M, Gu H. Fusing Allosteric Ribozymes with CRISPR-Cas12a for Efficient Diagnostics of Small Molecule Targets. SMALL METHODS 2024:e2401236. [PMID: 39420829 DOI: 10.1002/smtd.202401236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/08/2024] [Indexed: 10/19/2024]
Abstract
The CRISPR-Cas systems are adopted as powerful molecular tools for not only genetic manipulation but also point-of-care diagnostics. However, methods to enable diagnostics of non-nucleic-acid targets with these systems are still limited. Herein, by fusing ligand-dependent allosteric ribozymes with CRISPR-Cas12a, a derived CRISPR-Cas system is created for efficient quantitative analysis of non-nucleic-acid targets in 1-2 h. On two different small molecules, the system's generality, reliability and accuracy is demonstrated, and show that the well operability of this system can enable high-throughput detection of a small molecule in blood samples. The system can be further converted to rely on allosteric deoxyribozyme instead of allosteric ribozyme to recognize non-nucleic-acid targets and transduce the signal to CRISPR-Cas12a for amplification, likely making it easier for storage and more consistent in data generation as DNA possess a stability advantage over RNA. This (deoxy)ribozyme-assisted CRISPR-Cas12a system anticipates that it can facilitate bioanalysis in various scientific and clinical settings and further drive the development of clinical translation.
Collapse
Affiliation(s)
- Lichuan Guo
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery and Department of gynecologic oncology, Institutes of Biomedical Sciences, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Department of Chemical Biology, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shu Zhang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery and Department of gynecologic oncology, Institutes of Biomedical Sciences, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xinyu Du
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery and Department of gynecologic oncology, Institutes of Biomedical Sciences, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Shaanxi, 710032, China
| | - Mo Zhou
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery and Department of gynecologic oncology, Institutes of Biomedical Sciences, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Hongzhou Gu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery and Department of gynecologic oncology, Institutes of Biomedical Sciences, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Department of Chemical Biology, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
- Carbon-Negative Synthetic Biology for Biomaterial Production from CO2 (CNSB), Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore, 138602, Singapore
- Xiangfu Laboratory, Jiashan, 314102, China
| |
Collapse
|
4
|
Luo L, Jea JDY, Wang Y, Chao PW, Yen L. Control of mammalian gene expression by modulation of polyA signal cleavage at 5' UTR. Nat Biotechnol 2024; 42:1454-1466. [PMID: 38168982 DOI: 10.1038/s41587-023-01989-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/13/2023] [Indexed: 01/05/2024]
Abstract
The ability to control gene expression in mammalian cells is crucial for safe and efficacious gene therapies and for elucidating gene functions. Current gene regulation systems have limitations such as harmful immune responses or low efficiency. We describe the pA regulator, an RNA-based switch that controls mammalian gene expression through modulation of a synthetic polyA signal (PAS) cleavage introduced into the 5' UTR of a transgene. The cleavage is modulated by a 'dual-mechanism'-(1) aptamer clamping to inhibit PAS cleavage and (2) drug-induced alternative splicing that removes the PAS, both activated by drug binding. This RNA-based methodology circumvents the immune responses observed in other systems and achieves a 900-fold induction with an EC50 of 0.5 µg ml-1 tetracycline (Tc), which is well within the FDA-approved dose range. The pA regulator effectively controls the luciferase transgene in live mice and the endogenous CD133 gene in human cells, in a dose-dependent and reversible manner with long-term stability.
Collapse
Affiliation(s)
- Liming Luo
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Jocelyn Duen-Ya Jea
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Yan Wang
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Pei-Wen Chao
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Laising Yen
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
5
|
Kehrli J, Husser C, Ryckelynck M. Fluorogenic RNA-Based Biosensors of Small Molecules: Current Developments, Uses, and Perspectives. BIOSENSORS 2024; 14:376. [PMID: 39194605 DOI: 10.3390/bios14080376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/14/2024] [Accepted: 07/19/2024] [Indexed: 08/29/2024]
Abstract
Small molecules are highly relevant targets for detection and quantification. They are also used to diagnose and monitor the progression of disease and infectious processes and track the presence of contaminants. Fluorogenic RNA-based biosensors (FRBs) represent an appealing solution to the problem of detecting these targets. They combine the portability of molecular systems with the sensitivity and multiplexing capacity of fluorescence, as well as the exquisite ligand selectivity of RNA aptamers. In this review, we first present the different sensing and reporting aptamer modules currently available to design an FRB, together with the main methodologies used to discover modules with new specificities. We next introduce and discuss how both modules can be functionally connected prior to exploring the main applications for which FRB have been used. Finally, we conclude by discussing how using alternative nucleotide chemistries may improve FRB properties and further widen their application scope.
Collapse
Affiliation(s)
- Janine Kehrli
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, F-67000 Strasbourg, France
| | - Claire Husser
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, F-67000 Strasbourg, France
| | - Michael Ryckelynck
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, F-67000 Strasbourg, France
| |
Collapse
|
6
|
Park SV, Kang B, Lee M, Yoo H, Jo H, Woo S, Oh SS. In vitro selection of a trans aptamer complex for target-responsive fluorescence activation. Anal Chim Acta 2024; 1301:342465. [PMID: 38553123 DOI: 10.1016/j.aca.2024.342465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/23/2024] [Accepted: 03/10/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND Most biological molecular complexes consist of multiple functional domains, yet rationally constructing such multifunctional complexes is challenging. Aptamers, the nucleic acid-based functional molecules, can perform multiple tasks including target recognition, conformational changes, and enzymatic activities, while being chemically synthesizable and tunable, and thus provide a basis for engineering enhanced functionalities through combination of multiple units. However, the conventional approach of simply combining aptamer units in a serial manner is susceptible to undesired crosstalk or interference between the aptamer units and to false interactions with non-target molecules; besides, the approach would require additional mechanisms to separate the units if they are desired to function independently. It is clearly a challenge to develop multi-aptamer complexes that preserve independent functions of each unit while avoiding undesired interference and non-specific interactions. RESULTS By directly in vitro selecting a 'trans' aptamer complex, we demonstrate that one aptamer unit ('utility module') can remain hidden or 'inactive' until a target analyte triggers the other unit ('sensing module') and separates the two aptamers. Since the operation of the utility module occurs free from the sensing module, unnecessary crosstalk between the two units can be avoided. Because the utility module is kept inactive until separated from the complex, non-specific interactions of the hidden module with noncognate targets can be naturally prevented. In our demonstration, the sensing module was selected to detect serotonin, a clinically important neurotransmitter, and the target-binding-induced structure-switching of the sensing module reveals and activates the utility module that turns on a fluorescence signal. The aptamer complex exhibited a moderately high affinity and an excellent specificity for serotonin with ∼16-fold discrimination against common neurotransmitter molecules, and displayed strong robustness to perturbations in the design, disallowing nonspecific reactions against various challenges. SIGNIFICANCE This work represents the first example of a trans aptamer complex that was in vitro selected de novo. The trans aptamer complex selected by our strategy does not require chemical modifications or immediate optimization processes to function, because the complex is directly selected to perform desired functions. This strategy should be applicable to a wide range of functional nucleic acid moieties, which will open up diverse applications in biosensing and molecular therapeutics.
Collapse
Affiliation(s)
- Soyeon V Park
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, South Korea
| | - Byunghwa Kang
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, South Korea
| | - Minjong Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, South Korea
| | - Hyebin Yoo
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, South Korea
| | - Hyesung Jo
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, South Korea
| | - Sungwook Woo
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, South Korea.
| | - Seung Soo Oh
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, South Korea.
| |
Collapse
|
7
|
Shi C, Yang D, Ma X, Pan L, Shao Y, Arya G, Ke Y, Zhang C, Wang F, Zuo X, Li M, Wang P. A Programmable DNAzyme for the Sensitive Detection of Nucleic Acids. Angew Chem Int Ed Engl 2024; 63:e202320179. [PMID: 38288561 DOI: 10.1002/anie.202320179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Indexed: 02/17/2024]
Abstract
Nucleic acids in biofluids are emerging biomarkers for the molecular diagnostics of diseases, but their clinical use has been hindered by the lack of sensitive detection assays. Herein, we report the development of a sensitive nucleic acid detection assay named SPOT (sensitive loop-initiated DNAzyme biosensor for nucleic acid detection) by rationally designing a catalytic DNAzyme of endonuclease capability into a unified one-stranded allosteric biosensor. SPOT is activated once a nucleic acid target of a specific sequence binds to its allosteric module to enable continuous cleavage of molecular reporters. SPOT provides a highly robust platform for sensitive, convenient and cost-effective detection of low-abundance nucleic acids. For clinical validation, we demonstrated that SPOT could detect serum miRNAs for the diagnostics of breast cancer, gastric cancer and prostate cancer. Furthermore, SPOT exhibits potent detection performance over SARS-CoV-2 RNA from clinical swabs with high sensitivity and specificity. Finally, SPOT is compatible with point-of-care testing modalities such as lateral flow assays. Hence, we envision that SPOT may serve as a robust assay for the sensitive detection of a variety of nucleic acid targets enabling molecular diagnostics in clinics.
