1
|
Shi M, He Y, Zhong X, Huang H, Hua J, Wang S, Xu J, Zhao S, Liang H, Huang Y. A Smart mRNA-Initiated Theranostic Multi-shRNA Nanofactory for Precise and Efficient Cancer Gene Therapy. Adv Healthc Mater 2025; 14:e2404159. [PMID: 39790038 DOI: 10.1002/adhm.202404159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/03/2025] [Indexed: 01/12/2025]
Abstract
Despite the significant potential of short hairpin RNA (shRNA)-mediated gene therapy for various diseases, the clinical success of cancer treatment remains poor, partly because of low selectivity and low efficiency. In this study, an mRNA-initiated autonomous multi-shRNA nanofactory (RNF@CM) is designed for in vivo amplification imaging and precise cancer treatment. The RNF@CM consists of a gold nanoparticle core, an interlayer of two types of three-stranded DNA/RNA hybrid probes, one of which is bound to aptamer-inhibited DNA polymerases, and an outer layer of the cancer cell membrane. After the specific delivery of RNF@CM into target cancer cells, an intracellular tumour-related mRNA target can initiate the RNF@CM with a circular strand-displacement polymerisation reaction, resulting in the release of significantly amplified fluorescence and continuous production of three types of shRNAs. The RNF@CM effectively distinguished cancer cells from normal cells, exclusively produced multiple shRNAs in response to a specific mRNA target in cancer cells, accurately diagnosed tumours in vivo, and significantly inhibited tumour growth with negligible toxicity, expanding the toolbox for on-demand gene delivery and precision theranostics.
Collapse
Affiliation(s)
- Ming Shi
- Department of Chemistry and Pharmacy, Guilin Normal College, Guilin, 541004, China
| | - Yifang He
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Xiaohong Zhong
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Huakui Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Jing Hua
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Shulong Wang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin, 537000, China
| | - Jiayao Xu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Shulin Zhao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Yong Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| |
Collapse
|
2
|
Dinneen E, Silva-García CG. Universal Single Copy Knock-In System in Caenorhabditis elegans : One Plasmid to Target All Chromosomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.06.627295. [PMID: 39713286 PMCID: PMC11661065 DOI: 10.1101/2024.12.06.627295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Successful transgenesis in model organisms has dramatically helped us understand gene function, regulation, genetic networks, and potential applications. Here, we introduce the universal single-copy knock-in system (Universal SKI System or U-SKI), designed for inserting any transgene by CRISPR/Cas9 in the Caenorhabditis elegans genome. The Universal SKI System takes advantage of a plasmid (pSKI), which can also be used for extrachromosomal arrays, to facilitate the insertion of a transgene at specific safe harbor loci on each autosomal chromosome. The pSKI plasmid contains multiple restriction sites for easy cloning and serves as a CRISPR/Cas9-based insertion repair template because it has two synthetic and long homology arms that recombine with the SKI cassettes. This system also uses a single crRNA guide, which acts as a Co-CRISPR enrichment marker. Overall, the Universal SKI System is highly flexible; with the same Universal SKI cassette on each autosome, researchers can select the insertion site and streamline tracking while reducing the complexity of expressing single-copy transgenes in C. elegans .
Collapse
|
3
|
Spada M, Pugliesi C, Fambrini M, Pecchia S. Challenges and Opportunities Arising from Host- Botrytis cinerea Interactions to Outline Novel and Sustainable Control Strategies: The Key Role of RNA Interference. Int J Mol Sci 2024; 25:6798. [PMID: 38928507 PMCID: PMC11203536 DOI: 10.3390/ijms25126798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
The necrotrophic plant pathogenic fungus Botrytis cinerea (Pers., 1794), the causative agent of gray mold disease, causes significant losses in agricultural production. Control of this fungal pathogen is quite difficult due to its wide host range and environmental persistence. Currently, the management of the disease is still mainly based on chemicals, which can have harmful effects not only on the environment and on human health but also because they favor the development of strains resistant to fungicides. The flexibility and plasticity of B. cinerea in challenging plant defense mechanisms and its ability to evolve strategies to escape chemicals require the development of new control strategies for successful disease management. In this review, some aspects of the host-pathogen interactions from which novel and sustainable control strategies could be developed (e.g., signaling pathways, molecules involved in plant immune mechanisms, hormones, post-transcriptional gene silencing) were analyzed. New biotechnological tools based on the use of RNA interference (RNAi) are emerging in the crop protection scenario as versatile, sustainable, effective, and environmentally friendly alternatives to the use of chemicals. RNAi-based fungicides are expected to be approved soon, although they will face several challenges before reaching the market.
Collapse
Affiliation(s)
- Maria Spada
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Claudio Pugliesi
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Marco Fambrini
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Susanna Pecchia
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| |
Collapse
|
4
|
Koo J, Gurusamy D, Palli SR. Inefficient uptake of small interfering RNAs is responsible for their inability to trigger RNA interference in Colorado potato beetle cells. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 114:1-12. [PMID: 37452750 PMCID: PMC10528746 DOI: 10.1002/arch.22036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/29/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
There has been limited success in the usage of exogenous small interference RNA (siRNA) or small hairpin RNA (shRNA) to trigger RNA interference (RNAi) in insects. Instead, long double-stranded RNAs (dsRNA) are used to induce knockdown of target genes in insects. Here, we compared the potency of si/sh RNAs and dsRNA in Colorado potato beetle (CPB) cells. CPB cells showed highly efficient RNAi response to dsRNA. However, si/sh RNAs were inefficient in triggering RNAi in CPB cells. Confocal microscopy observations of Cy3 labeled-si/sh RNA cellular uptake revealed reduced si/sh RNA uptake compared to dsRNA. si/sh RNAs were stable in the conditioned media of CPB cells. Although in a small amount, when internalized by CPB cells, the si/sh RNAs were processed by the Dicer enzyme. Lipid-mediated transfection and chimeric dsRNA approaches were used to improve the delivery of si/sh RNAs. Our results suggest that the uptake of si/sh RNAs is inefficient in CPB cells, resulting in ineffective RNAi response. However, with the help of effective delivery methods, si/sh RNA could be a useful option for developing target-specific RNAi-mediated biopesticides.
Collapse
Affiliation(s)
- Jinmo Koo
- Department of Entomology, College of Agriculture, University of Kentucky, Lexington, KY 40546, USA
| | - Dhandapani Gurusamy
- Department of Entomology, College of Agriculture, University of Kentucky, Lexington, KY 40546, USA
- Current address, Department of Botany, Kongunadu Arts and Science College (Autonomous), Bharathiar University, Coimbatore, India
| | - Subba Reddy Palli
- Department of Entomology, College of Agriculture, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
5
|
Ronai I. How molecular techniques are developed from natural systems. Genetics 2023; 224:iyad067. [PMID: 37184565 PMCID: PMC10324945 DOI: 10.1093/genetics/iyad067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/10/2023] [Indexed: 05/16/2023] Open
Abstract
A striking characteristic of the molecular techniques of genetics is that they are derived from natural occurring systems. RNA interference, for example, utilizes a mechanism that evolved in eukaryotes to destroy foreign nucleic acid. Other case studies I highlight are restriction enzymes, DNA sequencing, polymerase chain reaction, gene targeting, fluorescent proteins (such as, green fluorescent protein), induced pluripotent stem cells, and clustered regularly interspaced short palindromic repeats-CRISPR associated 9. The natural systems' strategy for technique development means that biologists utilize the activity of a mechanism's effector (protein or RNA) and exploit biological specificity (protein or nucleic acid can cause precise reactions). I also argue that the developmental trajectory of novel molecular techniques, such as RNA interference, has 4 characteristic phases. The first phase is discovery of a biological phenomenon. The second phase is identification of the biological mechanism's trigger(s): the effector and biological specificity. The third phase is the application of the trigger(s) as a technique. The final phase is the maturation and refinement of the technique. Developing new molecular techniques from nature is crucial for future genetic research.
Collapse
Affiliation(s)
- Isobel Ronai
- Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney 2006, Australia
- Department of Organismic and Evolutionary Biology, Harvard University
| |
Collapse
|
6
|
Emission of floral volatiles is facilitated by cell-wall non-specific lipid transfer proteins. Nat Commun 2023; 14:330. [PMID: 36658137 PMCID: PMC9852552 DOI: 10.1038/s41467-023-36027-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 01/13/2023] [Indexed: 01/20/2023] Open
Abstract
For volatile organic compounds (VOCs) to be released from the plant cell into the atmosphere, they have to cross the plasma membrane, the cell wall, and the cuticle. However, how these hydrophobic compounds cross the hydrophilic cell wall is largely unknown. Using biochemical and reverse-genetic approaches combined with mathematical simulation, we show that cell-wall localized non-specific lipid transfer proteins (nsLTPs) facilitate VOC emission. Out of three highly expressed nsLTPs in petunia petals, which emit high levels of phenylpropanoid/benzenoid compounds, only PhnsLTP3 contributes to the VOC export across the cell wall to the cuticle. A decrease in PhnsLTP3 expression reduces volatile emission and leads to VOC redistribution with less VOCs reaching the cuticle without affecting their total pools. This intracellular build-up of VOCs lowers their biosynthesis by feedback downregulation of phenylalanine precursor supply to prevent self-intoxication. Overall, these results demonstrate that nsLTPs are intrinsic members of the VOC emission network, which facilitate VOC diffusion across the cell wall.
Collapse
|
7
|
Howard JD, Beghyn M, Dewulf N, De Vos Y, Philips A, Portwood D, Kilby PM, Oliver D, Maddelein W, Brown S, Dickman MJ. Chemically-modified dsRNA induces RNAi effects in insects in vitro and in vivo: A potential new tool for improving RNA-based plant protection. J Biol Chem 2022; 298:102311. [PMID: 35921898 PMCID: PMC9478931 DOI: 10.1016/j.jbc.2022.102311] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 11/28/2022] Open
Abstract
Global agriculture loses over $100 billion of produce annually to crop pests such as insects. Many of these crop pests either are not currently controlled by artificial means or have developed resistance against chemical pesticides. Long dsRNAs are capable of inducing RNAi in insects and are emerging as novel, highly selective alternatives for sustainable insect management strategies. However, there are significant challenges associated with RNAi efficacy in insects. In this study, we synthesized a range of chemically modified long dsRNAs in an approach to improve nuclease resistance and RNAi efficacy in insects. Our results showed that dsRNAs containing phosphorothioate modifications demonstrated increased resistance to southern green stink bug saliva nucleases. Phosphorothioate-modified and 2′-fluoro-modified dsRNA also demonstrated increased resistance to degradation by soil nucleases and increased RNAi efficacy in Drosophila melanogaster cell cultures. In live insects, we found chemically modified long dsRNAs successfully resulted in mortality in both stink bug and corn rootworm. These results provide further mechanistic insight into the dependence of RNAi efficacy on nucleotide modifications in the sense or antisense strand of the dsRNA in insects and demonstrate for the first time that RNAi can successfully be triggered by chemically modified long dsRNAs in insect cells or live insects.
