1
|
Nelson JO, Slicko A, Raz AA, Yamashita YM. Insulin signaling regulates R2 retrotransposon expression to orchestrate transgenerational rDNA copy number maintenance. Nat Commun 2025; 16:399. [PMID: 39755735 DOI: 10.1038/s41467-024-55725-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 12/20/2024] [Indexed: 01/06/2025] Open
Abstract
Preserving a large number of essential yet highly unstable ribosomal DNA (rDNA) repeats is critical for the germline to perpetuate the genome through generations. Spontaneous rDNA loss must be countered by rDNA copy number (CN) expansion. Germline rDNA CN expansion is best understood in Drosophila melanogaster, which relies on unequal sister chromatid exchange (USCE) initiated by DNA breaks at rDNA. The rDNA-specific retrotransposon R2 responsible for USCE-inducing DNA breaks is typically expressed only when rDNA CN is low to minimize the danger of DNA breaks; however, the underlying mechanism of R2 regulation remains unclear. Here we identify the insulin receptor (InR) as a major repressor of R2 expression, limiting unnecessary R2 activity. Through single-cell RNA sequencing, we find that male germline stem cells (GSCs), the major cell type that undergoes rDNA CN expansion, have reduced InR expression when rDNA CN is low. Reduced InR activity in turn leads to R2 expression and CN expansion. We further find that dietary manipulation alters R2 expression and rDNA CN expansion activity. This work reveals that the insulin pathway integrates rDNA CN surveying with environmental sensing, revealing a potential mechanism by which diet exerts heritable changes to genomic content.
Collapse
Affiliation(s)
- Jonathan O Nelson
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA.
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Cambridge, MA, USA.
| | - Alyssa Slicko
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Howard Hughes Medical Institute, Cambridge, MA, USA
| | - Amelie A Raz
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Howard Hughes Medical Institute, Cambridge, MA, USA
| | - Yukiko M Yamashita
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Cambridge, MA, USA.
- Department of Biology, MIT, Cambridge, MA, USA.
| |
Collapse
|
2
|
Gutierrez JI, Tyler JK. A mortality timer based on nucleolar size triggers nucleolar integrity loss and catastrophic genomic instability. NATURE AGING 2024; 4:1782-1793. [PMID: 39587368 PMCID: PMC11964297 DOI: 10.1038/s43587-024-00754-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 10/18/2024] [Indexed: 11/27/2024]
Abstract
Genome instability is a hallmark of aging, with the highly repetitive ribosomal DNA (rDNA) within the nucleolus being particularly prone to genome instability. Nucleolar enlargement accompanies aging in organisms ranging from yeast to mammals, and treatment with many antiaging interventions results in small nucleoli. Here, we report that an engineered system to reduce nucleolar size robustly extends budding yeast replicative lifespan in a manner independent of protein synthesis rate or rDNA silencing. Instead, when nucleoli expand beyond a size threshold, their biophysical properties change, allowing entry of proteins normally excluded from the nucleolus, including the homologous recombinational repair protein Rad52. This triggers rDNA instability due to aberrant recombination, catastrophic genome instability and imminent death. These results establish that nucleolar expansion is sufficient to drive aging. Moreover, nucleolar expansion beyond a specific size threshold is a mortality timer, as the accompanying disruption of the nucleolar condensate boundary results in catastrophic genome instability that ends replicative lifespan.
Collapse
Affiliation(s)
- J Ignacio Gutierrez
- Weill Cornell Medicine, Department of Pathology and Laboratory Medicine, New York, NY, USA.
| | - Jessica K Tyler
- Weill Cornell Medicine, Department of Pathology and Laboratory Medicine, New York, NY, USA.
| |
Collapse
|
3
|
Triplett MK, Johnson MJ, Symington LS. Induction of homologous recombination by site-specific replication stress. DNA Repair (Amst) 2024; 142:103753. [PMID: 39190984 PMCID: PMC11425181 DOI: 10.1016/j.dnarep.2024.103753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024]
Abstract
DNA replication stress is one of the primary causes of genome instability. In response to replication stress, cells can employ replication restart mechanisms that rely on homologous recombination to resume replication fork progression and preserve genome integrity. In this review, we provide an overview of various methods that have been developed to induce site-specific replication fork stalling or collapse in eukaryotic cells. In particular, we highlight recent studies of mechanisms of replication-associated recombination resulting from site-specific protein-DNA barriers and single-strand breaks, and we discuss the contributions of these findings to our understanding of the consequences of these forms of stress on genome stability.