Collapse
Affiliation(s)
- Chenzhi Shi
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Center for DNA Information Storage, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Donglei Yang
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Center for DNA Information Storage, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xiaowei Ma
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Center for DNA Information Storage, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Li Pan
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Center for DNA Information Storage, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yuanchuan Shao
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, 27708, USA
| | - Gaurav Arya
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina, 27708, USA
| | - Yonggang Ke
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, 30322, USA
| | - Chuan Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fuan Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Center for DNA Information Storage, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Min Li
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Center for DNA Information Storage, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Pengfei Wang
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Center for DNA Information Storage, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| |
Collapse
|
8
|
Pietruschka G, Ranzani AT, Weber A, Patwari T, Pilsl S, Renzl C, Otte DM, Pyka D, Möglich A, Mayer G. An RNA Motif That Enables Optozyme Control and Light-Dependent Gene Expression in Bacteria and Mammalian Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304519. [PMID: 38227373 DOI: 10.1002/advs.202304519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 12/19/2023] [Indexed: 01/17/2024]
Abstract
The regulation of gene expression by light enables the versatile, spatiotemporal manipulation of biological function in bacterial and mammalian cells. Optoribogenetics extends this principle by molecular RNA devices acting on the RNA level whose functions are controlled by the photoinduced interaction of a light-oxygen-voltage photoreceptor with cognate RNA aptamers. Here light-responsive ribozymes, denoted optozymes, which undergo light-dependent self-cleavage and thereby control gene expression are described. This approach transcends existing aptamer-ribozyme chimera strategies that predominantly rely on aptamers binding to small molecules. The optozyme method thus stands to enable the graded, non-invasive, and spatiotemporally resolved control of gene expression. Optozymes are found efficient in bacteria and mammalian cells and usher in hitherto inaccessible optoribogenetic modalities with broad applicability in synthetic and systems biology.
Collapse
Affiliation(s)
- Georg Pietruschka
- Life and Medical Sciences (LIMES), University of Bonn, Gerhard-Domagk-Str.1, 53121, Bonn, Germany
| | - Américo T Ranzani
- Lehrstuhl für Biochemie, Photobiochemie, University of Bayreuth, Universitätsstraße 30, 95440, Bayreuth, Germany
| | - Anna Weber
- Life and Medical Sciences (LIMES), University of Bonn, Gerhard-Domagk-Str.1, 53121, Bonn, Germany
- Center of Aptamer Research & Development, University of Bonn, Gerhard-Domagk-Str. 1, 53121, Bonn, Germany
| | - Tejal Patwari
- Life and Medical Sciences (LIMES), University of Bonn, Gerhard-Domagk-Str.1, 53121, Bonn, Germany
| | - Sebastian Pilsl
- Life and Medical Sciences (LIMES), University of Bonn, Gerhard-Domagk-Str.1, 53121, Bonn, Germany
| | - Christian Renzl
- Life and Medical Sciences (LIMES), University of Bonn, Gerhard-Domagk-Str.1, 53121, Bonn, Germany
- Center of Aptamer Research & Development, University of Bonn, Gerhard-Domagk-Str. 1, 53121, Bonn, Germany
| | - David M Otte
- Life and Medical Sciences (LIMES), University of Bonn, Gerhard-Domagk-Str.1, 53121, Bonn, Germany
| | - Daniel Pyka
- Life and Medical Sciences (LIMES), University of Bonn, Gerhard-Domagk-Str.1, 53121, Bonn, Germany
| | - Andreas Möglich
- Lehrstuhl für Biochemie, Photobiochemie, University of Bayreuth, Universitätsstraße 30, 95440, Bayreuth, Germany
| | - Günter Mayer
- Life and Medical Sciences (LIMES), University of Bonn, Gerhard-Domagk-Str.1, 53121, Bonn, Germany
- Center of Aptamer Research & Development, University of Bonn, Gerhard-Domagk-Str. 1, 53121, Bonn, Germany
| |
Collapse
|
9
|
Kläge D, Müller E, Hartig JS. A comparative survey of the influence of small self-cleaving ribozymes on gene expression in human cell culture. RNA Biol 2024; 21:1-11. [PMID: 38146121 PMCID: PMC10761166 DOI: 10.1080/15476286.2023.2296203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 12/27/2023] Open
Abstract
Self-cleaving ribozymes are versatile tools for synthetic biologists when it comes to controlling gene expression. Up to date, 12 different classes are known, and over the past decades more and more details about their structure, cleavage mechanisms and natural environments have been uncovered. However, when these motifs are applied to mammalian gene expression constructs, the outcome can often be unexpected. A variety of factors, such as surrounding sequences and positioning of the ribozyme influences the activity and hence performance of catalytic RNAs. While some information about the efficiency of individual ribozymes (each tested in specific contexts) is known, general trends obtained from standardized, comparable experiments are lacking, complicating decisions such as which ribozyme to choose and where to insert it into the target mRNA. In many cases, application-specific optimization is required, which can be very laborious. Here, we systematically compared different classes of ribozymes within the 3'-UTR of a given reporter gene. We then examined position-dependent effects of the best-performing ribozymes. Moreover, we tested additional variants of already widely used hammerhead ribozymes originating from various organisms. We were able to identify functional structures suited for aptazyme design and generated highly efficient hammerhead ribozyme variants originating from the human genome. The present dataset will aide decisions about how to apply ribozymes for affecting gene expression as well as for developing ribozyme-based switches for controlling gene expression in human cells.
Collapse
Affiliation(s)
- Dennis Kläge
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Konstanz, Germany
| | - Elisabeth Müller
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Konstanz, Germany
| | - Jörg S. Hartig
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Konstanz, Germany
| |
Collapse
|
10
|
Zhou S, Chen M, Yuan Y, Xu Y, Pu Q, Ai X, Liu S, Du F, Huang X, Dong J, Cui X, Tang Z. Trans-acting aptazyme for conditional gene knockdown in eukaryotic cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:367-375. [PMID: 37547296 PMCID: PMC10400872 DOI: 10.1016/j.omtn.2023.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/11/2023] [Indexed: 08/08/2023]
Abstract
Trans-acting hammerhead ribozyme inherits the advantages of being the smallest and best-characterized RNA-cleaving ribozyme, offering high modularity and the ability to cleave any desired sequence without the aid of any protein, as long as the target sequence contains a cleavage site. However, achieving precise control over the trans-acting hammerhead ribozyme would enable safer and more accurate regulation of gene expression. Herein, we described an intracellular selection of hammerhead aptazyme that contains a theophylline aptamer on stem II based on toxin protein IbsC. Based on the intracellular selection, we obtained three new cis-acting hammerhead aptazymes. Moreover, the corresponding trans-acting aptazymes could be efficiently induced by theophylline to knock down different targeted genes in eukaryotic cells. Notably, the best one, T195, exhibited a ligand-dependent and dose-dependent response to theophylline, and the cleavage efficiency could be enhanced by incorporating multiplex aptazymes.
Collapse
Affiliation(s)
- Shan Zhou
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Sciences, Chengdu 610041, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Meiyi Chen
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Sciences, Chengdu 610041, P.R. China
| | - Yi Yuan
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Sciences, Chengdu 610041, P.R. China
| | - Yan Xu
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Sciences, Chengdu 610041, P.R. China
| | - Qinlin Pu
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Sciences, Chengdu 610041, P.R. China
| | - Xilei Ai
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Sciences, Chengdu 610041, P.R. China
| | - Shuai Liu
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Sciences, Chengdu 610041, P.R. China
| | - Feng Du
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Sciences, Chengdu 610041, P.R. China
| | - Xin Huang
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Sciences, Chengdu 610041, P.R. China
| | - Juan Dong
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Sciences, Chengdu 610041, P.R. China
| | - Xin Cui
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Sciences, Chengdu 610041, P.R. China
| | - Zhuo Tang
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Sciences, Chengdu 610041, P.R. China
| |
Collapse
|
11
|
Chen B, Yu X, Gao T, Wu Y, Zhang X, Li S. Selection of allosteric dnazymes that can sense phenylalanine by expression-SELEX. Nucleic Acids Res 2023; 51:e66. [PMID: 37207331 PMCID: PMC10287898 DOI: 10.1093/nar/gkad424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 04/13/2023] [Accepted: 05/10/2023] [Indexed: 05/21/2023] Open
Abstract
Aptamers are ligand-binding RNA or DNA molecules and have been widely examined as biosensors, diagnostic tools, and therapeutic agents. The application of aptamers as biosensors commonly requires an expression platform to produce a signal to report the aptamer-ligand binding event. Traditionally, aptamer selection and expression platform integration are two independent steps and the aptamer selection requires the immobilization of either the aptamer or the ligand. These drawbacks can be easily overcome through the selection of allosteric DNAzymes (aptazymes). Herein, we used the technique of Expression-SELEX developed in our laboratory to select for aptazymes that can be specifically activated by low concentrations of l-phenylalanine. We chose a previous DNA-cleaving DNAzyme known as II-R1 as the expression platform for its low cleavage rate and used stringent selection conditions to drive the selection of high-performance aptazyme candidates. Three aptazymes were chosen for detailed characterization and these DNAzymes were found to exhibit a dissociation constant for l-phenylalanine as low as 4.8 μM, a catalytic rate constant improvement as high as 20 000-fold in the presence of l-phenylalanine, and the ability to discriminate against closely related l-phenylalanine analogs including d-phenylalanine. This work has established the Expression-SELEX as an effective SELEX method to enrich high-quality ligand-responsive aptazymes.