Collapse
Affiliation(s)
- John D Howard
- Department of Chemical & Biological Engineering, University of Sheffield, Sheffield, United Kingdom
| | | | | | - Yves De Vos
- Syngenta, Ghent Innovation Center, Ghent, Belgium
| | | | - David Portwood
- Syngenta, Jealott's Hill International Research Centre, Bracknell, United Kingdom
| | - Peter M Kilby
- Syngenta, Jealott's Hill International Research Centre, Bracknell, United Kingdom
| | | | | | - Stephen Brown
- Sheffield RNAi Screening Facility, School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Mark J Dickman
- Department of Chemical & Biological Engineering, University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
8
|
Semple SL, Au SKW, Jacob RA, Mossman KL, DeWitte-Orr SJ. Discovery and Use of Long dsRNA Mediated RNA Interference to Stimulate Antiviral Protection in Interferon Competent Mammalian Cells. Front Immunol 2022; 13:859749. [PMID: 35603190 PMCID: PMC9120774 DOI: 10.3389/fimmu.2022.859749] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/04/2022] [Indexed: 12/20/2022] Open
Abstract
In invertebrate cells, RNA interference (RNAi) acts as a powerful immune defense that stimulates viral gene knockdown thereby preventing infection. With this pathway, virally produced long dsRNA (dsRNA) is cleaved into short interfering RNA (siRNA) by Dicer and loaded into the RNA-induced silencing complex (RISC) which can then destroy/disrupt complementary viral mRNA sequences. Comparatively, in mammalian cells it is believed that the type I interferon (IFN) pathway is the cornerstone of the innate antiviral response. In these cells, dsRNA acts as a potent inducer of the IFN system, which is dependent on dsRNA length, but not sequence, to stimulate an antiviral state. Although the cellular machinery for RNAi is intact and functioning in mammalian cells, its role to trigger an antiviral response using long dsRNA (dsRNAi) remains controversial. Here we show that dsRNAi is not only functional but has a significant antiviral effect in IFN competent mammalian cells. We found that pre-soaking mammalian cells with concentrations of sequence specific dsRNA too low to induce IFN production could significantly inhibit vesicular stomatitis virus expressing green fluorescent protein (VSV-GFP), and the human coronaviruses (CoV) HCoV-229E and SARS-CoV-2 replication. This phenomenon was shown to be dependent on dsRNA length, was comparable in effect to transfected siRNAs, and could knockdown multiple sequences at once. Additionally, knockout cell lines revealed that functional Dicer was required for viral inhibition, revealing that the RNAi pathway was indeed responsible. These results provide the first evidence that soaking with gene-specific long dsRNA can generate viral knockdown in mammalian cells. We believe that this novel discovery provides an explanation as to why the mammalian lineage retained its RNAi machinery and why vertebrate viruses have evolved methods to suppress RNAi. Furthermore, demonstrating RNAi below the threshold of IFN induction has uses as a novel therapeutic platform, both antiviral and gene targeting in nature.
Collapse
Affiliation(s)
- Shawna L. Semple
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Sarah K. W. Au
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Rajesh A. Jacob
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Karen L. Mossman
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Stephanie J. DeWitte-Orr
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, ON, Canada
- *Correspondence: Stephanie J. DeWitte-Orr,
| |
Collapse
|
9
|
Li Y, Bao Q, Yang S, Yang M, Mao C. Bionanoparticles in cancer imaging, diagnosis, and treatment. VIEW 2022. [DOI: 10.1002/viw.20200027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Yan Li
- Institute of Applied Bioresource Research College of Animal Science Zhejiang University Hangzhou Zhejiang China
| | - Qing Bao
- School of Materials Science and Engineering Zhejiang University Hangzhou Zhejiang China
| | - Shuxu Yang
- Department of Neurosurgery Sir Run Run Shaw Hospital School of Medicine Zhejiang University Hangzhou Zhejiang China
| | - Mingying Yang
- Institute of Applied Bioresource Research College of Animal Science Zhejiang University Hangzhou Zhejiang China
| | - Chuanbin Mao
- School of Materials Science and Engineering Zhejiang University Hangzhou Zhejiang China
- Department of Chemistry and Biochemistry Stephenson Life Science Research Center University of Oklahoma Norman Oklahoma USA
| |
Collapse
|
10
|
Fàbrega C, Aviñó A, Eritja R. Chemical Modifications in Nucleic Acids for Therapeutic and Diagnostic Applications. CHEM REC 2021; 22:e202100270. [DOI: 10.1002/tcr.202100270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/26/2021] [Accepted: 11/26/2021] [Indexed: 11/08/2022]
Affiliation(s)
- Carme Fàbrega
- Department of Surfactants and Nanobiotechnology Institute for Advanced Chemistry of Catalonia (IQAC) Spanish National Research Council (CSIC) Jordi Girona 18–26 E-08034 Barcelona Spain
- Networking Center on Bioengineering Biomaterials and Nanomedicine (CIBER-BBN) E-08034 Barcelona Spain
| | - Anna Aviñó
- Department of Surfactants and Nanobiotechnology Institute for Advanced Chemistry of Catalonia (IQAC) Spanish National Research Council (CSIC) Jordi Girona 18–26 E-08034 Barcelona Spain
- Networking Center on Bioengineering Biomaterials and Nanomedicine (CIBER-BBN) E-08034 Barcelona Spain
| | - Ramon Eritja
- Department of Surfactants and Nanobiotechnology Institute for Advanced Chemistry of Catalonia (IQAC) Spanish National Research Council (CSIC) Jordi Girona 18–26 E-08034 Barcelona Spain
- Networking Center on Bioengineering Biomaterials and Nanomedicine (CIBER-BBN) E-08034 Barcelona Spain
| |
Collapse
|
11
|
Joga MR, Mogilicherla K, Smagghe G, Roy A. RNA Interference-Based Forest Protection Products (FPPs) Against Wood-Boring Coleopterans: Hope or Hype? FRONTIERS IN PLANT SCIENCE 2021; 12:733608. [PMID: 34567044 PMCID: PMC8461336 DOI: 10.3389/fpls.2021.733608] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/17/2021] [Indexed: 06/01/2023]
Abstract
Forest insects are emerging in large extension in response to ongoing climatic changes, penetrating geographic barriers, utilizing novel hosts, and influencing many hectares of conifer forests worldwide. Current management strategies have been unable to keep pace with forest insect population outbreaks, and therefore novel and aggressive management strategies are urgently required to manage forest insects. RNA interference (RNAi), a Noble Prize-winning discovery, is an emerging approach that can be used for forest protection. The RNAi pathway is triggered by dsRNA molecules, which, in turn, silences genes and disrupts protein function, ultimately causing the death of the targeted insect. RNAi is very effective against pest insects; however, its proficiency varies significantly among insect species, tissues, and genes. The coleopteran forest insects are susceptible to RNAi and can be the initial target, but we lack practical means of delivery, particularly in systems with long-lived, endophagous insects such as the Emerald ash borer, Asian longhorn beetles, and bark beetles. The widespread use of RNAi in forest pest management has major challenges, including its efficiency, target gene selection, dsRNA design, lack of reliable dsRNA delivery methods, non-target and off-target effects, and potential resistance development in wood-boring pest populations. This review focuses on recent innovations in RNAi delivery that can be deployed against forest pests, such as cationic liposome-assisted (lipids), nanoparticle-enabled (polymers or peptides), symbiont-mediated (fungi, bacteria, and viruses), and plant-mediated deliveries (trunk injection, root absorption). Our findings guide future risk analysis of dsRNA-based forest protection products (FPPs) and risk assessment frameworks incorporating sequence complementarity-based analysis for off-target predictions. This review also points out barriers to further developing RNAi for forest pest management and suggests future directions of research that will build the future use of RNAi against wood-boring coleopterans.
Collapse
Affiliation(s)
- Mallikarjuna Reddy Joga
- Excellent Team for Mitigation, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Kanakachari Mogilicherla
- EVA.4 Unit, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Guy Smagghe
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Amit Roy
- Excellent Team for Mitigation, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
- EVA.4 Unit, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| |
Collapse
|
12
|
Pasquier C, Robichon A. Computational search of hybrid human/SARS-CoV-2 dsRNA reveals unique viral sequences that diverge from those of other coronavirus strains. Heliyon 2021; 7:e07284. [PMID: 34179538 PMCID: PMC8219292 DOI: 10.1016/j.heliyon.2021.e07284] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/14/2021] [Accepted: 06/08/2021] [Indexed: 12/16/2022] Open
Abstract
The role of the RNAi/Dicer/Ago system in degrading RNA viruses has been elusive in mammals in the past, which has prompted authors to think that interferon (IFN) synthesis is essential in this clade, relegating the RNAi defense strategy against viral infection as an accessory function. However, recent publications highlight the existence of abundant viral small interference and micro RNAs (VsiRNAs and VmiRNAs) in both cell-line and whole organism based experiments, indicating a contribution of these molecules in host responses and/or viral replication. We explore the theoretical possibility that RNAi triggered by SARS-CoV-2 might degrade some host transcripts in the opposite direction, although this hypothesis seems counterintuitive. The SARS-CoV-2 genome was therefore computationally searched for exact intrapairing within the viral RNA and exact hybrid pairing with the human transcriptome over a minimum of 20 bases in length. Minimal segments of 20-base lengths of SARS-CoV-2 RNA were found based on the theoretical matching with existing complementary strands in the human host transcriptome. Few human genes potentially annealing with SARS-CoV-2 RNA, including mitochondrial deubiquitinase USP30, the subunit of ubiquitin protein ligase complex FBXO21 and two long noncoding RNAs, were retrieved. The hypothesis that viral-originated RNAi might mediate degradation of host transcriptome messages was corroborated by published high throughput sequencing of RNA from infected tissues and cultured cells, clinical observation and phylogenetic comparative analysis, indicating a strong specificity of these SARS-CoV-2 hybrid pairing sequences for human genomes.
