1
|
Li J, Qin Q, Li YX, Leng XF, Wu YJ. Tri-ortho-cresyl phosphate exposure leads to low egg production and poor eggshell quality via disrupting follicular development and shell gland function in laying hens. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112771. [PMID: 34530258 DOI: 10.1016/j.ecoenv.2021.112771] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Tri-ortho-cresyl phosphate (TOCP) has been used commercially as a plasticizer and a flame retardant, which has been reported to cause multiple toxicities in humans and other animals. However, the effect of TOCP on female reproductive system is still unclear. The aim of this investigation was to evaluate the reproductive toxicity of TOCP in female avian and investigate its molecular mechanism. In the current study, 50 adult hens were given a single oral dose of TOCP (750 mg/kg). Egg laid by the hens were harvested and counted. Egg quality is assessed by determining the shell strength and thickness. Samples of ovary, shell gland, and serum were collected on day 0, 2, 7, and 21 after the administration. The morphological and pathological changes in tissues were examined. Cell death, follicular development, and steroidogenesis were determined to assess the toxicity of TOCP on laying hens. The results showed that egg production, egg weight, and eggshell strength significantly decreased after TOCP exposure. The calcium levels in serum and eggshell decreased and the expression levels of the eggshell formation-related genes calbindin-D28k (CaBP-D28k) and carbonic anhydrase 2 (CA2) were downregulated. The inhibitory effects of TOCP on follicular development and steroidogenesis were observed with changes in the levels of the related proteins such as forkhead box O1 (FoxO1) and mothers against decapentaplegic homolog 2/3 (Smad2/3). Cell death was identified, which might lead to follicular development disorder. Taken together, TOCP reduced the quantity and quality of the eggs laid by the hens through disrupting follicular development, steroidogenesis, and shell gland function.
Collapse
Affiliation(s)
- Jing Li
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qilian Qin
- Group of Insect Virology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yu-Xia Li
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xin-Fu Leng
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi-Jun Wu
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
2
|
Wang S, Liu H, Cheng B, Wu Q, Li L, Yang T, Hou N, Li T. Vitamin A supplementation ameliorates motor incoordination via modulating RORα in the cerebellum in a valproic acid-treated rat autism model with vitamin A deficiency. Neurotoxicology 2021; 85:90-98. [PMID: 33991534 DOI: 10.1016/j.neuro.2021.05.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 10/21/2022]
Abstract
Motor dysfunctions are common comorbidities among autism spectrum disorder (ASD) patients. Abnormal cerebellar development throughout critical periods may have an effect on motor functions and result in motor impairments. Vitamin A (VA) plays a crucial role in the developing process of the nervous system. The correlation of VA deficiency (VAD) and ASD with motor dysfunctions, however, is not clear. Therefore, we built rat models with different VA levels based on the valproic acid (VPA)-treated autism model. ASD rats with VAD showed aggravated motor coordination abnormalities, Purkinje cell loss and impaired dendritic arborization of Purkinje cells compared to ASD rats with normal VA levels (VA normal, VAN). Additionally, the expression levels of retinoid-related orphan receptor α (RORα) and retinoic acid receptor α (RARα) were lower in the cerebellum of ASD rats with VAD than in those of ASD rats with VAN. VA supplementation (VAS) effectively improved motor coordination and cerebellar Purkinje cell abnormalities in ASD rats with VAD. Furthermore, the results of chromatin immunoprecipitation (ChIP) assays confirmed that the enrichment of RARα was detected on the RORα promoter in the cerebellum and that VAS could upregulate the binding capacity of RARα for RORα promoters. These results showed that VAD in autism might result in cerebellar impairments and be a factor aggravating a subtype of ASD with motor comorbidities. The therapeutic effect of VAS on motor deficits and Purkinje neuron impairments in autism might be due to the regulation of RORα by RARα.
Collapse
Affiliation(s)
- Si Wang
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China; Chongqing Key Laboratory of Child Nutrition and Health, Chongqing, China
| | - Huan Liu
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China; Chongqing Key Laboratory of Child Nutrition and Health, Chongqing, China
| | - Boli Cheng
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China; Chongqing Key Laboratory of Child Nutrition and Health, Chongqing, China
| | - Qionghui Wu
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China; Chongqing Key Laboratory of Child Nutrition and Health, Chongqing, China
| | - Lisha Li
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China; Chongqing Key Laboratory of Child Nutrition and Health, Chongqing, China
| | - Ting Yang
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China; Chongqing Key Laboratory of Child Nutrition and Health, Chongqing, China
| | - Nali Hou
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China; Chongqing Key Laboratory of Child Nutrition and Health, Chongqing, China; Department of Child Health Care, Children's Hospital of Chongqing Medical University, Chongqing, China.