Collapse
Affiliation(s)
- Binfen Chen
- Medical School, Huaqiao University, Xiamen 361021, P.R. China
| | - Xinmei Yu
- Medical School, Huaqiao University, Xiamen 361021, P.R. China
| | - Ting Gao
- Medical School, Huaqiao University, Xiamen 361021, P.R. China
| | - Yaoyao Wu
- Medical School, Huaqiao University, Xiamen 361021, P.R. China
| | - Xiaojun Zhang
- Chemical Engineering Institute, Huaqiao University, Xiamen 361021, P.R. China
| | - Sanshu Li
- Medical School, Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Institute of Genomics, Huaqiao University, Xiamen 361021, P.R. China
| |
Collapse
|
12
|
Assmann SM, Chou HL, Bevilacqua PC. Rock, scissors, paper: How RNA structure informs function. THE PLANT CELL 2023; 35:1671-1707. [PMID: 36747354 PMCID: PMC10226581 DOI: 10.1093/plcell/koad026] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/05/2023] [Accepted: 01/30/2023] [Indexed: 05/30/2023]
Abstract
RNA can fold back on itself to adopt a wide range of structures. These range from relatively simple hairpins to intricate 3D folds and can be accompanied by regulatory interactions with both metabolites and macromolecules. The last 50 yr have witnessed elucidation of an astonishing array of RNA structures including transfer RNAs, ribozymes, riboswitches, the ribosome, the spliceosome, and most recently entire RNA structuromes. These advances in RNA structural biology have deepened insight into fundamental biological processes including gene editing, transcription, translation, and structure-based detection and response to temperature and other environmental signals. These discoveries reveal that RNA can be relatively static, like a rock; that it can have catalytic functions of cutting bonds, like scissors; and that it can adopt myriad functional shapes, like paper. We relate these extraordinary discoveries in the biology of RNA structure to the plant way of life. We trace plant-specific discovery of ribozymes and riboswitches, alternative splicing, organellar ribosomes, thermometers, whole-transcriptome structuromes and pan-structuromes, and conclude that plants have a special set of RNA structures that confer unique types of gene regulation. We finish with a consideration of future directions for the RNA structure-function field.
Collapse
Affiliation(s)
- Sarah M Assmann
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Hong-Li Chou
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Philip C Bevilacqua
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
13
|
Ortega AD. Real-Time Assessment of Intracellular Metabolites in Single Cells through RNA-Based Sensors. Biomolecules 2023; 13:biom13050765. [PMID: 37238635 DOI: 10.3390/biom13050765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Quantification of the concentration of particular cellular metabolites reports on the actual utilization of metabolic pathways in physiological and pathological conditions. Metabolite concentration also constitutes the readout for screening cell factories in metabolic engineering. However, there are no direct approaches that allow for real-time assessment of the levels of intracellular metabolites in single cells. In recent years, the modular architecture of natural bacterial RNA riboswitches has inspired the design of genetically encoded synthetic RNA devices that convert the intracellular concentration of a metabolite into a quantitative fluorescent signal. These so-called RNA-based sensors are composed of a metabolite-binding RNA aptamer as the sensor domain, connected through an actuator segment to a signal-generating reporter domain. However, at present, the variety of available RNA-based sensors for intracellular metabolites is still very limited. Here, we go through natural mechanisms for metabolite sensing and regulation in cells across all kingdoms, focusing on those mediated by riboswitches. We review the design principles underlying currently developed RNA-based sensors and discuss the challenges that hindered the development of novel sensors and recent strategies to address them. We finish by introducing the current and potential applicability of synthetic RNA-based sensors for intracellular metabolites.
Collapse
Affiliation(s)
- Alvaro Darío Ortega
- Department of Cell Biology, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
14
|
Kavita K, Breaker RR. Discovering riboswitches: the past and the future. Trends Biochem Sci 2023; 48:119-141. [PMID: 36150954 PMCID: PMC10043782 DOI: 10.1016/j.tibs.2022.08.009] [Citation(s) in RCA: 110] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/18/2022] [Accepted: 08/26/2022] [Indexed: 01/25/2023]
Abstract
Riboswitches are structured noncoding RNA domains used by many bacteria to monitor the concentrations of target ligands and regulate gene expression accordingly. In the past 20 years over 55 distinct classes of natural riboswitches have been discovered that selectively sense small molecules or elemental ions, and thousands more are predicted to exist. Evidence suggests that some riboswitches might be direct descendants of the RNA-based sensors and switches that were likely present in ancient organisms before the evolutionary emergence of proteins. We provide an overview of the current state of riboswitch research, focusing primarily on the discovery of riboswitches, and speculate on the major challenges facing researchers in the field.
Collapse
Affiliation(s)
- Kumari Kavita
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8103, USA
| | - Ronald R Breaker
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8103, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT 06520-8103, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8103, USA.
| |
Collapse
|
15
|
Mohsen MG, Midy MK, Balaji A, Breaker R. Exploiting natural riboswitches for aptamer engineering and validation. Nucleic Acids Res 2023; 51:966-981. [PMID: 36617976 PMCID: PMC9881172 DOI: 10.1093/nar/gkac1218] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/04/2022] [Accepted: 12/09/2022] [Indexed: 01/10/2023] Open
Abstract
Over the past three decades, researchers have found that some engineered aptamers can be made to work well in test tubes but that these same aptamers might fail to function in cells. To help address this problem, we developed the 'Graftamer' approach, an experimental platform that exploits the architecture of a natural riboswitch to enhance in vitro aptamer selection and accelerate in vivo testing. Starting with combinatorial RNA pools that contain structural features of a guanine riboswitch aptamer interspersed with regions of random sequence, we performed multiplexed in vitro selection with a collection of small molecules. This effort yielded aptamers for quinine, guanine, and caffeine that appear to maintain structural features of the natural guanine riboswitch aptamer. Quinine and caffeine aptamers were each grafted onto a natural guanine riboswitch expression platform and reporter gene expression was monitored to determine that these aptamers function in cells. Additionally, we determined the secondary structure features and survival mechanism of a class of RNA sequences that evade the intended selection strategy, providing insight into improving this approach for future efforts. These results demonstrate that the Graftamer strategy described herein represents a convenient and straightforward approach to develop aptamers and validate their in vivo function.
Collapse
Affiliation(s)
- Michael G Mohsen
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
- Howard Hughes Medical Institute, Yale University, New Haven, CT 06511, USA
| | - Matthew K Midy
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Aparaajita Balaji
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Ronald R Breaker
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
- Howard Hughes Medical Institute, Yale University, New Haven, CT 06511, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
16
|
Wang Q, Wang Z, He Y, Xiong B, Li Y, Wang F. Chemical and structural modification of RNA-cleaving DNAzymes for efficient biosensing and biomedical applications. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
17
|
Wu Y, Zhu L, Li S, Chu H, Wang X, Xu W. High content design of riboswitch biosensors: All-around rational module-by-module design. Biosens Bioelectron 2022; 220:114887. [DOI: 10.1016/j.bios.2022.114887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/27/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022]
|
18
|
Zhang J, Lan T, Lu Y. Overcoming Major Barriers to Developing Successful Sensors for Practical Applications Using Functional Nucleic Acids. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2022; 15:151-171. [PMID: 35216531 PMCID: PMC9197978 DOI: 10.1146/annurev-anchem-061020-104216] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
For many years, numerous efforts have been focused on the development of sensitive, selective, and practical sensors for environmental monitoring, food safety, and medical diagnostic applications. However, the transition from innovative research to commercial success is relatively sparse. In this review, we identify four scientific barriers and one technical barrier to developing successful sensors for practical applications, including the lack of general methods to (a) generate receptors for a wide range of targets, (b) improve sensor selectivity to overcome interferences, (c) transduce the selective binding to different optical, electrochemical, and other signals, and (d) tune dynamic range to match thresholds of detection required for different targets; and the costly development of a new device. We then summarize solutions to overcome these barriers using sensors based on functional nucleic acids that include DNAzymes, aptamers, and aptazymes and how these sensors are coupled to widely available measurement devices to expand their capabilities and lower the barrier for their practical applications in the field and point-of-care settings.
Collapse
Affiliation(s)
- JingJing Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China;
| | - Tian Lan
- GlucoSentient, Inc., Champaign, Illinois, USA
| | - Yi Lu
- Department of Chemistry, University of Texas at Austin, Austin, Texas, USA;
| |
Collapse
|
19
|
Ao Y, Duan A, Chen B, Yu X, Wu Y, Zhang X, Li S. Integration of an Expression Platform in the SELEX Cycle to Select DNA Aptamer Binding to a Disease Biomarker. ACS OMEGA 2022; 7:10804-10811. [PMID: 35382297 PMCID: PMC8973154 DOI: 10.1021/acsomega.2c00769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/07/2022] [Indexed: 05/30/2023]
Abstract
Aptamers can be developed for biosensors, diagnostic tools, and therapeutic reagents. These applications usually require a fusion of aptamers and expression platforms. However, the fusion process is usually time-consuming and laborious. In this study, we integrated the deoxyribozyme (I-R3) as an expression platform in the SELEX cycle (called Expression-SELEX) to select aptazymes that can sense diverse molecules. We used the Maple syrup urine disease (MSUD) biomarker L-allo-isoleucine to test the selection model. After five rounds of screening, the cleavage products were sufficiently enriched to be visualized on polyacrylamide gel electrophoresis (PAGE) gel. Through high-throughput sequencing analysis, several candidates were identified. One such candidate, IR3-I-DNA, binds L-allo-isoleucine with a dissociation constant (K D) of 0.57 mM. When the ligand was present, the cleavage fraction of IR3-I-DNA increased from 0.3 to 0.5, and its K obs value improved from 1.38 min-1 to 1.97 min-1. Our selection approach can also be applied to produce aptazymes that can bind to variable ligands and be used more directly as biosensors.