Collapse
|
13
|
Hamano K, Sato S, Arai M, Negishi Y, Nakamura T, Komatsu T, Naragino T, Suzuki S. Inhibition of lateral shoot formation by RNA interference and chemically induced mutations to genes expressed in the axillary meristem of Nicotiana tabacum L. BMC PLANT BIOLOGY 2021; 21:236. [PMID: 34044782 PMCID: PMC8157709 DOI: 10.1186/s12870-021-03008-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/05/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Lateral branches vigorously proliferate in tobacco after the topping of the inflorescence portions of stems for the maturation of the leaves to be harvested. Therefore, tobacco varieties with inhibited lateral shoot formation are highly desired by tobacco farmers. RESULTS Genetic inhibition of lateral shoot formation was attempted in tobacco. Two groups of genes were examined by RNA interference. The first group comprised homologs of the genes mediating lateral shoot formation in other plants, whereas the second group included genes highly expressed in axillary bud primordial stages. Although "primary" lateral shoots that grew after the plants were topped off when flower buds emerged were unaffected, the growth of "secondary" lateral shoots, which were detected on the abaxial side of the primary lateral shoot base, was significantly suppressed in the knock-down lines of NtLs, NtBl1, NtREV, VE7, and VE12. Chemically induced mutations to NtLs, NtBl1, and NtREV similarly inhibited the development of secondary and "tertiary" lateral shoots, but not primary lateral shoots. The mutations to NtLs and NtBl1 were incorporated into an elite variety by backcrossing. The agronomic characteristics of the backcross lines were examined in field trials conducted in commercial tobacco production regions. The lines were generally suitable for tobacco leaf production and may be useful as new tobacco varieties. CONCLUSION The suppressed expression of NtLs, NtBl1, NtREV, VE7, or VE12 inhibited the development of only the secondary and tertiary lateral shoots in tobacco. The mutant lines may benefit tobacco farmers by minimizing the work required to remove secondary and tertiary lateral shoots that emerge when farmers are harvesting leaves, which is a labor-intensive process.
Collapse
Affiliation(s)
- Kaori Hamano
- Leaf Tobacco Research Center, Japan Tobacco Inc., 1900 Idei, Oyama, Tochigi, 323-0808, Japan.
| | - Seiki Sato
- Leaf Tobacco Research Center, Japan Tobacco Inc., 1900 Idei, Oyama, Tochigi, 323-0808, Japan
| | - Masao Arai
- Leaf Tobacco Research Center, Japan Tobacco Inc., 1900 Idei, Oyama, Tochigi, 323-0808, Japan
| | - Yuta Negishi
- Leaf Tobacco Research Center, Japan Tobacco Inc., 1900 Idei, Oyama, Tochigi, 323-0808, Japan
| | - Takashi Nakamura
- Leaf Tobacco Research Center, Japan Tobacco Inc., 1900 Idei, Oyama, Tochigi, 323-0808, Japan
| | - Tomoyuki Komatsu
- Leaf Tobacco Research Center, Japan Tobacco Inc., 1900 Idei, Oyama, Tochigi, 323-0808, Japan
| | - Tsuyoshi Naragino
- Leaf Tobacco Research Center, Japan Tobacco Inc., 1900 Idei, Oyama, Tochigi, 323-0808, Japan
| | - Shoichi Suzuki
- Leaf Tobacco Research Center, Japan Tobacco Inc., 1900 Idei, Oyama, Tochigi, 323-0808, Japan
| |
Collapse
|
14
|
Jain RG, Robinson KE, Asgari S, Mitter N. Current scenario of RNAi-based hemipteran control. PEST MANAGEMENT SCIENCE 2021; 77:2188-2196. [PMID: 33099867 DOI: 10.1002/ps.6153] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/12/2020] [Accepted: 10/25/2020] [Indexed: 06/11/2023]
Abstract
RNA interference (RNAi) is an homology-dependent gene silencing mechanism that is a feasible and sustainable avenue for the management of hemipteran pests. Commercial implementation of RNAi-based control strategies is impeded by limited knowledge about the mechanism of double-stranded RNA (dsRNA) uptake, the function of core RNAi genes and systemic RNAi mechanisms in hemipteran insects. This review briefly summarizes recent progress in RNAi-based studies aimed to reduce insect populations, viral transmission and insecticide resistance focusing on hemipteran pests. This review explores RNAi-mediated management of hemipteran insects and offers potential solutions, including in silico approaches coupled with laboratory-based toxicity assays to circumvent potential off-target effects against beneficial organisms. We further explore ways to mitigate degradation of dsRNA in the environment and the insect such as stacking and formulation of dsRNA effectors. Finally, we conclude by considering nontransformative RNAi approaches, concatomerization of RNAi sequences and pyramiding RNAi with active constituents to reduce dsRNA production and application cost, and to improve broad-spectrum hemipteran pest control. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ritesh G Jain
- Queensland Alliance for Agriculture and Food Innovation, Centre for Horticultural Sciences, The University of Queensland, Brisbane, Australia
| | - Karl E Robinson
- Queensland Alliance for Agriculture and Food Innovation, Centre for Horticultural Sciences, The University of Queensland, Brisbane, Australia
| | - Sassan Asgari
- School of Biological Sciences, The University of Queensland, Brisbane, Australia
| | - Neena Mitter
- Queensland Alliance for Agriculture and Food Innovation, Centre for Horticultural Sciences, The University of Queensland, Brisbane, Australia
| |
Collapse
|
15
|
Vicencio J, Cerón J. A Living Organism in your CRISPR Toolbox: Caenorhabditis elegans Is a Rapid and Efficient Model for Developing CRISPR-Cas Technologies. CRISPR J 2021; 4:32-42. [PMID: 33538637 DOI: 10.1089/crispr.2020.0103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The Cas9 nuclease from Streptococcus pyogenes (SpCas9) is the most popular enzyme for CRISPR technologies. However, considering the wide diversity of microorganisms (discovered and still unknown), a massive number of CRISPR effectors are being and will be identified and characterized in the search of optimal Cas variants for each of the many applications of CRISPR. In this context, a versatile and efficient multicellular system for CRISPR editing such as Caenorhabditis elegans would be of great help in the development of these effectors. Here, we highlight the benefits of using C. elegans for the rapid evaluation of new CRISPR effectors, and for optimizing CRISPR efficiency in animals in several ways such as by modulating the balance between repair pathways, modifying chromatin accessibility, or controlling the expression and activity of nucleases and guide RNAs.
Collapse
Affiliation(s)
- Jeremy Vicencio
- Modeling human diseases in C. elegans Group, Genes, Disease and Therapy Program, Bellvitge Biomedical Research Institute-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Julián Cerón
- Modeling human diseases in C. elegans Group, Genes, Disease and Therapy Program, Bellvitge Biomedical Research Institute-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
16
|
Roles for the RNA polymerase III regulator MAFR-1 in regulating sperm quality in Caenorhabditis elegans. Sci Rep 2020; 10:19367. [PMID: 33168938 PMCID: PMC7652826 DOI: 10.1038/s41598-020-76423-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 10/27/2020] [Indexed: 11/08/2022] Open
Abstract
The negative regulator of RNA polymerase (pol) III mafr-1 has been shown to affect RNA pol III transcript abundance, lipid biosynthesis and storage, progeny output, and lifespan. We deleted mafr-1 from the Caenorhabditis elegans genome and found that animals lacking mafr-1 replicated many phenotypes from previous RNAi-based studies and discovered a new sperm-specific role. Utilizing a yeast two-hybrid assay, we discovered several novel interactors of MAFR-1 that are expressed in a sperm- and germline-enriched manner. In support of a role for MAFR-1 in the male germline, we found mafr-1 null males have smaller spermatids that are less capable in competition for fertilization; a phenotype that was dependent on RNA pol III activity. Restoration of MAFR-1 expression specifically in the germline rescued the spermatid-related phenotypes, suggesting a cell autonomous role for MAFR-1 in nematode male fertility. Based on the high degree of conservation of Maf1 activity across species, our study may inform similar roles for Maf1 and RNA pol III in mammalian male fertility.
Collapse
|
17
|
Environmental RNA interference in two-spotted spider mite, Tetranychus urticae, reveals dsRNA processing requirements for efficient RNAi response. Sci Rep 2020; 10:19126. [PMID: 33154461 PMCID: PMC7644771 DOI: 10.1038/s41598-020-75682-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 10/16/2020] [Indexed: 12/13/2022] Open
Abstract
Comprehensive understanding of pleiotropic roles of RNAi machinery highlighted the conserved chromosomal functions of RNA interference. The consequences of the evolutionary variation in the core RNAi pathway genes are mostly unknown, but may lead to the species-specific functions associated with gene silencing. The two-spotted spider mite, Tetranychus urticae, is a major polyphagous chelicerate pest capable of feeding on over 1100 plant species and developing resistance to pesticides used for its control. A well annotated genome, susceptibility to RNAi and economic importance, make T. urticae an excellent candidate for development of an RNAi protocol that enables high-throughput genetic screens and RNAi-based pest control. Here, we show that the length of the exogenous dsRNA critically determines its processivity and ability to induce RNAi in vivo. A combination of the long dsRNAs and the use of dye to trace the ingestion of dsRNA enabled the identification of genes involved in membrane transport and 26S proteasome degradation as sensitive RNAi targets. Our data demonstrate that environmental RNAi can be an efficient reverse genetics and pest control tool in T. urticae. In addition, the species-specific properties together with the variation in the components of the RNAi machinery make T. urticae a potent experimental system to study the evolution of RNAi pathways.