| | - Tingyu Li
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China; Chongqing Key Laboratory of Child Nutrition and Health, Chongqing, China.
| |
Collapse
|
3
|
Monzo HJ, Park TI, Montgomery JM, Faull RL, Dragunow M, Curtis MA. A method for generating high-yield enriched neuronal cultures from P19 embryonal carcinoma cells. J Neurosci Methods 2012; 204:87-103. [DOI: 10.1016/j.jneumeth.2011.11.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 11/04/2011] [Accepted: 11/04/2011] [Indexed: 10/15/2022]
|
4
|
McCaffery P, Koul O, Smith D, Napoli JL, Chen N, Ullman MD. Ethanol increases retinoic acid production in cerebellar astrocytes and in cerebellum. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2004; 153:233-41. [PMID: 15527891 DOI: 10.1016/j.devbrainres.2004.09.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/17/2004] [Indexed: 11/26/2022]
Abstract
Several characteristics of fetal alcohol syndrome (FAS) are similar to the teratogenic effects of retinoic acid (RA) exposure. It has been suggested that FAS may result from ethanol-induced alteration in endogenous RA synthesis, leading to abnormal embryonic concentrations of this morphogen. We examined whether ethanol may interfere with RA synthesis in the postnatal cerebellum, as a region of the developing CNS particularly vulnerable to both ethanol and RA teratogenesis. It was found that astrocytes are the predominant source of postnatal RA synthesis in the cerebellum. They express both retinaldehyde dehydrogenase 1 and 2. In vitro cytosolic preparations of astrocytes, as well as live cell preparations, have an increased capacity to synthesize RA in the presence of ethanol. A mechanism by which ethanol could stimulate RA synthesis is via the ethanol-activated short-chain retinol dehydrogenases, which we show to be present in the postnatal cerebellum. To determine whether ethanol stimulated RA synthesis in vivo, a sensitive and highly specific HPLC/MSn technique was used to measure cerebellar RA after administration of ethanol to postnatal day 4 rat pups. Cerebellar RA levels climbed significantly after such treatment. These results suggest that the cerebellar pathology exerted by ethanol may occur, at least in part, through increased production of RA.
Collapse
Affiliation(s)
- Peter McCaffery
- University of Massachusetts Medical School Shriver Center, Waltham, MA, USA
| | | | | | | | | | | |
Collapse
|
5
|
Bastianelli E. Distribution of calcium-binding proteins in the cerebellum. CEREBELLUM (LONDON, ENGLAND) 2003; 2:242-62. [PMID: 14964684 DOI: 10.1080/14734220310022289] [Citation(s) in RCA: 201] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Calcium plays a fundamental role in the cell as second messenger and is principally regulated by calcium-binding proteins. Although these proteins share in common their ability to bind calcium, they belong to different subfamilies. They present, in general, specific developmental and distribution patterns. Most Purkinje cells express the fast and slow calcium buffer proteins calbindin-D28k and parvalbumin, whereas basket, stellate and Golgi cells the slow buffer parvalbumin only. They are, almost all, calretinin negative. Granule, Lugaro and unipolar brush cells present an opposite immunoreactivity profile, most of them being calretinin positive while lacking calbindin-D28k and parvalbumin. The developmental pattern of appearance of these proteins seems to follow the maturation of neurons. Calbindin-D28k appears early, shortly after cessation of mitosis when neurons become ready to start migration and differentiation while parvalbumin is expressed later in parallel with an increase in neuronal activity. The other proteins are generally detected later. During development, some of these proteins, like calretinin, are transiently expressed in specific cellular subpopulations. The function of these proteins is not fully understood, although strong evidence supports a prominent role in physiological settings with altered calcium concentrations. These proteins regulate and are regulated by intracellular calcium level. For example, they may directly or indirectly enable sensitization or desensitization of calcium channels, and may further block calcium entry into the cells, like the calcium-sensor proteins, that have been shown to be potent and specific modulators of ion channels, which may allow for feedback control of current function and hence signaling. The absence of calcium buffer proteins results in marked abnormalities in cell firing; with alterations in simple and complex spikes or transformation of depressing synapses into facilitating synapses. Calcium-binding protein implication in resistance to degeneration is still a controversial issue. Neurons rich in calcium-binding proteins, especially calbindin-D28k and parvalbumin, seem to be relatively resistant to degeneration in a variety of acute and chronic disorders. However other data support that an absence of calcium-binding proteins may also have a neuroprotective effect. It is not unlikely that neurons may face a dual action mechanism where a decrease in calcium-binding proteins has a first short-term beneficial effect while it becomes detrimental for the cell over the long term.
Collapse
|