Collapse
Affiliation(s)
- Yaqi Ao
- Medical
School, Huaqiao University, Xiamen 361021, P. R. China
| | - Anqi Duan
- Medical
School, Huaqiao University, Xiamen 361021, P. R. China
| | - Binfen Chen
- Medical
School, Huaqiao University, Xiamen 361021, P. R. China
| | - Xinmei Yu
- Medical
School, Huaqiao University, Xiamen 361021, P. R. China
| | - Yaoyao Wu
- Medical
School, Huaqiao University, Xiamen 361021, P. R. China
| | - Xiaojun Zhang
- Chemical
Engineering Institute, Huaqiao University, Xiamen 361021, P. R. China
| | - Sanshu Li
- Medical
School, Engineering Research Center of Molecular Medicine of Ministry
of Education, Key Laboratory of Precision Medicine and Molecular Diagnosis
of Fujian Universities, Institute of Genomics, Huaqiao University, Xiamen 361021, P. R. China
| |
Collapse
|
20
|
Zheng G, Zhao L, Yuan D, Li J, Yang G, Song D, Miao H, Shu L, Mo X, Xu X, Li L, Song X, Zhao Y. A genetically encoded fluorescent biosensor for monitoring ATP in living cells with heterobifunctional aptamers. Biosens Bioelectron 2022; 198:113827. [PMID: 34861524 DOI: 10.1016/j.bios.2021.113827] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 02/08/2023]
Abstract
Visualizing the dynamics of ATP in living cells is key to understanding cellular energy metabolism and related diseases. However, the live-cell applications of current methods are still limited due to challenges in biological compatibility and sensitivity to pH. Herein, a novel label-free fluorescent " turn-on " biosensor for monitoring ATP in living bacterias and mammalian cells was developed. This biosensor (Broc-ATP) employed heterobifunctional aptamers to detect ATP with high sensitivity in vitro. In our system, a very useful tandem method was established by combining four Broc-ATPs with 3 × F30 three-way junction scaffold to construct an intracellular biosensor that achieves sufficient fluorescence to respond to intracellular ATP. This intracellular biosensor can be used for sensitive and specific dynamic imaging of ATP in mammalian cells. Hence, this genetically encoded biosensor provides a robust and efficient tool for the detection of intracellular ATP dynamics and 3 × F30 tandem method expands the application of heterobifunctional aptamers in mammalian cells.
Collapse
Affiliation(s)
- Guoliang Zheng
- Center for Functional Genomics and Bioinformatics, College of Life Science, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | - Liang Zhao
- Center for Functional Genomics and Bioinformatics, College of Life Science, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | - Deyu Yuan
- Center for Functional Genomics and Bioinformatics, College of Life Science, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | - Jia Li
- Center for Functional Genomics and Bioinformatics, College of Life Science, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | - Gang Yang
- Center for Functional Genomics and Bioinformatics, College of Life Science, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | - Danxia Song
- Center for Functional Genomics and Bioinformatics, College of Life Science, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | - Hui Miao
- Center for Functional Genomics and Bioinformatics, College of Life Science, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | - Linjuan Shu
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Xianming Mo
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Xiaoding Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, PR China
| | - Ling Li
- Center for Functional Genomics and Bioinformatics, College of Life Science, Sichuan University, Chengdu, Sichuan, 610064, PR China.
| | - Xu Song
- Center for Functional Genomics and Bioinformatics, College of Life Science, Sichuan University, Chengdu, Sichuan, 610064, PR China.
| | - Yongyun Zhao
- Center for Functional Genomics and Bioinformatics, College of Life Science, Sichuan University, Chengdu, Sichuan, 610064, PR China.
| |
Collapse
|
21
|
Spirov AV, Myasnikova EM. Heuristic algorithms in evolutionary computation and modular organization of biological macromolecules: Applications to in vitro evolution. PLoS One 2022; 17:e0260497. [PMID: 35085255 PMCID: PMC8794168 DOI: 10.1371/journal.pone.0260497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/10/2021] [Indexed: 11/19/2022] Open
Abstract
Evolutionary computing (EC) is an area of computer sciences and applied mathematics covering heuristic optimization algorithms inspired by evolution in Nature. EC extensively study all the variety of methods which were originally based on the principles of selectionism. As a result, many new algorithms and approaches, significantly more efficient than classical selectionist schemes, were found. This is especially true for some families of special problems. There are strong arguments to believe that EC approaches are quite suitable for modeling and numerical analysis of those methods of synthetic biology and biotechnology that are known as in vitro evolution. Therefore, it is natural to expect that the new algorithms and approaches developed in EC can be effectively applied in experiments on the directed evolution of biological macromolecules. According to the John Holland's Schema theorem, the effective evolutionary search in genetic algorithms (GA) is provided by identifying short schemata of high fitness which in the further search recombine into the larger building blocks (BBs) with higher and higher fitness. The multimodularity of functional biological macromolecules and the preservation of already found modules in the evolutionary search have a clear analogy with the BBs in EC. It seems reasonable to try to transfer and introduce the methods of EC, preserving BBs and essentially accelerating the search, into experiments on in vitro evolution. We extend the key instrument of the Holland's theory, the Royal Roads fitness function, to problems of the in vitro evolution (Biological Royal Staircase, BioRS, functions). The specific version of BioRS developed in this publication arises from the realities of experimental evolutionary search for (DNA-) RNA-devices (aptazymes). Our numerical tests showed that for problems with the BioRS functions, simple heuristic algorithms, which turned out to be very effective for preserving BBs in GA, can be very effective in in vitro evolution approaches. We are convinced that such algorithms can be implemented in modern methods of in vitro evolution to achieve significant savings in time and resources and a significant increase in the efficiency of evolutionary search.
Collapse
Affiliation(s)
- Alexander V. Spirov
- I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry Russian Academy of Sciences, St. Petersburg, Russia
- The Institute of Scientific Information for Social Sciences RAS, Moscow, Russia
| | | |
Collapse
|
22
|
Svehlova K, Lukšan O, Jakubec M, Curtis EA. Supernova: A Deoxyribozyme that Catalyzes a Chemiluminescent Reaction. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202109347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Katerina Svehlova
- Institute of Organic Chemistry and Biochemistry ASCR Prague Czech Republic
- Faculty of Science Charles University in Prague Prague Czech Republic
| | - Ondřej Lukšan
- Institute of Organic Chemistry and Biochemistry ASCR Prague Czech Republic
| | - Martin Jakubec
- Institute of Organic Chemistry and Biochemistry ASCR Prague Czech Republic
- Faculty of Science Charles University in Prague Prague Czech Republic
| | - Edward A. Curtis
- Institute of Organic Chemistry and Biochemistry ASCR Prague Czech Republic
| |
Collapse
|
23
|
Sherlock ME, Higgs G, Yu D, Widner DL, White NA, Sudarsan N, Sadeeshkumar H, Perkins KR, Mirihana Arachchilage G, Malkowski SN, King CG, Harris KA, Gaffield G, Atilho RM, Breaker RR. Architectures and complex functions of tandem riboswitches. RNA Biol 2022; 19:1059-1076. [PMID: 36093908 PMCID: PMC9481103 DOI: 10.1080/15476286.2022.2119017] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Riboswitch architectures that involve the binding of a single ligand to a single RNA aptamer domain result in ordinary dose-response curves that require approximately a 100-fold change in ligand concentration to cover nearly the full dynamic range for gene regulation. However, by using multiple riboswitches or aptamer domains in tandem, these ligand-sensing structures can produce additional, complex gene control outcomes. In the current study, we have computationally searched for tandem riboswitch architectures in bacteria to provide a more complete understanding of the diverse biological and biochemical functions of gene control elements that are made exclusively of RNA. Numerous different arrangements of tandem homologous riboswitch architectures are exploited by bacteria to create more 'digital' gene control devices, which operate over a narrower ligand concentration range. Also, two heterologous riboswitch aptamers are sometimes employed to create two-input Boolean logic gates with various types of genetic outputs. These findings illustrate the sophisticated genetic decisions that can be made by using molecular sensors and switches based only on RNA.