Collapse
|
18
|
PhenoMIP: High-Throughput Phenotyping of Diverse Caenorhabditis elegans Populations via Molecular Inversion Probes. G3-GENES GENOMES GENETICS 2020; 10:3977-3990. [PMID: 32868407 PMCID: PMC7642933 DOI: 10.1534/g3.120.401656] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Whether generated within a lab setting or isolated from the wild, variant alleles continue to be an important resource for decoding gene function in model organisms such as Caenorhabditis elegans. With advances in massively parallel sequencing, multiple whole-genome sequenced (WGS) strain collections are now available to the research community. The Million Mutation Project (MMP) for instance, analyzed 2007 N2-derived, mutagenized strains. Individually, each strain averages ∼400 single nucleotide variants amounting to ∼80 protein-coding variants. The effects of these variants, however, remain largely uncharacterized and querying the breadth of these strains for phenotypic changes requires a method amenable to rapid and sensitive high-throughput analysis. Here we present a pooled competitive fitness approach to quantitatively phenotype subpopulations of sequenced collections via molecular inversion probes (PhenoMIP). We phenotyped the relative fitness of 217 mutant strains on multiple food sources and classified these into five categories. We also demonstrate on a subset of these strains, that their fitness defects can be genetically mapped. Overall, our results suggest that approximately 80% of MMP mutant strains may have a decreased fitness relative to the lab reference, N2. The costs of generating this form of analysis through WGS methods would be prohibitive while PhenoMIP analysis in this manner is accomplished at less than one-tenth of projected WGS costs. We propose methods for applying PhenoMIP to a broad range of population selection experiments in a cost-efficient manner that would be useful to the community at large.
Collapse
|
19
|
Liao P, Ray S, Boachon B, Lynch JH, Deshpande A, McAdam S, Morgan JA, Dudareva N. Cuticle thickness affects dynamics of volatile emission from petunia flowers. Nat Chem Biol 2020; 17:138-145. [PMID: 33077978 DOI: 10.1038/s41589-020-00670-w] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 08/28/2020] [Accepted: 09/09/2020] [Indexed: 02/02/2023]
Abstract
The plant cuticle is the final barrier for volatile organic compounds (VOCs) to cross for release to the atmosphere, yet its role in the emission process is poorly understood. Here, using a combination of reverse-genetic and chemical approaches, we demonstrate that the cuticle imposes substantial resistance to VOC mass transfer, acting as a sink/concentrator for VOCs and hence protecting cells from the potentially toxic internal accumulation of these hydrophobic compounds. Reduction in cuticle thickness has differential effects on individual VOCs depending on their volatility, and leads to their internal cellular redistribution, a shift in mass transfer resistance sources and altered VOC synthesis. These results reveal that the cuticle is not simply a passive diffusion barrier for VOCs to cross, but plays the aforementioned complex roles in the emission process as an integral member of the overall VOC network.
Collapse
Affiliation(s)
- Pan Liao
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
| | - Shaunak Ray
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
| | - Benoît Boachon
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA.,BVpam FRE 3727, Université de Lyon, Université Jean Monnet Saint-Etienne, CNRS, Saint-Etienne, France
| | - Joseph H Lynch
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA.,Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, USA
| | - Arnav Deshpande
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
| | - Scott McAdam
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, USA.,Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
| | - John A Morgan
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA.,Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
| | - Natalia Dudareva
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA. .,Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, USA. .,Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
20
|
Small Interfering RNAs and RNA Therapeutics in Cardiovascular Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1229:369-381. [PMID: 32285425 DOI: 10.1007/978-981-15-1671-9_23] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ribonucleic acid (RNA) is being exploited and understood in its many aspects of function and structure for development of valuable tools in the therapeutics of various diseases such as cardiovascular etc. The expanded knowledge regarding function of RNA in the genomics and inside the cell has dramatically changed the therapeutic strategies in the past few years. RNA has become a spotlight of attention for developing novel therapeutic schemes and hence variety of therapeutic strategies is being coming into the picture that includes RNA interference, use of aptamers, role of microRNA (miRNA) that can alter the complex gene expression patterns. It is due to the fact that RNA offers various advantages in disease management as it can be edited and modified in its various forms such as secondary and tertiary structures. Although scientists are in process of manufacturing RNA-targeting therapies using variety of endogenous gene silencing regulators, Small interfering RNAs (Si RNAs), aptamers and microRNA for cardiovascular diseases yet the development of a novel, risk free therapeutic strategy is a major challenge and need of the hour in cardiovascular medicine. In this regard these agents are required to overcome pleothra of barriers such as stability of drug targets, immunogenicity, adequate binding, targeted delivery etc. to become effective drugs. Recent years have witnessed the progress of RNA therapeutic strategies in cardiovascular diseases that are likely to significantly expand the cardiovascular therapeutic repertoire within the next decade. The present manuscript has been compiled to summarize various approaches of siRNA based therapies in cardiovascular diseases along with the advantages, outcomes and limitations if any in this regard. In addition, the future prospects of RNA therapeutic modalities in cardiovascular diseases are summarized.
Collapse
|
21
|
RNA Secondary Structure Motifs of the Influenza A Virus as Targets for siRNA-Mediated RNA Interference. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 19:627-642. [PMID: 31945726 PMCID: PMC6965531 DOI: 10.1016/j.omtn.2019.12.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 12/16/2019] [Accepted: 12/16/2019] [Indexed: 12/31/2022]
Abstract
The influenza A virus is a human pathogen that poses a serious public health threat due to rapid antigen changes and emergence of new, highly pathogenic strains with the potential to become easily transmitted in the human population. The viral genome is encoded by eight RNA segments, and all stages of the replication cycle are dependent on RNA. In this study, we designed small interfering RNA (siRNA) targeting influenza segment 5 nucleoprotein (NP) mRNA structural motifs that encode important functions. The new criterion for choosing the siRNA target was the prediction of accessible regions based on the secondary structure of segment 5 (+)RNA. This design led to siRNAs that significantly inhibit influenza virus type A replication in Madin-Darby canine kidney (MDCK) cells. Additionally, chemical modifications with the potential to improve siRNA properties were introduced and systematically validated in MDCK cells against the virus. A substantial and maximum inhibitory effect was achieved at concentrations as low as 8 nM. The inhibition of viral replication reached approximately 90% for the best siRNA variants. Additionally, selected siRNAs were compared with antisense oligonucleotides targeting the same regions; this revealed that effectiveness depends on both the target accessibility and oligonucleotide antiviral strategy. Our new approach of target-site preselection based on segment 5 (+)RNA secondary structure led to effective viral inhibition and a better understanding of the impact of RNA structural motifs on the influenza replication cycle.
Collapse
|
22
|
Habibian M, Yahyaee-Anzahaee M, Lucic M, Moroz E, Martín-Pintado N, Di Giovanni LD, Leroux JC, Hall J, González C, Damha MJ. Structural properties and gene-silencing activity of chemically modified DNA-RNA hybrids with parallel orientation. Nucleic Acids Res 2019; 46:1614-1623. [PMID: 29373740 PMCID: PMC5829573 DOI: 10.1093/nar/gky024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 01/12/2018] [Indexed: 01/24/2023] Open
Abstract
We report, herein, a new class of RNAi trigger molecules based on the unconventional parallel hybridization of two oligonucleotide chains. We have prepared and studied several parallel stranded (ps) duplexes, in which the parallel orientation is achieved through incorporation of isoguanine and isocytosine to form reverse Watson-Crick base pairs in ps-DNA:DNA, ps-DNA:RNA, ps-(DNA-2'F-ANA):RNA, and ps-DNA:2'F-RNA duplexes. The formation of these duplexes was confirmed by UV melting experiments, FRET and CD studies. In addition, NMR structural studies were conducted on a ps-DNA:RNA hybrid for the first time. Finally, we provide evidence for the unprecedented finding that ps-DNA:RNA and ps-DNA:2'F-RNA hybrids can engage the RNAi pathway to silence gene expression in vitro.
Collapse
Affiliation(s)
- Maryam Habibian
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC H3A 0B8, Canada
| | - Maryam Yahyaee-Anzahaee
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC H3A 0B8, Canada
| | - Matije Lucic
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 1-5, 8093 Zurich, Switzerland
| | - Elena Moroz
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 1-5, 8093 Zurich, Switzerland
| | - Nerea Martín-Pintado
- Instituto de Química Física 'Rocasolano', CSIC, Serrano 119, 28006 Madrid, Spain
| | - Logan Dante Di Giovanni
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC H3A 0B8, Canada
| | - Jean-Christophe Leroux
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 1-5, 8093 Zurich, Switzerland
| | - Jonathan Hall
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 1-5, 8093 Zurich, Switzerland
| | - Carlos González
- Instituto de Química Física 'Rocasolano', CSIC, Serrano 119, 28006 Madrid, Spain
| | - Masad J Damha
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC H3A 0B8, Canada
| |
Collapse
|
23
|
Chernikov IV, Vlassov VV, Chernolovskaya EL. Current Development of siRNA Bioconjugates: From Research to the Clinic. Front Pharmacol 2019; 10:444. [PMID: 31105570 PMCID: PMC6498891 DOI: 10.3389/fphar.2019.00444] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/08/2019] [Indexed: 12/12/2022] Open
Abstract
Small interfering RNAs (siRNAs) acting via RNA interference mechanisms are able to recognize a homologous mRNA sequence in the cell and induce its degradation. The main problems in the development of siRNA-based drugs for therapeutic use are the low efficiency of siRNA delivery to target cells and the degradation of siRNAs by nucleases in biological fluids. Various approaches have been proposed to solve the problem of siRNA delivery in vivo (e.g., viruses, cationic lipids, polymers, nanoparticles), but all have limitations for therapeutic use. One of the most promising approaches to solve the problem of siRNA delivery to target cells is bioconjugation; i.e., the covalent connection of siRNAs with biogenic molecules (lipophilic molecules, antibodies, aptamers, ligands, peptides, or polymers). Bioconjugates are "ideal nanoparticles" since they do not need a positive charge to form complexes, are less toxic, and are less effectively recognized by components of the immune system because of their small size. This review is focused on strategies and principles for constructing siRNA bioconjugates for in vivo use.