Collapse
Affiliation(s)
- Marina K Triplett
- Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University Irving Medical Center, New York, NY 10032, United States; Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Matthew J Johnson
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY 10032, United States; Program in Biological Sciences, Columbia University, New York, NY 10027, United States
| | - Lorraine S Symington
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY 10032, United States; Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY 10032, United States.
| |
Collapse
|
4
|
Chik JK, Su XB, Klepin S, Raygoza J, Pillus L. Non-canonical chromatin-based functions for the threonine metabolic pathway. Sci Rep 2024; 14:22629. [PMID: 39349514 PMCID: PMC11442984 DOI: 10.1038/s41598-024-72394-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 09/05/2024] [Indexed: 10/02/2024] Open
Abstract
The emerging class of multi-functional proteins known as moonlighters challenges the "one protein, one function" mentality by demonstrating crosstalk between biological pathways that were previously thought to be functionally discrete. Here, we present new links between amino acid metabolism and chromatin regulation, two biological pathways that are critical for cellular and organismal homeostasis. We discovered that the threonine biosynthetic pathway is required for the transcriptional silencing of ribosomal DNA (rDNA) in Saccharomyces cerevisiae. The enzymes in the pathway promote rDNA silencing through distinct mechanisms as a subset of silencing phenotypes was rescued with exogenous threonine. In addition, we found that a key pathway enzyme, homoserine dehydrogenase, promotes DNA repair through a mechanism involving the MRX complex, a major player in DNA double strand break repair. These data further the understanding of enzymes with non-canonical roles, here demonstrated within the threonine biosynthetic pathway, and provide insight into their roles as potential anti-fungal pharmaceutical targets.
Collapse
Affiliation(s)
- Jennifer K Chik
- Department of Molecular Biology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0347, USA
| | - Xue Bessie Su
- Department of Molecular Biology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0347, USA
- Medical Research Council, Laboratory for Molecular Cell Biology, University College London, London, WC1E 6BT, UK
| | - Stephen Klepin
- Department of Molecular Biology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0347, USA
| | - Jessica Raygoza
- Department of Molecular Biology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0347, USA
| | - Lorraine Pillus
- Department of Molecular Biology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0347, USA.
| |
Collapse
|
5
|
González-Arzola K. The nucleolus: Coordinating stress response and genomic stability. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195029. [PMID: 38642633 DOI: 10.1016/j.bbagrm.2024.195029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/25/2024] [Accepted: 04/12/2024] [Indexed: 04/22/2024]
Abstract
The perception that the nucleoli are merely the organelles where ribosome biogenesis occurs is challenged. Only around 30 % of nucleolar proteins are solely involved in producing ribosomes. Instead, the nucleolus plays a critical role in controlling protein trafficking during stress and, according to its dynamic nature, undergoes continuous protein exchange with nucleoplasm under various cellular stressors. Hence, the concept of nucleolar stress has evolved as cellular insults that disrupt the structure and function of the nucleolus. Considering the emerging role of this organelle in DNA repair and the fact that rDNAs are the most fragile genomic loci, therapies targeting the nucleoli are increasingly being developed. Besides, drugs that target ribosome synthesis and induce nucleolar stress can be used in cancer therapy. In contrast, agents that regulate nucleolar activity may be a potential treatment for neurodegeneration caused by abnormal protein accumulation in the nucleolus. Here, I explore the roles of nucleoli beyond their ribosomal functions, highlighting the factors triggering nucleolar stress and their impact on genomic stability.
Collapse
Affiliation(s)
- Katiuska González-Arzola
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Junta de Andalucía, Universidad Pablo de Olavide, 41092 Seville, Spain; Departamento de Bioquímica Vegetal y Biología Molecular, Universidad de Sevilla, 41012 Seville, Spain.