Collapse
Affiliation(s)
- Madeline E. Sherlock
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado, Anschutz Medical Campus, Research-1S, Aurora, CO, USA
| | - Gadareth Higgs
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Diane Yu
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Danielle L. Widner
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Neil A. White
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | | | - Harini Sadeeshkumar
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Kevin R. Perkins
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Gayan Mirihana Arachchilage
- Howard Hughes Medical Institute, Yale University, New Haven, CT, USA
- PTC Therapeutics, Inc, South Plainfield, NJ, USA
| | | | - Christopher G. King
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | | | - Glenn Gaffield
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Ruben M. Atilho
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Ronald R. Breaker
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Howard Hughes Medical Institute, Yale University, New Haven, CT, USA
| |
Collapse
|
24
|
Zhou G, Lu X, Yuan M, Li T, Li L. Enzymatic Cycle-Inspired Dynamic Biosensors Affording No False-Positive Identification. Anal Chem 2021; 93:15482-15492. [PMID: 34767335 DOI: 10.1021/acs.analchem.1c03502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
There is an urgent need for reliable biosensors to detect nucleic acid of interest in clinical samples. We propose that the accuracy of the present nucleic acid-sensing method can be advanced by avoiding false-positive identifications derived from nonspecific interactions (e.g., nonspecific binding, probe degradation). The challenge is to exploit biosensors that can distinguish false-positive from true-positive samples in nucleic acid screening. In the present study, by learning from the enzymatic cycle in nature, we raise an allostery tool displaying invertible positive/negative cooperativity for reversible or cyclic activity control of the biosensing probe. We demonstrate that the silencing and regeneration of a positive (or negative) allosteric effector can be carried out through toehold displacement or an enzymatic reaction. We, thus, have developed several dynamic biosensors that can repeatedly measure a single nucleic acid sample. The ability to distinguish a false-positive from a true-positive signal is ascribed to the nonspecific interaction presenting equivalent signal variations, while the specific target binding exhibits diverse signal variations according to repeated measurements. Given its precise identification, such consequent dynamic biosensors offer exciting opportunities in physiological and pathological diagnosis.
Collapse
Affiliation(s)
- Guobao Zhou
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, P. R. China
| | - Xing Lu
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, P. R. China
| | - Mengmeng Yuan
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, P. R. China
| | - Tuqiang Li
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, P. R. China
| | - Lei Li
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, P. R. China
| |
Collapse
|
25
|
Moon JD, Wu J, Dey SK, Litke JL, Li X, Kim H, Jaffrey SR. Naturally occurring three-way junctions can be repurposed as genetically encoded RNA-based sensors. Cell Chem Biol 2021; 28:1569-1580.e4. [PMID: 34010626 PMCID: PMC8573057 DOI: 10.1016/j.chembiol.2021.04.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/28/2021] [Accepted: 04/26/2021] [Indexed: 11/28/2022]
Abstract
Small molecules can be imaged in living cells using biosensors composed of RNA. However, RNA-based devices are difficult to design. Here, we describe a versatile platform for designing RNA-based fluorescent small-molecule sensors using naturally occurring highly stable three-way junction RNAs. We show that ligand-binding aptamers and fluorogenic aptamers can be inserted into three-way junctions and connected in a way that enables the three-way junction to function as a small-molecule-regulated fluorescent sensor in vitro and in cells. The sensors are designed so that the interhelical stabilizing interactions in the three-way junction are only induced upon ligand binding. We use these RNA-based devices to measure the dynamics of S-adenosylmethionine levels in mammalian cells in real time. We show that this strategy is compatible with diverse metabolite-binding RNA aptamers, fluorogenic aptamers, and three-way junctions. Overall, these data demonstrate a versatile method for readily generating RNA devices that function in living cells.
Collapse
Affiliation(s)
- Jared D Moon
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA; Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10065, USA
| | - Jiahui Wu
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Sourav K Dey
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Jacob L Litke
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Xing Li
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Hyaeyeong Kim
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Samie R Jaffrey
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA.
| |
Collapse
|
26
|
Abstract
Inspired by allosteric regulation of natural molecules, we present a rational design scheme to build synthetic nucleic acid allosteric nanodevices. The clearly specified conformational states of switches obtained from systematic screening and analyses make the ON-OFF transition clear-cut and quantification ready. Under the rational design scheme, we have developed a series of DNA switches with triplex-forming oligos as allosteric modulators and implemented designated allosteric transitions, allosteric coregulation, and reaction pathway control. In conjunction with toehold-mediated strand displacement, our design scheme has also been applied to synthetic nucleic acid computing including a set of logic operations and complex algorithm.
Collapse
Affiliation(s)
- Tianqing Zhang
- School of Life Sciences, Tsinghua University-Peking University Center for Life Sciences, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| | - Bryan Wei
- School of Life Sciences, Tsinghua University-Peking University Center for Life Sciences, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
27
|
Peng H, Latifi B, Müller S, Lupták A, Chen IA. Self-cleaving ribozymes: substrate specificity and synthetic biology applications. RSC Chem Biol 2021; 2:1370-1383. [PMID: 34704043 PMCID: PMC8495972 DOI: 10.1039/d0cb00207k] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 06/14/2021] [Indexed: 12/22/2022] Open
Abstract
Various self-cleaving ribozymes appearing in nature catalyze the sequence-specific intramolecular cleavage of RNA and can be engineered to catalyze cleavage of appropriate substrates in an intermolecular fashion, thus acting as true catalysts. The mechanisms of the small, self-cleaving ribozymes have been extensively studied and reviewed previously. Self-cleaving ribozymes can possess high catalytic activity and high substrate specificity; however, substrate specificity is also engineerable within the constraints of the ribozyme structure. While these ribozymes share a common fundamental catalytic mechanism, each ribozyme family has a unique overall architecture and active site organization, indicating that several distinct structures yield this chemical activity. The multitude of catalytic structures, combined with some flexibility in substrate specificity within each family, suggests that such catalytic RNAs, taken together, could access a wide variety of substrates. Here, we give an overview of 10 classes of self-cleaving ribozymes and capture what is understood about their substrate specificity and synthetic applications. Evolution of these ribozymes in an RNA world might be characterized by the emergence of a new ribozyme family followed by rapid adaptation or diversification for specific substrates. Self-cleaving ribozymes have become important tools of synthetic biology. Here we summarize the substrate specificity and applications of the main classes of these ribozymes.![]()
Collapse
Affiliation(s)
- Huan Peng
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles CA 90095 USA
| | - Brandon Latifi
- Department of Pharmaceutical Sciences, University of California Irvine CA 92697 USA
| | - Sabine Müller
- Institute for Biochemistry, University Greifswald 17487 Greifswald Germany
| | - Andrej Lupták
- Department of Pharmaceutical Sciences, University of California Irvine CA 92697 USA
| | - Irene A Chen
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles CA 90095 USA
| |
Collapse
|
28
|
Svehlova K, Lukšan O, Jakubec M, Curtis EA. Supernova: A Deoxyribozyme that Catalyzes a Chemiluminescent Reaction. Angew Chem Int Ed Engl 2021; 61:e202109347. [PMID: 34559935 PMCID: PMC9298802 DOI: 10.1002/anie.202109347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/17/2021] [Indexed: 11/10/2022]
Abstract
Functional DNA molecules are useful components in nanotechnology and synthetic biology. To expand the toolkit of functional DNA parts, in this study we used artificial evolution to identify a glowing deoxyribozyme called Supernova. This deoxyribozyme transfers a phosphate from a 1,2-dioxetane substrate to its 5' hydroxyl group, which triggers a chemiluminescent reaction and a flash of blue light. An engineered version of Supernova is only catalytically active in the presence of an oligonucleotide complementary to its 3' end, demonstrating that light production can be coupled to ligand binding. We anticipate that Supernova will be useful in a wide variety of applications, including as a signaling component in allosterically regulated sensors and in logic gates of molecular computers.
Collapse
Affiliation(s)
- Katerina Svehlova
- Institute of Organic Chemistry and Biochemistry ASCR, Prague, Czech Republic.,Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Ondřej Lukšan
- Institute of Organic Chemistry and Biochemistry ASCR, Prague, Czech Republic
| | - Martin Jakubec
- Institute of Organic Chemistry and Biochemistry ASCR, Prague, Czech Republic.,Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Edward A Curtis
- Institute of Organic Chemistry and Biochemistry ASCR, Prague, Czech Republic
| |
Collapse
|
29
|
Abstract
This article provides a comprehensive review of biosensing with DNAzymes, providing an overview of different sensing applications while highlighting major progress and seminal contributions to the field of portable biosensor devices and point-of-care diagnostics. Specifically, the field of functional nucleic acids is introduced, with a specific focus on DNAzymes. The incorporation of DNAzymes into bioassays is then described, followed by a detailed overview of recent advances in the development of in vivo sensing platforms and portable sensors incorporating DNAzymes for molecular recognition. Finally, a critical perspective on the field, and a summary of where DNAzyme-based devices may make the biggest impact are provided.