Collapse
Affiliation(s)
- Ivan V Chernikov
- Laboratory of Nucleic Acids Biochemistry, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Valentin V Vlassov
- Laboratory of Nucleic Acids Biochemistry, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Elena L Chernolovskaya
- Laboratory of Nucleic Acids Biochemistry, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
24
|
Jasinski DL, Binzel DW, Guo P. One-Pot Production of RNA Nanoparticles via Automated Processing and Self-Assembly. ACS NANO 2019; 13:4603-4612. [PMID: 30888787 PMCID: PMC6542271 DOI: 10.1021/acsnano.9b00649] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
From the original sequencing of the human genome, it was found that about 98.5% of the genome did not code for proteins. Subsequent studies have now revealed that a much larger portion of the genome is related to short or long noncoding RNAs that regulate cellular activities. In addition to the milestones of chemical and protein drugs, it has been proposed that RNA drugs or drugs targeting RNA will become the third milestone in drug development ( Shu , Y. ; Adv. Drug Deliv. Rev. 2014 , 66 , 74 . ). Currently, the yield and cost for RNA nanoparticle or RNA drug production requires improvement in order to advance the RNA field in both research and clinical translation by reducing the multiple tedious manufacturing steps. For example, with 98.5% incorporation efficiency of chemical synthesis of a 100 nucleotide RNA strand, RNA oligos will result with 78% contamination of aborted byproducts. Thus, RNA nanotechnology is one of the remedies, because large RNA can be assembled from small RNA fragments via bottom-up self-assembly. Here we report the one-pot production of RNA nanoparticles via automated processing and self-assembly. The continuous production of RNA by rolling circle transcription (RCT) using a circular dsDNA template is coupled with self-cleaving ribozymes encoded in the concatemeric RNA transcripts. Production was monitored in real-time. Automatic production of RNA fragments enabled their assembly either in situ or via one-pot co-transcription to obtain RNA nanoparticles of desired motifs and functionalities from bottom-up assembly of multiple RNA fragments. In combination with the RNA nanoparticle construction process, a purification method using a large-scale electrophoresis column was also developed.
Collapse
Affiliation(s)
| | | | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine; College of Pharmacy, Division of Pharmaceutics and Pharmaceutical Chemistry; College of Medicine, Department of Physiology & Cell Biology; Dorothy M. Davis Heart and Lung Research Institute; and James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
25
|
Khanal C, McGawley EC, Overstreet C, Stetina SR. The Elusive Search for Reniform Nematode Resistance in Cotton. PHYTOPATHOLOGY 2018; 108:532-541. [PMID: 29116883 DOI: 10.1094/phyto-09-17-0320-rvw] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The reniform nematode (Rotylenchulus reniformis Linford and Oliveira) has emerged as the most important plant-parasitic nematode of cotton in the United States cotton belt. Success in the development of reniform nematode-resistant upland cotton cultivars (Gossypium hirsutum L.) has not been realized despite over three decades of breeding efforts. Research approaches ranging from conventional breeding to triple species hybrids to marker-assisted selection have been employed to introgress reniform nematode resistance from other species of cotton into upland cultivars. Reniform nematode-resistant breeding lines derived from G. longicalyx were developed in 2007. However, these breeding lines displayed stunting symptoms and a hypersensitive response to reniform nematode infection. Subsequent breeding efforts focused on G. barbadense, G. aridum, G. armoreanum, and other species that have a high level of resistance to reniform nematode. Marker-assisted selection has greatly improved screening of reniform nematode-resistant lines. The use of advanced molecular techniques such as CRISPER-Cas9 systems and alternative ways such as delivery of suitable "cry" proteins and specific double-stranded RNA to nematodes will assist in developing resistant cultivars of cotton. In spite of the efforts of cotton breeders and nematologists, successes are limited only to the development of reniform nematode-resistant breeding lines. In this article, we provide an overview of the approaches employed to develop reniform nematode-resistant upland cotton cultivars in the past, progress to date, major obstacles, and some promising future research activity.
Collapse
Affiliation(s)
- Churamani Khanal
- First, second, and third authors: Louisiana State University AgCenter, Department of Plant Pathology and Crop Physiology, Baton Rouge 70803; and fourth author: United States Department of Agriculture-Agricultural Research Service, Crop Genetics Research Unit, P.O. Box 345, Stoneville, MS 38776
| | - Edward C McGawley
- First, second, and third authors: Louisiana State University AgCenter, Department of Plant Pathology and Crop Physiology, Baton Rouge 70803; and fourth author: United States Department of Agriculture-Agricultural Research Service, Crop Genetics Research Unit, P.O. Box 345, Stoneville, MS 38776
| | - Charles Overstreet
- First, second, and third authors: Louisiana State University AgCenter, Department of Plant Pathology and Crop Physiology, Baton Rouge 70803; and fourth author: United States Department of Agriculture-Agricultural Research Service, Crop Genetics Research Unit, P.O. Box 345, Stoneville, MS 38776
| | - Salliana R Stetina
- First, second, and third authors: Louisiana State University AgCenter, Department of Plant Pathology and Crop Physiology, Baton Rouge 70803; and fourth author: United States Department of Agriculture-Agricultural Research Service, Crop Genetics Research Unit, P.O. Box 345, Stoneville, MS 38776
| |
Collapse
|
26
|
Zhang C, Wang S, Liu Y, Yang C. Epigenetics in myeloid derived suppressor cells: a sheathed sword towards cancer. Oncotarget 2018; 7:57452-57463. [PMID: 27458169 PMCID: PMC5303001 DOI: 10.18632/oncotarget.10767] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 07/10/2016] [Indexed: 12/16/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs), a heterogeneous population of cells composed of progenitors and precursors to myeloid cells, are deemed to participate in the development of tumor-favoring immunosuppressive microenvironment. Thus, the regulatory strategies targeting MDSCs' expansion, differentiation, accumulation and function could possibly be effective “weapons” in anti-tumor immunotherapies. Epigenetic mechanisms, which involve DNA modification, covalent histone modification and RNA interference, result in the heritable down-regulation or silencing of gene expression without a change in DNA sequences. Epigenetic modification of MDSC's functional plasticity leads to the remodeling of its characteristics, therefore reframing the microenvironment towards countering tumor growth and metastasis. This review summarized the pertinent findings on the DNA methylation, covalent histone modification, microRNAs and small interfering RNAs targeting MDSC in cancer genesis, progression and metastasis. The potentials as well as possible obstacles in translating into anti-cancer therapeutics were also discussed.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Shuo Wang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Yufeng Liu
- General Surgery, Department of Nursing, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Cheng Yang
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| |
Collapse
|
27
|
Roderick H, Urwin PE, Atkinson HJ. Rational design of biosafe crop resistance to a range of nematodes using RNA interference. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:520-529. [PMID: 28703405 PMCID: PMC5787825 DOI: 10.1111/pbi.12792] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 07/05/2017] [Accepted: 07/05/2017] [Indexed: 05/31/2023]
Abstract
Double-stranded RNA (dsRNA) molecules targeting two genes have been identified that suppress economically important parasitic nematode species of banana. Proteasomal alpha subunit 4 (pas-4) and Actin-4 (act-4) were identified from a survey of sequence databases and cloned sequences for genes conserved across four pests of banana, Radopholus similis, Pratylenchus coffeae, Meloidogyne incognita and Helicotylenchus multicinctus. These four species were targeted with dsRNAs containing exact 21 nucleotide matches to the conserved regions. Potential off-target effects were limited by comparison with Caenorhabditis, Drosophila, rat, rice and Arabidopsis genomes. In vitro act-4 dsRNA treatment of R. similis suppressed target gene expression by 2.3-fold, nematode locomotion by 66 ± 4% and nematode multiplication on carrot discs by 49 ± 5%. The best transgenic carrot hairy root lines expressing act-4 or pas-4 dsRNA reduced transcript message abundance of target genes in R. similis by 7.9-fold and fourfold and nematode multiplication by 94 ± 2% and 69 ± 3%, respectively. The same act-4 and pas-4 lines reduced P. coffeae target transcripts by 1.7- and twofold and multiplication by 50 ± 6% and 73 ± 8%. Multiplication of M. incognita on the pas-4 lines was reduced by 97 ± 1% and 99 ± 1% while target transcript abundance was suppressed 4.9- and 5.6-fold. There was no detectable RNAi effect on nontarget nematodes exposed to dsRNAs targeting parasitic nematodes. This work defines a framework for development of a range of nonprotein defences to provide broad resistance to pests and pathogens of crops.
Collapse
|
28
|
Murray JI. Systems biology of embryonic development: Prospects for a complete understanding of the Caenorhabditis elegans embryo. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2018; 7:e314. [PMID: 29369536 DOI: 10.1002/wdev.314] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 12/01/2017] [Accepted: 12/12/2017] [Indexed: 01/07/2023]
Abstract
The convergence of developmental biology and modern genomics tools brings the potential for a comprehensive understanding of developmental systems. This is especially true for the Caenorhabditis elegans embryo because its small size, invariant developmental lineage, and powerful genetic and genomic tools provide the prospect of a cellular resolution understanding of messenger RNA (mRNA) expression and regulation across the organism. We describe here how a systems biology framework might allow large-scale determination of the embryonic regulatory relationships encoded in the C. elegans genome. This framework consists of two broad steps: (a) defining the "parts list"-all genes expressed in all cells at each time during development and (b) iterative steps of computational modeling and refinement of these models by experimental perturbation. Substantial progress has been made towards defining the parts list through imaging methods such as large-scale green fluorescent protein (GFP) reporter analysis. Imaging results are now being augmented by high-resolution transcriptome methods such as single-cell RNA sequencing, and it is likely the complete expression patterns of all genes across the embryo will be known within the next few years. In contrast, the modeling and perturbation experiments performed so far have focused largely on individual cell types or genes, and improved methods will be needed to expand them to the full genome and organism. This emerging comprehensive map of embryonic expression and regulatory function will provide a powerful resource for developmental biologists, and would also allow scientists to ask questions not accessible without a comprehensive picture. This article is categorized under: Invertebrate Organogenesis > Worms Technologies > Analysis of the Transcriptome Gene Expression and Transcriptional Hierarchies > Gene Networks and Genomics.
Collapse
Affiliation(s)
- John Isaac Murray
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
29
|
Adebesin F, Widhalm JR, Boachon B, Lefèvre F, Pierman B, Lynch JH, Alam I, Junqueira B, Benke R, Ray S, Porter JA, Yanagisawa M, Wetzstein HY, Morgan JA, Boutry M, Schuurink RC, Dudareva N. Emission of volatile organic compounds from petunia flowers is facilitated by an ABC transporter. Science 2018; 356:1386-1388. [PMID: 28663500 DOI: 10.1126/science.aan0826] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 05/22/2017] [Indexed: 01/19/2023]
Abstract
Plants synthesize a diversity of volatile molecules that are important for reproduction and defense, serve as practical products for humans, and influence atmospheric chemistry and climate. Despite progress in deciphering plant volatile biosynthesis, their release from the cell has been poorly understood. The default assumption has been that volatiles passively diffuse out of cells. By characterization of a Petunia hybrida adenosine triphosphate-binding cassette (ABC) transporter, PhABCG1, we demonstrate that passage of volatiles across the plasma membrane relies on active transport. PhABCG1 down-regulation by RNA interference results in decreased emission of volatiles, which accumulate to toxic levels in the plasma membrane. This study provides direct proof of a biologically mediated mechanism of volatile emission.