Collapse
Affiliation(s)
- Erin M McConnell
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada.
| | | | | | | | | | | |
Collapse
|
30
|
Tickner ZJ, Farzan M. Riboswitches for Controlled Expression of Therapeutic Transgenes Delivered by Adeno-Associated Viral Vectors. Pharmaceuticals (Basel) 2021; 14:ph14060554. [PMID: 34200913 PMCID: PMC8230432 DOI: 10.3390/ph14060554] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 05/28/2021] [Accepted: 06/04/2021] [Indexed: 11/16/2022] Open
Abstract
Vectors developed from adeno-associated virus (AAV) are powerful tools for in vivo transgene delivery in both humans and animal models, and several AAV-delivered gene therapies are currently approved for clinical use. However, AAV-mediated gene therapy still faces several challenges, including limited vector packaging capacity and the need for a safe, effective method for controlling transgene expression during and after delivery. Riboswitches, RNA elements which control gene expression in response to ligand binding, are attractive candidates for regulating expression of AAV-delivered transgene therapeutics because of their small genomic footprints and non-immunogenicity compared to protein-based expression control systems. In addition, the ligand-sensing aptamer domains of many riboswitches can be exchanged in a modular fashion to allow regulation by a variety of small molecules, proteins, and oligonucleotides. Riboswitches have been used to regulate AAV-delivered transgene therapeutics in animal models, and recently developed screening and selection methods allow rapid isolation of riboswitches with novel ligands and improved performance in mammalian cells. This review discusses the advantages of riboswitches in the context of AAV-delivered gene therapy, the subsets of riboswitch mechanisms which have been shown to function in human cells and animal models, recent progress in riboswitch isolation and optimization, and several examples of AAV-delivered therapeutic systems which might be improved by riboswitch regulation.
Collapse
Affiliation(s)
- Zachary J. Tickner
- Department of Immunology and Microbiology, the Scripps Research Institute, Jupiter, FL 33458, USA;
- Correspondence:
| | - Michael Farzan
- Department of Immunology and Microbiology, the Scripps Research Institute, Jupiter, FL 33458, USA;
- Emmune, Inc., Jupiter, FL 33458, USA
| |
Collapse
|
31
|
Thavarajah W, Hertz LM, Bushhouse DZ, Archuleta CM, Lucks JB. RNA Engineering for Public Health: Innovations in RNA-Based Diagnostics and Therapeutics. Annu Rev Chem Biomol Eng 2021; 12:263-286. [PMID: 33900805 PMCID: PMC9714562 DOI: 10.1146/annurev-chembioeng-101420-014055] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
RNA is essential for cellular function: From sensing intra- and extracellular signals to controlling gene expression, RNA mediates a diverse and expansive list of molecular processes. A long-standing goal of synthetic biology has been to develop RNA engineering principles that can be used to harness and reprogram these RNA-mediated processes to engineer biological systems to solve pressing global challenges. Recent advances in the field of RNA engineering are bringing this to fruition, enabling the creation of RNA-based tools to combat some of the most urgent public health crises. Specifically, new diagnostics using engineered RNAs are able to detect both pathogens and chemicals while generating an easily detectable fluorescent signal as an indicator. New classes of vaccines and therapeutics are also using engineered RNAs to target a wide range of genetic and pathogenic diseases. Here, we discuss the recent breakthroughs in RNA engineering enabling these innovations and examine how advances in RNA design promise to accelerate the impact of engineered RNA systems.
Collapse
Affiliation(s)
- Walter Thavarajah
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, USA; .,Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA.,Center for Water Research, Northwestern University, Evanston, Illinois 60208, USA
| | - Laura M Hertz
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA.,Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, Illinois 60208, USA
| | - David Z Bushhouse
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA.,Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, Illinois 60208, USA
| | - Chloé M Archuleta
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, USA; .,Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA.,Center for Water Research, Northwestern University, Evanston, Illinois 60208, USA
| | - Julius B Lucks
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, USA; .,Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA.,Center for Water Research, Northwestern University, Evanston, Illinois 60208, USA.,Center for Engineering Sustainability and Resilience, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
32
|
Panchapakesan SSS, Breaker RR. The case of the missing allosteric ribozymes. Nat Chem Biol 2021; 17:375-382. [PMID: 33495645 PMCID: PMC8880209 DOI: 10.1038/s41589-020-00713-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 11/13/2020] [Indexed: 01/28/2023]
Abstract
The RNA World theory encompasses the hypothesis that sophisticated ribozymes and riboswitches were the primary drivers of metabolic processes in ancient organisms. Several types of catalytic RNAs and many classes of ligand-sensing RNA switches still exist in modern cells. Curiously, allosteric ribozymes formed by the merger of RNA enzyme and RNA switch components are largely absent in today's biological systems. This is true despite the striking abundances of various classes of both self-cleaving ribozymes and riboswitch aptamers. Here we present the known types of ligand-controlled ribozymes and riboswitches and discuss the possible reasons why fused ribozyme-aptamer constructs have been disfavored through evolution.
Collapse
Affiliation(s)
- Shanker S. S. Panchapakesan
- Department of Molecular, Cellular and Developmental
Biology, Yale University, P.O. Box 208103, New Haven, CT 06520-8103, USA
| | - Ronald R. Breaker
- Department of Molecular, Cellular and Developmental
Biology, Yale University, P.O. Box 208103, New Haven, CT 06520-8103, USA.,Howard Hughes Medical Institute, Yale University, P.O. Box
208103, New Haven, CT 06520-8103, USA.,Department of Molecular Biophysics and Biochemistry, Yale
University, P.O. Box 208103, New Haven, CT 06520-8103, USA
| |
Collapse
|
33
|
Secondary Structure Libraries for Artificial Evolution Experiments. Molecules 2021; 26:molecules26061671. [PMID: 33802780 PMCID: PMC8002575 DOI: 10.3390/molecules26061671] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 12/20/2022] Open
Abstract
Methods of artificial evolution such as SELEX and in vitro selection have made it possible to isolate RNA and DNA motifs with a wide range of functions from large random sequence libraries. Once the primary sequence of a functional motif is known, the sequence space around it can be comprehensively explored using a combination of random mutagenesis and selection. However, methods to explore the sequence space of a secondary structure are not as well characterized. Here we address this question by describing a method to construct libraries in a single synthesis which are enriched for sequences with the potential to form a specific secondary structure, such as that of an aptamer, ribozyme, or deoxyribozyme. Although interactions such as base pairs cannot be encoded in a library using conventional DNA synthesizers, it is possible to modulate the probability that two positions will have the potential to pair by biasing the nucleotide composition at these positions. Here we show how to maximize this probability for each of the possible ways to encode a pair (in this study defined as A-U or U-A or C-G or G-C or G.U or U.G). We then use these optimized coding schemes to calculate the number of different variants of model stems and secondary structures expected to occur in a library for a series of structures in which the number of pairs and the extent of conservation of unpaired positions is systematically varied. Our calculations reveal a tradeoff between maximizing the probability of forming a pair and maximizing the number of possible variants of a desired secondary structure that can occur in the library. They also indicate that the optimal coding strategy for a library depends on the complexity of the motif being characterized. Because this approach provides a simple way to generate libraries enriched for sequences with the potential to form a specific secondary structure, we anticipate that it should be useful for the optimization and structural characterization of functional nucleic acid motifs.
Collapse
|
34
|
Aptamers, Riboswitches, and Ribozymes in S. cerevisiae Synthetic Biology. Life (Basel) 2021; 11:life11030248. [PMID: 33802772 PMCID: PMC8002509 DOI: 10.3390/life11030248] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 01/09/2023] Open
Abstract
Among noncoding RNA sequences, riboswitches and ribozymes have attracted the attention of the synthetic biology community as circuit components for translation regulation. When fused to aptamer sequences, ribozymes and riboswitches are enabled to interact with chemicals. Therefore, protein synthesis can be controlled at the mRNA level without the need for transcription factors. Potentially, the use of chemical-responsive ribozymes/riboswitches would drastically simplify the design of genetic circuits. In this review, we describe synthetic RNA structures that have been used so far in the yeast Saccharomyces cerevisiae. We present their interaction mode with different chemicals (e.g., theophylline and antibiotics) or proteins (such as the RNase III) and their recent employment into clustered regularly interspaced short palindromic repeats–CRISPR-associated protein 9 (CRISPR-Cas) systems. Particular attention is paid, throughout the whole paper, to their usage and performance into synthetic gene circuits.
Collapse
|
35
|
Abstract
Aptamers are single-stranded DNA or RNA molecules that can be identified through an iterative in vitro selection–amplification process. Among them, fluorogenic aptamers in response to small molecules have been of great interest in biosensing and bioimaging due to their rapid fluorescence turn-on signals with high target specificity and low background noise. In this review, we report recent advances in fluorogenic aptasensors and their applications to in vitro diagnosis and cellular imaging. These aptasensors modulated by small molecules have been implemented in different modalities that include duplex or molecular beacon-type aptasensors, aptazymes, and fluorogen-activating aptamer reporters. We highlight the working principles, target molecules, modifications, and performance characteristics of fluorogenic aptasensors, and discuss their potential roles in the field of biosensor and bioimaging with future directions and challenges.
Collapse
|
36
|
Shanaa OA, Rumyantsev A, Sambuk E, Padkina M. In Vivo Production of RNA Aptamers and Nanoparticles: Problems and Prospects. Molecules 2021; 26:molecules26051422. [PMID: 33800717 PMCID: PMC7961669 DOI: 10.3390/molecules26051422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/04/2021] [Accepted: 03/04/2021] [Indexed: 12/26/2022] Open
Abstract
RNA aptamers are becoming increasingly attractive due to their superior properties. This review discusses the early stages of aptamer research, the main developments in this area, and the latest technologies being developed. The review also highlights the advantages of RNA aptamers in comparison to antibodies, considering the great potential of RNA aptamers and their applications in the near future. In addition, it is shown how RNA aptamers can form endless 3-D structures, giving rise to various structural and functional possibilities. Special attention is paid to the Mango, Spinach and Broccoli fluorescent RNA aptamers, and the advantages of split RNA aptamers are discussed. The review focuses on the importance of creating a platform for the synthesis of RNA nanoparticles in vivo and examines yeast, namely Saccharomyces cerevisiae, as a potential model organism for the production of RNA nanoparticles on a large scale.
Collapse
Affiliation(s)
- Ousama Al Shanaa
- Department of Genetics and Biotechnology, Saint Petersburg State University, 199034 Saint Petersburg, Russia; (A.R.); (E.S.)
- Atomic Energy Commission of Syria, Damascus P.O.B 6091, Syria
- Correspondence: (O.A.S.); (M.P.); Tel.: +7-812-328-2822 (O.A.S.); +7-812-327-9827 (M.P.)
| | - Andrey Rumyantsev
- Department of Genetics and Biotechnology, Saint Petersburg State University, 199034 Saint Petersburg, Russia; (A.R.); (E.S.)
| | - Elena Sambuk
- Department of Genetics and Biotechnology, Saint Petersburg State University, 199034 Saint Petersburg, Russia; (A.R.); (E.S.)
| | - Marina Padkina
- Department of Genetics and Biotechnology, Saint Petersburg State University, 199034 Saint Petersburg, Russia; (A.R.); (E.S.)
- Correspondence: (O.A.S.); (M.P.); Tel.: +7-812-328-2822 (O.A.S.); +7-812-327-9827 (M.P.)
| |
Collapse
|
37
|
Hieronymus R, Müller S. Towards Higher Complexity in the RNA World: Hairpin Ribozyme Supported RNA Recombination. CHEMSYSTEMSCHEM 2021. [DOI: 10.1002/syst.202100003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Robert Hieronymus
- Institute for Biochemistry University Greifswald Felix-Hausdorff-Str. 4 17487 Greifswald Germany
| | - Sabine Müller
- Institute for Biochemistry University Greifswald Felix-Hausdorff-Str. 4 17487 Greifswald Germany
| |
Collapse
|
38
|
Dagenais P, Legault P. In Vitro Selection of Varkud Satellite Ribozyme Variants that Cleave a Modified Stem-Loop Substrate. Methods Mol Biol 2021; 2167:61-77. [PMID: 32712915 DOI: 10.1007/978-1-0716-0716-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In vitro selection is an established approach to create artificial ribozymes with defined activities or to modify the properties of naturally occurring ribozymes. For the Varkud satellite ribozyme of Neurospora, an in vitro selection protocol based on its phosphodiester bond cleavage activity has not been previously reported. Here, we describe a simple protocol for cleavage-based in vitro selection that we recently used to identify variants of the Varkud satellite ribozyme able to target and cleave a non-natural stem-loop substrate derived from the HIV-1 TAR RNA. It allows quick selection of active ribozyme variants from the transcription reaction based on the size of the self-cleavage product without the need for RNA labeling. This results in a streamlined procedure that is easily adaptable to engineer ribozymes with new activities.
Collapse
Affiliation(s)
- Pierre Dagenais
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montreal, QC, Canada
| | - Pascale Legault
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|
39
|
Tickner ZJ, Zhong G, Sheptack KR, Farzan M. Selection of High-Affinity RNA Aptamers That Distinguish between Doxycycline and Tetracycline. Biochemistry 2020; 59:3473-3486. [PMID: 32857495 DOI: 10.1021/acs.biochem.0c00586] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Oligonucleotide aptamers are found in prokaryotes and eukaryotes, and they can be selected from large synthetic libraries to bind protein or small-molecule ligands with high affinities and specificities. Aptamers can function as biosensors, as protein recognition elements, and as components of riboswitches allowing ligand-dependent control of gene expression. One of the best studied laboratory-selected aptamers binds the antibiotic tetracycline, but it binds with a much lower affinity to the closely related but more bioavailable antibiotic doxycycline. Here we report enrichment of doxycycline binding aptamers from a selectively randomized library of tetracycline aptamer variants over four selection rounds. Selected aptamers distinguish between doxycycline, which they bind with dissociation constants of approximately 7 nM, and tetracycline, which they bind undetectably. They thus function as orthogonal complements to the original tetracycline aptamer. Unexpectedly, doxycycline aptamers adopt a conformation distinct from that of the tetracycline aptamer and depend on constant regions originally installed as primer binding sites. We show that the fluorescence emission intensity of doxycycline increases upon aptamer binding, permitting their use as biosensors. This new class of aptamers can be used in multiple contexts where doxycycline detection, or doxycycline-mediated regulation, is necessary.
Collapse
Affiliation(s)
- Zachary J Tickner
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Guocai Zhong
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Kelly R Sheptack
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Michael Farzan
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida 33458, United States
| |
Collapse
|
40
|
Abstract
Biocatalysis is dominated by protein enzymes, and only a few classes of ribozymes are known to contribute to the task of promoting biochemical transformations. The RNA World theory encompasses the notion that earlier forms of life made use of a much greater diversity of ribozymes and other functional RNAs to guide complex metabolic states long before proteins had emerged in evolution. In recent years, the discoveries of various classes of ribozymes, riboswitches, and other noncoding RNAs in bacteria have provided additional support for the hypothesis that RNA molecules indeed have the catalytic competence to promote diverse chemical reactions without the aid of protein enzymes. Herein, some of the most striking observations made from examinations of natural riboswitches that bind small ligands are highlighted and used as a basis to imagine the characteristics and functions of long-extinct ribozymes from the RNA World.
Collapse
Affiliation(s)
- Ronald R Breaker
- Department of Molecular, Cellular and Developmental Biology, Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Department of Chemistry, Yale University, 260 Whitney Avenue, New Haven, Connecticut 06520, United States
| |
Collapse
|
41
|
Pu Q, Zhou S, Huang X, Yuan Y, Du F, Dong J, Chen G, Cui X, Tang Z. Intracellular Selection of Theophylline-Sensitive Hammerhead Aptazyme. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 20:400-408. [PMID: 32244167 PMCID: PMC7118274 DOI: 10.1016/j.omtn.2020.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 02/14/2020] [Accepted: 03/10/2020] [Indexed: 12/14/2022]
Abstract
Hammerhead ribozyme-based aptazyme (HHAz), inheriting the advantages of small size and high efficiency from the RNA-cleaving ribozyme and the specific recognition ability of aptamers to specific targets, exhibits the huge potential to be a transgene expression regulator. Herein, we report a selection strategy for HHAz by using a toxin protein IbsC as the reporter to offer a positive phenotype, thus realizing an easy-operating, time- and labor-saving selection of HHAz variants with desired properties. Based on this strategy, we obtained a new HHAz (TAP-1), which could react sensitively toward the extracellular regulatory molecule, theophylline, both in prokaryotic and eukaryotic systems. With fluorescent protein reporter, the intracellular switching efficiencies of TAP-1 and other reported theophylline-dependent HHAzs has been quantitatively evaluated, showing that TAP-1 not only exhibits the best downregulating ability at high concentration of theophylline but also maintains high activity with 0.1 mM theophylline, which is a safe concentration in the human body.
Collapse
Affiliation(s)
- Qinlin Pu
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu 610041, P.R. China; University of Chinese Academy of Sciences, Beijing 10049, P.R. China
| | - Shan Zhou
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu 610041, P.R. China; University of Chinese Academy of Sciences, Beijing 10049, P.R. China
| | - Xin Huang
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu 610041, P.R. China
| | - Yi Yuan
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu 610041, P.R. China
| | - Feng Du
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu 610041, P.R. China
| | - Juan Dong
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu 610041, P.R. China
| | - Gangyi Chen
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu 610041, P.R. China
| | - Xin Cui
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu 610041, P.R. China
| | - Zhuo Tang
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu 610041, P.R. China.
| |
Collapse
|
42
|
Nakama T, Takezawa Y, Sasaki D, Shionoya M. Allosteric Regulation of DNAzyme Activities through Intrastrand Transformation Induced by Cu(II)-Mediated Artificial Base Pairing. J Am Chem Soc 2020; 142:10153-10162. [PMID: 32396728 DOI: 10.1021/jacs.0c03129] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Allosteric regulation is gaining increasing attention as a basis for the production of stimuli-responsive materials in many research areas including DNA nanotechnology. We expected that metal-mediated artificial base pairs, consisting of ligand-type nucleotides and a bridging metal ion, could serve as allosteric units that regulate the function of DNA molecules. In this study, we established a rational design strategy for developing CuII-responsive allosteric DNAzymes by incorporating artificial hydroxypyridone ligand-type nucleotides (H) that form a CuII-mediated base pair (H-CuII-H). We devised a new enzymatic method using a standard DNA polymerase and a ligase to prepare DNA strands containing H nucleotides. Previously reported DNAzymes were modified by introducing a H-H pair into the stem region, and the stem-loop sequences were altered so that the structure becomes catalytically inactive in the absence of CuII ions. The formation of a H-CuII-H base pair triggers intrastrand transformation from the inactive to the active structure, enabling allosteric regulation of the DNAzyme activity in response to CuII ions. The activity of the H-modified DNAzyme was reversibly switched by the addition and removal of CuII ions under isothermal conditions. Similarly, by incorporating a H-CuII-H pair into an in vitro-selected AgI-dependent DNAzyme, we have developed a DNAzyme that exhibits an AND logic-gate response to CuII and AgI ions. The rational design strategy and the easy enzymatic synthetic method presented here provide a versatile way to develop a variety of metal-responsive allosteric DNA materials, including molecular machines and logic circuits, based on metal-mediated artificial base pairing.