Collapse
Affiliation(s)
- Funmilayo Adebesin
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Joshua R Widhalm
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA.,Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
| | - Benoît Boachon
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - François Lefèvre
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 4-5, Box L7-04-14, 1348 Louvain-la-Neuve, Belgium
| | - Baptiste Pierman
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 4-5, Box L7-04-14, 1348 Louvain-la-Neuve, Belgium
| | - Joseph H Lynch
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Iftekhar Alam
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 4-5, Box L7-04-14, 1348 Louvain-la-Neuve, Belgium
| | - Bruna Junqueira
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 4-5, Box L7-04-14, 1348 Louvain-la-Neuve, Belgium
| | - Ryan Benke
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Shaunak Ray
- School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, IN 47907-2100, USA
| | - Justin A Porter
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
| | - Makoto Yanagisawa
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907-2054, USA
| | - Hazel Y Wetzstein
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
| | - John A Morgan
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA.,School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, IN 47907-2100, USA
| | - Marc Boutry
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 4-5, Box L7-04-14, 1348 Louvain-la-Neuve, Belgium
| | - Robert C Schuurink
- Department of Plant Physiology, University of Amsterdam, Swammerdam Institute for Life Sciences, Science Park 904, 1098 XH Amsterdam, Netherlands
| | - Natalia Dudareva
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA. .,Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA.,Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
30
|
Scarborough RJ, Gatignol A. RNA Interference Therapies for an HIV-1 Functional Cure. Viruses 2017; 10:E8. [PMID: 29280961 PMCID: PMC5795421 DOI: 10.3390/v10010008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/20/2017] [Accepted: 12/22/2017] [Indexed: 12/31/2022] Open
Abstract
HIV-1 drug therapies can prevent disease progression but cannot eliminate HIV-1 viruses from an infected individual. While there is hope that elimination of HIV-1 can be achieved, several approaches to reach a functional cure (control of HIV-1 replication in the absence of drug therapy) are also under investigation. One of these approaches is the transplant of HIV-1 resistant cells expressing anti-HIV-1 RNAs, proteins or peptides. Small RNAs that use RNA interference pathways to target HIV-1 replication have emerged as competitive candidates for cell transplant therapy and have been included in all gene combinations that have so far entered clinical trials. Here, we review RNA interference pathways in mammalian cells and the design of therapeutic small RNAs that use these pathways to target pathogenic RNA sequences. Studies that have been performed to identify anti-HIV-1 RNA interference therapeutics are also reviewed and perspectives on their use in combination gene therapy to functionally cure HIV-1 infection are provided.
Collapse
Affiliation(s)
- Robert J Scarborough
- Lady Davis Institute for Medical Research, Montreal, QC H3T 1E2, Canada.
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A0G4, Canada.
| | - Anne Gatignol
- Lady Davis Institute for Medical Research, Montreal, QC H3T 1E2, Canada.
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A0G4, Canada.
- Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, QC H3A0G4, Canada.
| |
Collapse
|
31
|
Geiger J, Dalgaard LT. Interplay of mitochondrial metabolism and microRNAs. Cell Mol Life Sci 2017; 74:631-646. [PMID: 27563705 PMCID: PMC11107739 DOI: 10.1007/s00018-016-2342-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/07/2016] [Accepted: 08/12/2016] [Indexed: 12/17/2022]
Abstract
Mitochondria are important organelles in cellular metabolism. Several crucial metabolic pathways such as the energy producing electron transport chain or the tricarboxylic acid cycle are hosted inside the mitochondria. The proper function of mitochondria depends on the import of proteins, which are encoded in the nucleus and synthesized in the cytosol. Micro-ribonucleic acids (miRNAs) are short non-coding ribonucleic acid (RNA) molecules with the ability to prevent messenger RNA (mRNA)-translation or to induce the degradation of mRNA-transcripts. Although miRNAs are mainly located in the cytosol or the nucleus, a subset of ~150 different miRNAs, called mitomiRs, has also been found localized to mitochondrial fractions of cells and tissues together with the subunits of the RNA-induced silencing complex (RISC); the protein complex through which miRNAs normally act to prevent translation of their mRNA-targets. The focus of this review is on miRNAs and mitomiRs with influence on mitochondrial metabolism and their possible pathophysiological impact.
Collapse
Affiliation(s)
- Julian Geiger
- Department of Science and Environment, Roskilde University, Universitetsvej 1, Bldg. 28A1, 4000, Roskilde, Denmark
| | - Louise T Dalgaard
- Department of Science and Environment, Roskilde University, Universitetsvej 1, Bldg. 28A1, 4000, Roskilde, Denmark.
| |
Collapse
|
32
|
Martins AN, Ke W, Jawahar V, Striplin M, Striplin C, Freed EO, Afonin KA. Intracellular Reassociation of RNA-DNA Hybrids that Activates RNAi in HIV-Infected Cells. Methods Mol Biol 2017; 1632:269-283. [PMID: 28730446 PMCID: PMC6941940 DOI: 10.1007/978-1-4939-7138-1_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Human immunodeficiency virus Type 1 (HIV-1) is the major cause of acquired immune deficiency syndrome (AIDS). In 2014, it was estimated that 1.2 million people died from AIDS-related illnesses. RNA interference-based therapy to block HIV replication is a field that, as of now, is without any FDA-approved drugs available for clinical use. In this chapter we describe a protocol for testing and utilizing a new approach that relies on reassociation of RNA-DNA hybrids activating RNAi and blocking HIV replication in human cells.
Collapse
Affiliation(s)
- Angelica N Martins
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC, 28223, USA
| | - Weina Ke
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, 9201 University Blvd., Charlotte, NC, 28223, USA
| | - Vaishnavi Jawahar
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC, 28223, USA
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, 9201 University Blvd., Charlotte, NC, 28223, USA
| | - Morriah Striplin
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, 9201 University Blvd., Charlotte, NC, 28223, USA
| | - Caryn Striplin
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, 9201 University Blvd., Charlotte, NC, 28223, USA
| | - Eric O Freed
- HIV Dynamics and Replication Program, NCI, Frederick, MD, 21702, USA
| | - Kirill A Afonin
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, 9201 University Blvd., Charlotte, NC, 28223, USA.
- The Center for Biomedical Engineering and Science, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA.
- Center for Cancer Research, National Cancer Institute, Frederick, Maryland, 21702, USA.
| |
Collapse
|
33
|
Joga MR, Zotti MJ, Smagghe G, Christiaens O. RNAi Efficiency, Systemic Properties, and Novel Delivery Methods for Pest Insect Control: What We Know So Far. Front Physiol 2016; 7:553. [PMID: 27909411 PMCID: PMC5112363 DOI: 10.3389/fphys.2016.00553] [Citation(s) in RCA: 262] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 11/03/2016] [Indexed: 01/01/2023] Open
Abstract
In recent years, the research on the potential of using RNA interference (RNAi) to suppress crop pests has made an outstanding growth. However, given the variability of RNAi efficiency that is observed in many insects, the development of novel approaches toward insect pest management using RNAi requires first to unravel factors behind the efficiency of dsRNA-mediated gene silencing. In this review, we explore essential implications and possibilities to increase RNAi efficiency by delivery of dsRNA through non-transformative methods. We discuss factors influencing the RNAi mechanism in insects and systemic properties of dsRNA. Finally, novel strategies to deliver dsRNA are discussed, including delivery by symbionts, plant viruses, trunk injections, root soaking, and transplastomic plants.
Collapse
Affiliation(s)
- Mallikarjuna R Joga
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University Gent, Belgium
| | - Moises J Zotti
- Department of Crop Protection, Molecular Entomology, Federal University of Pelotas Pelotas, Brazil
| | - Guy Smagghe
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University Gent, Belgium
| | - Olivier Christiaens
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University Gent, Belgium
| |
Collapse
|
34
|
Bivalkar-Mehla S, Mehla R, Chauhan A. Chimeric peptide-mediated siRNA transduction to inhibit HIV-1 infection. J Drug Target 2016; 25:307-319. [PMID: 27800697 DOI: 10.1080/1061186x.2016.1245311] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Persistent human immunodeficiency virus 1 (HIV-1) infection provokes immune activation and depletes CD4+ lymphocytes, leading to acquired immunodeficiency syndrome. Uninterrupted administration of combination antiretroviral therapy (cART) in HIV-infected patients suppresses viral replication to below the detectable level and partially restores the immune system. However, cART-unresponsive residual HIV-1 infection and elusive transcriptionally silent but reactivatable viral reservoirs maintain a permanent viral DNA blue print. The virus rebounds within a few weeks after interruption of suppressive therapy. Adjunct gene therapy to control viral replication by ribonucleic acid interference (RNAi) is a post-transcriptional gene silencing strategy that could suppress residual HIV-1 burden and overcome viral resistance. Small interfering ribonucleic acids (siRNAs) are efficient transcriptional inhibitors, but need delivery systems to reach inside target cells. We investigated the potential of chimeric peptide (FP-PTD) to deliver specific siRNAs to HIV-1-susceptible and permissive cells. Chimeric FP-PTD peptide was designed with an RNA binding domain (PTD) to bind siRNA and a cell fusion peptide domain (FP) to enter cells. FP-PTD-siRNA complex entered and inhibited HIV-1 replication in susceptible cells, and could be a candidate for in vivo testing.
Collapse
Affiliation(s)
- Shalmali Bivalkar-Mehla
- a Department of Pathology, Microbiology and Immunology , University of South Carolina School of Medicine , Columbia , SC , USA
| | - Rajeev Mehla
- a Department of Pathology, Microbiology and Immunology , University of South Carolina School of Medicine , Columbia , SC , USA
| | - Ashok Chauhan
- a Department of Pathology, Microbiology and Immunology , University of South Carolina School of Medicine , Columbia , SC , USA
| |
Collapse
|
35
|
Extracellular RNA is transported from one generation to the next in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2016; 113:12496-12501. [PMID: 27791108 DOI: 10.1073/pnas.1608959113] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Experiences during the lifetime of an animal have been proposed to have consequences for subsequent generations. Although it is unclear how such intergenerational transfer of information occurs, RNAs found extracellularly in animals are candidate molecules that can transfer gene-specific regulatory information from one generation to the next because they can enter cells and regulate gene expression. In support of this idea, when double-stranded RNA (dsRNA) is introduced into some animals, the dsRNA can silence genes of matching sequence and the silencing can persist in progeny. Such persistent gene silencing is thought to result from sequence-specific interaction of the RNA within parents to generate chromatin modifications, DNA methylation, and/or secondary RNAs, which are then inherited by progeny. Here, we show that dsRNA can be directly transferred between generations in the worm Caenorhabditis elegans Intergenerational transfer of dsRNA occurs even in animals that lack any DNA of matching sequence, and dsRNA that reaches progeny can spread between cells to cause gene silencing. Surprisingly, extracellular dsRNA can also reach progeny without entry into the cytosol, presumably within intracellular vesicles. Fluorescently labeled dsRNA is imported from extracellular space into oocytes along with yolk and accumulates in punctate structures within embryos. Subsequent entry into the cytosol of early embryos causes gene silencing in progeny. These results demonstrate the transport of extracellular RNA from one generation to the next to regulate gene expression in an animal and thus suggest a mechanism for the transmission of experience-dependent effects between generations.
Collapse
|
36
|
Menzi M, Pradère U, Wang Y, Fischer M, Baumann F, Bigatti M, Hall J. Site-Specific Labeling of MicroRNA Precursors: A Structure-Activity Relationship Study. Chembiochem 2016; 17:2012-2017. [PMID: 27577972 DOI: 10.1002/cbic.201600370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Indexed: 11/09/2022]
Abstract
Functionalized oligoribonucleotides are essential tools in RNA chemical biology. Various synthetic routes have been developed over recent years to conjugate functional groups to oligoribonucleotides. However, the presence of the functional group on the oligoribonucleotide backbone can lead to partial or total loss of biological function. The limited knowledge concerning the positioning of functional groups therefore represents a hurdle for the development of oligoribonucleotide chemical tools. Here we describe a systematic investigation of site-specific labeling of pre-miRNAs to identify positions for the incorporation of functional groups, in order not to hinder their processing into active mature miRNAs.
Collapse
Affiliation(s)
- Mirjam Menzi
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093, Zürich, Switzerland
| | - Ugo Pradère
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093, Zürich, Switzerland
| | - Yuluan Wang
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093, Zürich, Switzerland
| | - Matteo Fischer
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093, Zürich, Switzerland
| | - Fabienne Baumann
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093, Zürich, Switzerland
| | - Martina Bigatti
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093, Zürich, Switzerland
| | - Jonathan Hall
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093, Zürich, Switzerland.
| |
Collapse
|
37
|
The entangled history of animal and plant microRNAs. Funct Integr Genomics 2016; 17:127-134. [PMID: 27549410 DOI: 10.1007/s10142-016-0513-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 07/29/2016] [Accepted: 08/03/2016] [Indexed: 01/22/2023]
Abstract
MicroRNAs (miRNAs) are small RNAs (sRNAs) that regulate gene expression in development and adaptive responses to the environment. The early days in the sRNA field was one of the most exciting and promising moments in modern biology, attracting large investments to the understanding of the underlining mechanisms and their applications, such as in gene therapy. miRNAs and other sRNAs have since been extensively studied in animals and plants, and are currently well established as an important part of most gene regulatory processes in animals and as master regulators in plants. Here, this review presents the critical discoveries and early misconceptions that shaped our current understanding of RNA silencing by miRNAs in most eukaryotes, with a focus on plant miRNAs. The presentation and language used are simple to facilitate a clear comprehension by researchers and students from various backgrounds. Hence, this is a valuable teaching tool and should also draw attention to the discovery processes themselves, such that scientists from various fields can gain insights from the successful and rapidly evolving miRNA field.
Collapse
|
38
|
Takashima Y, Terada M, Udono M, Miura S, Yamamoto J, Suzuki A. Suppression of lethal-7b and miR-125a/b Maturation by Lin28b Enables Maintenance of Stem Cell Properties in Hepatoblasts. Hepatology 2016; 64:245-60. [PMID: 26990797 DOI: 10.1002/hep.28548] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 03/06/2016] [Indexed: 12/28/2022]
Abstract
UNLABELLED In liver development, hepatoblasts that act as hepatic stem/progenitor cells proliferate and differentiate into both hepatocytes and cholangiocytes to form liver tissues. Although numerous factors contribute to this event, little is known about the roles of microRNAs in hepatoblast proliferation and differentiation. In this study, we focused on the lineage-28 (Lin28) family proteins, which are required for microRNA regulation in pluripotent stem cells and cancer cells, and investigated their roles as regulatory factors for the properties of hepatoblasts. CONCLUSION Lin28b was specifically expressed in hepatoblasts, and its suppression induced growth arrest and cholangiocyte differentiation of hepatoblasts; mechanistically, Lin28b positively regulates the expression of Lin28b itself and cell cycle-related proteins in hepatoblasts by suppressing the maturation of target microRNAs, lethal-7b and miR-125a/b, enabling maintenance of the stem cell properties of hepatoblasts, such as their capabilities for proliferation and bi-lineage differentiation, during liver development. (Hepatology 2016;64:245-260).
Collapse
Affiliation(s)
- Yasuo Takashima
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Maiko Terada
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Miyako Udono
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Shizuka Miura
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Junpei Yamamoto
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Atsushi Suzuki
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.,Core Research for Evolutional Science and Technology, The Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo, Japan
| |
Collapse
|
39
|
Abstract
Short interfering RNAs (siRNAs) are as effective at targeting and silencing genes by RNA interference (RNAi) as long double-stranded RNAs (dsRNAs). siRNAs are widely used for assessing gene function in cultured mammalian cells or early developing vertebrate embryos. siRNAs are also promising reagents for developing gene-specific therapeutics. Specifically, the inhibition of HIV-1 replication is particularly well-suited to RNAi, as several stages of the viral life cycle and many viral and cellular genes can be targeted. The future success of this approach will depend on recent advances in siRNA-based silencing technologies.
Collapse
Affiliation(s)
- Hiroshi Takaku
- Department of Life & Environmental Sciences and High Technology Research Center, Chiba Institute of Technology, Chiba, Japan.
| |
Collapse
|
40
|
Lim ZX, Robinson KE, Jain RG, Chandra GS, Asokan R, Asgari S, Mitter N. Diet-delivered RNAi in Helicoverpa armigera--Progresses and challenges. JOURNAL OF INSECT PHYSIOLOGY 2016; 85:86-93. [PMID: 26549127 DOI: 10.1016/j.jinsphys.2015.11.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 11/02/2015] [Accepted: 11/04/2015] [Indexed: 05/03/2023]
Abstract
Helicoverpa armigera (the cotton bollworm) is a significant agricultural pest endemic to Afro-Eurasia and Oceania. Gene suppression via RNA interference (RNAi) presents a potential avenue for management of the pest, which is highly resistant to traditional insecticide sprays. This article reviews current understanding on the fate of ingested double-stranded RNA in H. armigera. Existing in vivo studies on diet-delivered RNAi and their effects are summarized and followed by a discussion on the factors and hurdles affecting the efficacy of diet-delivered RNAi in H. armigera.
Collapse
Affiliation(s)
- Zhi Xian Lim
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Karl E Robinson
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Ritesh G Jain
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, St Lucia, Queensland 4072, Australia
| | - G Sharath Chandra
- Division of Biotechnology, Indian Institute of Horticultural Research (IIHR), Hesaraghatta Lake Post, Bengaluru 560 089, India
| | - R Asokan
- Division of Biotechnology, Indian Institute of Horticultural Research (IIHR), Hesaraghatta Lake Post, Bengaluru 560 089, India
| | - Sassan Asgari
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Neena Mitter
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, St Lucia, Queensland 4072, Australia.
| |
Collapse
|
41
|
Jahns H, Roos M, Imig J, Baumann F, Wang Y, Gilmour R, Hall J. Stereochemical bias introduced during RNA synthesis modulates the activity of phosphorothioate siRNAs. Nat Commun 2015; 6:6317. [PMID: 25744034 PMCID: PMC4366519 DOI: 10.1038/ncomms7317] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 01/19/2015] [Indexed: 12/18/2022] Open
Abstract
An established means of improving the pharmacokinetics properties of oligoribonucleotides (ORNs) is to exchange their phosphodiester linkages for phosphorothioates (PSs). However, this strategy has not been pursued for small interfering RNAs (siRNAs), possibly because of sporadic reports that PS siRNAs show reduced inhibitory activity. The PS group is chiral at phosphorous (Rp/Sp centres), and conventional solid-phase synthesis of PS ORNs produces a population of diastereoisomers. Here we show that the choice of the activating agent for the synthesis of a PS ORN influences the Rp/Sp ratio of PS linkages throughout the strand. Furthermore, PS siRNAs composed of ORNs with a higher fraction of Rp centres show greater resistance to nucleases in serum and are more effective inhibitors in cells than their Sp counterparts. The finding that a stereochemically biased population of ORN diastereoisomers can be synthesized and exploited pharmacologically is important because uniform PS modification of siRNAs may provide a useful compromise of their pharmacokinetics and pharmacodynamics properties in RNAi therapeutics. Therapeutic oligonucleotides can be made more stable by substituting their achiral phosphodiester groups for chiral phosphorothioate linkages. Here, the authors present a synthesis of phosphorothioated RNAs, where the activator controls strand stereochemistry, and also the activity of assembled siRNAs.