Collapse
Affiliation(s)
- Takahiro Nakama
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yusuke Takezawa
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Daisuke Sasaki
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Mitsuhiko Shionoya
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
43
|
Wrist A, Sun W, Summers RM. The Theophylline Aptamer: 25 Years as an Important Tool in Cellular Engineering Research. ACS Synth Biol 2020; 9:682-697. [PMID: 32142605 DOI: 10.1021/acssynbio.9b00475] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The theophylline aptamer was isolated from an oligonucleotide library in 1994. Since that time, the aptamer has found wide utility, particularly in synthetic biology, cellular engineering, and diagnostic applications. The primary application of the theophylline aptamer is in the construction and characterization of synthetic riboswitches for regulation of gene expression. These riboswitches have been used to control cellular motility, regulate carbon metabolism, construct logic gates, screen for mutant enzymes, and control apoptosis. Other applications of the theophylline aptamer in cellular engineering include regulation of RNA interference and genome editing through CRISPR systems. Here we describe the uses of the theophylline aptamer for cellular engineering over the past 25 years. In so doing, we also highlight important synthetic biology applications to control gene expression in a ligand-dependent manner.
Collapse
Affiliation(s)
- Alexandra Wrist
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Wanqi Sun
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Ryan M. Summers
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| |
Collapse
|
44
|
A reversible RNA on-switch that controls gene expression of AAV-delivered therapeutics in vivo. Nat Biotechnol 2019; 38:169-175. [PMID: 31873216 PMCID: PMC7008088 DOI: 10.1038/s41587-019-0357-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 11/11/2019] [Indexed: 11/08/2022]
Abstract
Widespread use of gene therapy technologies is limited in part by the lack of small genetic switches with wide dynamic ranges that control transgene expression without the requirement of additional protein components1-5. In this study, we engineered a class of type III hammerhead ribozymes to develop RNA switches that are highly efficient at cis-cleaving mammalian mRNAs and showed that they can be tightly regulated by a steric-blocking antisense oligonucleotide. Our variant ribozymes enabled in vivo regulation of adeno-associated virus (AAV)-delivered transgenes, allowing dose-dependent and up to 223-fold regulation of protein expression over at least 43 weeks. To test the potential of these reversible on-switches in gene therapy for anemia of chronic kidney disease6, we demonstrated regulated expression of physiological levels of erythropoietin with a well-tolerated dose of the inducer oligonucleotide. These small, modular and efficient RNA switches may improve the safety and efficacy of gene therapies and broaden their use.
Collapse
|
45
|
Ning Z, Zheng Y, Pan D, Zhang Y, Shen Y. Coupling aptazyme and catalytic hairpin assembly for cascaded dual signal amplified electrochemiluminescence biosensing. Biosens Bioelectron 2019; 150:111945. [PMID: 31818762 DOI: 10.1016/j.bios.2019.111945] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/22/2019] [Accepted: 11/30/2019] [Indexed: 01/22/2023]
Abstract
Developing reliable and sensitive detection methods for adenosine triphosphate (ATP) is vital for both clinical diagnosis and food safety. In this work, by coupling aptazyme- and catalytic hairpin assembly (CHA)-based signal amplification and electrochemiluminescence (ECL), an ultrasensitive biosensor for sensing ATP was fabricated using Ru(bpy)32+-doped silica nanoparticles (RuSiO2) as ECL probes and a ferrocene-functionalized hairpin DNA (hairpin-Fc) as quencher. The aptazyme-triggered cleavage of the DNA substrate and the CHA reaction both led to the circular release of trigger DNA, resulting in a significant dual signal amplification, with unprecedented enhancement up to 940-fold. Moreover, the bioconjugation of the DNA substrate with Au@Fe3O4 facilitated the separation and purification of the released trigger DNA, and effectively reduced the background signal. As a result, the as-prepared ECL biosensor exhibited a much lower detection limit of 0.054 pM for ATP, compared to those in previous reports, and showed high reliability for ATP detection in both spiked serum samples and Staphylococcus aureus. This work offers a new perspective for designing nucleic acid-based signal amplification for detecting ATP in bacterial analysis and clinical diagnosis.
Collapse
Affiliation(s)
- Zhenqiang Ning
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China
| | - Yongjun Zheng
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China
| | - Deng Pan
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China
| | - Yuanjian Zhang
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China
| | - Yanfei Shen
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
46
|
Catalytic RNA, ribozyme, and its applications in synthetic biology. Biotechnol Adv 2019; 37:107452. [DOI: 10.1016/j.biotechadv.2019.107452] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 12/21/2022]
|
47
|
Mao X, Li Q, Zuo X, Fan C. Catalytic Nucleic Acids for Bioanalysis. ACS APPLIED BIO MATERIALS 2019; 3:2674-2685. [PMID: 35025402 DOI: 10.1021/acsabm.9b00928] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xiuhai Mao
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Chunhai Fan
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
48
|
Aptazymes: Expanding the Specificity of Natural Catalytic Nucleic Acids by Application of In Vitro Selected Oligonucleotides. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2019; 170:107-119. [PMID: 30847536 DOI: 10.1007/10_2019_92] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Aptazymes are synthetic molecules composed of an aptamer domain and a catalytic active nucleic acid unit, which may be a ribozyme or a DNAzyme. In these constructs the aptamer domain serves as a molecular switch that can regulate the catalytic activity of the ribozyme or DNAzyme subunit. This regulation is triggered by binding of the aptamers target molecule, which causes significant structural changes in the aptamer and thus in the entire aptazyme. Therefore, aptazymes function similar to allosteric enzymes, whose catalytic activity is regulated by binding of ligands (effectors) to allosteric sites due to alteration of the three-dimensional structure of the active site of the enzyme. In case of aptazymes, the allosteric site is composed of an aptamer. Aptazymes can be designed for different applications and have already been used in analytical assays as well as for the regulation of gene expression.
Collapse
|
49
|
Dohno C, Nakatani K. Molecular Glue for RNA: Regulating RNA Structure and Function through Synthetic RNA Binding Molecules. Chembiochem 2019; 20:2903-2910. [DOI: 10.1002/cbic.201900223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Chikara Dohno
- Department of Regulatory Bioorganic ChemistryThe Institute of Scientific and Industrial ResearchOsaka University 8-1 Mihogaoka Ibaraki, Osaka 567-0047 Japan
| | - Kazuhiko Nakatani
- Department of Regulatory Bioorganic ChemistryThe Institute of Scientific and Industrial ResearchOsaka University 8-1 Mihogaoka Ibaraki, Osaka 567-0047 Japan
| |
Collapse
|
50
|
Hajiahmadi Z, Movahedi A, Wei H, Li D, Orooji Y, Ruan H, Zhuge Q. Strategies to Increase On-Target and Reduce Off-Target Effects of the CRISPR/Cas9 System in Plants. Int J Mol Sci 2019; 20:E3719. [PMID: 31366028 PMCID: PMC6696359 DOI: 10.3390/ijms20153719] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/21/2019] [Accepted: 07/27/2019] [Indexed: 12/20/2022] Open
Abstract
The CRISPR/Cas9 system (clustered regularly interspaced short palindromic repeat-associated protein 9) is a powerful genome-editing tool in animals, plants, and humans. This system has some advantages, such as a high on-target mutation rate (targeting efficiency), less cost, simplicity, and high-efficiency multiplex loci editing, over conventional genome editing tools, including meganucleases, transcription activator-like effector nucleases (TALENs), and zinc finger nucleases (ZFNs). One of the crucial shortcomings of this system is unwanted mutations at off-target sites. We summarize and discuss different approaches, such as dCas9 and Cas9 paired nickase, to decrease the off-target effects in plants. According to studies, the most effective method to reduce unintended mutations is the use of ligand-dependent ribozymes called aptazymes. The single guide RNA (sgRNA)/ligand-dependent aptazyme strategy has helped researchers avoid unwanted mutations in human cells and can be used in plants as an alternative method to dramatically decrease the frequency of off-target mutations. We hope our concept provides a new, simple, and fast gene transformation and genome-editing approach, with advantages including reduced time and energy consumption, the avoidance of unwanted mutations, increased frequency of on-target changes, and no need for external forces or expensive equipment.
Collapse
Affiliation(s)
- Zahra Hajiahmadi
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
- Department of Biotechnology, Faculty of Agricultural Sciences, University of Guilan, Rasht 4199613776, Iran
| | - Ali Movahedi
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing 210037, China.
| | - Hui Wei
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| | - Dawei Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| | - Yasin Orooji
- College of Materials Science and Engineering, Nanjing Forestry University, No. 159, Longpan Road, Nanjing 210037, China
| | - Honghua Ruan
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| | - Qiang Zhuge
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|