Collapse
Affiliation(s)
- Hartmut Jahns
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg-4, CH-8093 Zürich, Switzerland
| | - Martina Roos
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg-4, CH-8093 Zürich, Switzerland
| | - Jochen Imig
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg-4, CH-8093 Zürich, Switzerland
| | - Fabienne Baumann
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg-4, CH-8093 Zürich, Switzerland
| | - Yuluan Wang
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg-4, CH-8093 Zürich, Switzerland
| | - Ryan Gilmour
- Institute for Organic Chemistry, Westfälische Wilhelms-Universität Münster, D-48149 Münster, Germany
| | - Jonathan Hall
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg-4, CH-8093 Zürich, Switzerland
| |
Collapse
|
42
|
Conte D, MacNeil LT, Walhout AJ, Mello CC. RNA Interference in Caenorhabditis elegans. CURRENT PROTOCOLS IN MOLECULAR BIOLOGY 2015; 109:26.3.1-26.3.30. [PMID: 25559107 PMCID: PMC5396541 DOI: 10.1002/0471142727.mb2603s109] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
RNAi has become an essential tool in C. elegans research. This unit describes procedures for RNAi in C. elegans by microinjecting with dsRNA, feeding with bacteria expressing dsRNA, and soaking in dsRNA solution, as well as high-throughput methods for RNAi-based screens.
Collapse
Affiliation(s)
- Darryl Conte
- RNA Therapeutics Institute and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Lesley T. MacNeil
- Programs in Systems Biology and Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Albertha J.M. Walhout
- Programs in Systems Biology and Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Craig C. Mello
- RNA Therapeutics Institute and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
- Howard Hughes Medical Institute
| |
Collapse
|
43
|
Abstract
Diverse classes of RNA, ranging from small to long non-coding RNAs, have emerged as key regulators of gene expression, genome stability and defence against foreign genetic elements. Small RNAs modify chromatin structure and silence transcription by guiding Argonaute-containing complexes to complementary nascent RNA scaffolds and then mediating the recruitment of histone and DNA methyltransferases. In addition, recent advances suggest that chromatin-associated long non-coding RNA scaffolds also recruit chromatin-modifying complexes independently of small RNAs. These co-transcriptional silencing mechanisms form powerful RNA surveillance systems that detect and silence inappropriate transcription events, and provide a memory of these events via self-reinforcing epigenetic loops.
Collapse
Affiliation(s)
- Daniel Holoch
- Howard Hughes Medical Institute, Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| | - Danesh Moazed
- Howard Hughes Medical Institute, Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| |
Collapse
|
44
|
Kapoor M, Burgess DJ. Targeted Delivery of Nucleic Acid Therapeutics via Nonviral Vectors. ADVANCES IN DELIVERY SCIENCE AND TECHNOLOGY 2015. [DOI: 10.1007/978-3-319-11355-5_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
45
|
Linz DM, Clark-Hachtel CM, Borràs-Castells F, Tomoyasu Y. Larval RNA interference in the red flour beetle, Tribolium castaneum. J Vis Exp 2014:e52059. [PMID: 25350485 PMCID: PMC4692432 DOI: 10.3791/52059] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The red flour beetle, Tribolium castaneum, offers a repertoire of experimental tools for genetic and developmental studies, including a fully annotated genome sequence, transposon-based transgenesis, and effective RNA interference (RNAi). Among these advantages, RNAi-based gene knockdown techniques are at the core of Tribolium research. T. castaneum show a robust systemic RNAi response, making it possible to perform RNAi at any life stage by simply injecting double-stranded RNA (dsRNA) into the beetle’s body cavity. In this report, we provide an overview of our larval RNAi technique in T. castaneum. The protocol includes (i) isolation of the proper stage of T. castaneum larvae for injection, (ii) preparation for the injection setting, and (iii) dsRNA injection. Larval RNAi is a simple, but powerful technique that provides us with quick access to loss-of-function phenotypes, including multiple gene knockdown phenotypes as well as a series of hypomorphic phenotypes. Since virtually all T. castaneum tissues are susceptible to extracellular dsRNA, the larval RNAi technique allows researchers to study a wide variety of tissues in diverse contexts, including the genetic basis of organismal responses to the outside environment. In addition, the simplicity of this technique stimulates more student involvement in research, making T. castaneum an ideal genetic system for use in a classroom setting.
Collapse
|
46
|
Dinh PTY, Brown CR, Elling AA. RNA Interference of Effector Gene Mc16D10L Confers Resistance Against Meloidogyne chitwoodi in Arabidopsis and Potato. PHYTOPATHOLOGY 2014; 104:1098-106. [PMID: 24835223 DOI: 10.1094/phyto-03-14-0063-r] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Meloidogyne chitwoodi, a quarantine pathogen, is a significant problem in potato-producing areas worldwide. In spite of considerable genetic diversity in wild potato species, no commercial potato cultivars with resistance to M. chitwoodi are available. Nematode effector genes are essential for the molecular interactions between root-knot nematodes and their hosts. Stable transgenic lines of Arabidopsis and potato (Solanum tuberosum) with resistance against M. chitwoodi were developed. RNA interference (RNAi) construct pART27(16D10i-2) was introduced into Arabidopsis thaliana and potato to express double-stranded RNA complementary to the putative M. chitwoodi effector gene Mc16D10L. Plant-mediated RNAi led to a significant level of resistance against M. chitwoodi in Arabidopsis and potato. In transgenic Arabidopsis lines, the number of M. chitwoodi egg masses and eggs was reduced by up to 57 and 67% compared with empty vector controls, respectively. Similarly, in stable transgenic lines of potato, the number of M. chitwoodi egg masses and eggs was reduced by up to 71 and 63% compared with empty vector controls, respectively. The relative transcript level of Mc16D10L was reduced by up to 76% in M. chitwoodi eggs and infective second-stage juveniles that developed on transgenic pART27(16D10i-2) potato, suggesting that the RNAi effect is systemic and heritable in M. chitwoodi.
Collapse
|
47
|
Clone mapper: an online suite of tools for RNAi experiments in Caenorhabditis elegans. G3-GENES GENOMES GENETICS 2014; 4:2137-45. [PMID: 25187039 PMCID: PMC4232539 DOI: 10.1534/g3.114.013052] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
RNA interference (RNAi), mediated by the introduction of a specific double-stranded RNA, is a powerful method to investigate gene function. It is widely used in the Caenorhabditis elegans research community. An expanding number of laboratories conduct genome-wide RNAi screens, using standard libraries of bacterial clones each designed to produce a specific double-stranded RNA. Proper interpretation of results from RNAi experiments requires a series of analytical steps, from the verification of the identity of bacterial clones, to the identification of the clones’ potential targets. Despite the popularity of the technique, no user-friendly set of tools allowing these steps to be carried out accurately, automatically, and at a large scale, is currently available. We report here the design and production of Clone Mapper, an online suite of tools specifically adapted to the analysis pipeline typical for RNAi experiments with C. elegans. We show that Clone Mapper overcomes the limitations of existing techniques and provide examples illustrating its potential for the identification of biologically relevant genes. The Clone Mapper tools are freely available via http://www.ciml.univ-mrs.fr/EWBANK_jonathan/software.html.
Collapse
|
48
|
Therapeutic potential of siRNA and DNAzymes in cancer. Tumour Biol 2014; 35:9505-21. [PMID: 25149153 DOI: 10.1007/s13277-014-2477-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 08/07/2014] [Indexed: 02/07/2023] Open
Abstract
Cancer is characterized by uncontrolled cell growth, invasion, and metastasis and possess threat to humans worldwide. The scientific community is facing numerous challenges despite several efforts to cure cancer. Though a number of studies were done earlier, the molecular mechanism of cancer progression is not completely understood. Currently available treatments like surgery resection, adjuvant chemotherapy, and radiotherapy are not completely effective in curing all the cancers. Recent advances in the antisense technology provide a powerful tool to investigate various cancer pathways and target them. Small interfering RNAs (siRNAs) could be effective in downregulating the cancer-associated genes, but their in vivo delivery is the main obstacle. DNA enzymes (DNAzymes) have great potential in the treatment of cancer due to high selectivity and significant catalytic efficiency. In this review, we are focusing on antisense molecules such as siRNA and DNAzymes in cancer therapeutics development. This review also describes the challenges and approaches to overcome obstacles involved in using siRNA and DNAzymes in the treatment of cancers.
Collapse
|
49
|
Miyata K, Ramaseshadri P, Zhang Y, Segers G, Bolognesi R, Tomoyasu Y. Establishing an in vivo assay system to identify components involved in environmental RNA interference in the western corn rootworm. PLoS One 2014; 9:e101661. [PMID: 25003334 PMCID: PMC4086966 DOI: 10.1371/journal.pone.0101661] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 06/09/2014] [Indexed: 12/14/2022] Open
Abstract
The discovery of environmental RNA interference (RNAi), in which gene expression is suppressed via feeding with double-stranded RNA (dsRNA) molecules, opened the door to the practical application of RNAi-based techniques in crop pest management. The western corn rootworm (WCR, Diabrotica virgifera virgifera) is one of the most devastating corn pests in North America. Interestingly, WCR displays a robust environmental RNAi response, raising the possibility of applying an RNAi-based pest management strategy to this pest. Understanding the molecular mechanisms involved in the WCR environmental RNAi process will allow for determining the rate limiting steps involved with dsRNA toxicity and potential dsRNA resistance mechanisms in WCR. In this study, we have established a two-step in vivo assay system, which allows us to evaluate the involvement of genes in environmental RNAi in WCR. We show that laccase 2 and ebony, critical cuticle pigmentation/tanning genes, can be used as marker genes in our assay system, with ebony being a more stable marker to monitor RNAi activity. In addition, we optimized the dsRNA dose and length for the assay, and confirmed that this assay system is sensitive to detect well-known RNAi components such as Dicer-2 and Argonaute-2. We also evaluated two WCR sid1- like (sil) genes with this assay system. This system will be useful to quickly survey candidate systemic RNAi genes in WCR, and also will be adaptable for a genome-wide RNAi screening to give us an unbiased view of the environmental/systemic RNAi pathway in WCR.
Collapse
Affiliation(s)
- Keita Miyata
- Department of Biology, Miami University, Oxford, Ohio, United States of America
| | | | - Yuanji Zhang
- Biotechnology Division, Monsanto Company, Chesterfield, Missouri, United States of America
| | - Gerrit Segers
- Biotechnology Division, Monsanto Company, Chesterfield, Missouri, United States of America
| | - Renata Bolognesi
- Biotechnology Division, Monsanto Company, Chesterfield, Missouri, United States of America
| | - Yoshinori Tomoyasu
- Department of Biology, Miami University, Oxford, Ohio, United States of America
- * E-mail:
| |
Collapse
|
50
|
Lin PJC, Tam Y, Cullis P. Development and clinical applications of siRNA-encapsulated lipid nanoparticles in cancer. ACTA ACUST UNITED AC 2014. [DOI: 10.2217/clp.14.27] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|