| |
Collapse
|
6
|
Zhou L, Tang W, Ye B, Zou L. Characterization, biogenesis model, and current bioinformatics of human extrachromosomal circular DNA. Front Genet 2024; 15:1385150. [PMID: 38746056 PMCID: PMC11092383 DOI: 10.3389/fgene.2024.1385150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/12/2024] [Indexed: 05/16/2024] Open
Abstract
Human extrachromosomal circular DNA, or eccDNA, has been the topic of extensive investigation in the last decade due to its prominent regulatory role in the development of disorders including cancer. With the rapid advancement of experimental, sequencing and computational technology, millions of eccDNA records are now accessible. Unfortunately, the literature and databases only provide snippets of this information, preventing us from fully understanding eccDNAs. Researchers frequently struggle with the process of selecting algorithms and tools to examine eccDNAs of interest. To explain the underlying formation mechanisms of the five basic classes of eccDNAs, we categorized their characteristics and functions and summarized eight biogenesis theories. Most significantly, we created a clear procedure to help in the selection of suitable techniques and tools and thoroughly examined the most recent experimental and bioinformatics methodologies and data resources for identifying, measuring and analyzing eccDNA sequences. In conclusion, we highlighted the current obstacles and prospective paths for eccDNA research, specifically discussing their probable uses in molecular diagnostics and clinical prediction, with an emphasis on the potential contribution of novel computational strategies.
Collapse
Affiliation(s)
- Lina Zhou
- School of Medicine, Chongqing University, Department of Clinical Data Research, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University, Chongqing, China
| | - Wenyi Tang
- School of Medicine, Chongqing University, Department of Clinical Data Research, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University, Chongqing, China
| | - Bo Ye
- School of Medicine, Chongqing University, Department of Clinical Data Research, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University, Chongqing, China
| | - Lingyun Zou
- School of Medicine, Chongqing University, Department of Clinical Data Research, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University, Chongqing, China
- School of Medicine, Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
7
|
Piguet B, Houseley J. Transcription as source of genetic heterogeneity in budding yeast. Yeast 2024; 41:171-185. [PMID: 38196235 DOI: 10.1002/yea.3926] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/10/2023] [Accepted: 12/20/2023] [Indexed: 01/11/2024] Open
Abstract
Transcription presents challenges to genome stability both directly, by altering genome topology and exposing single-stranded DNA to chemical insults and nucleases, and indirectly by introducing obstacles to the DNA replication machinery. Such obstacles include the RNA polymerase holoenzyme itself, DNA-bound regulatory factors, G-quadruplexes and RNA-DNA hybrid structures known as R-loops. Here, we review the detrimental impacts of transcription on genome stability in budding yeast, as well as the mitigating effects of transcription-coupled nucleotide excision repair and of systems that maintain DNA replication fork processivity and integrity. Interactions between DNA replication and transcription have particular potential to induce mutation and structural variation, but we conclude that such interactions must have only minor effects on DNA replication by the replisome with little if any direct mutagenic outcome. However, transcription can significantly impair the fidelity of replication fork rescue mechanisms, particularly Break Induced Replication, which is used to restart collapsed replication forks when other means fail. This leads to de novo mutations, structural variation and extrachromosomal circular DNA formation that contribute to genetic heterogeneity, but only under particular conditions and in particular genetic contexts, ensuring that the bulk of the genome remains extremely stable despite the seemingly frequent interactions between transcription and DNA replication.
Collapse
|
8
|
Murai T, Yanagi S, Hori Y, Kobayashi T. Replication fork blocking deficiency leads to a reduction of rDNA copy number in budding yeast. iScience 2024; 27:109120. [PMID: 38384843 PMCID: PMC10879690 DOI: 10.1016/j.isci.2024.109120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/27/2023] [Accepted: 01/31/2024] [Indexed: 02/23/2024] Open
Abstract
The ribosomal RNA genes are encoded as hundreds of tandem repeats, known as the rDNA, in eukaryotes. Maintaining these copies seems to be necessary, but copy number changes in an active manner have been reported in only frogs, flies, Neurospora, and yeast. In the best-studied system, yeast, a protein (Fob1) binds to the rDNA and unidirectionally blocks the replication fork. This block stimulates rDNA double-strand breaks (DSBs) leading to recombination and copy number change. To date, copy number maintenance and concerted evolution mediated by rDNA repeat turnover were the proposed benefits of Fob1-dependent replication fork arrest. In this study, we tested whether Fob1 provides these benefits and found that rDNA copy number decreases when FOB1 is deleted, suggesting that Fob1 is important for recovery from low copy number. We suppose that replication fork stalling at rDNA is necessary for recovering from rDNA copy number loss in other species as well.
Collapse
Affiliation(s)
- Taichi Murai
- Laboratory of Genome Regeneration, Institute for Quantitative Biosciences (IQB), The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shuichi Yanagi
- Laboratory of Genome Regeneration, Institute for Quantitative Biosciences (IQB), The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Yutaro Hori
- Laboratory of Genome Regeneration, Institute for Quantitative Biosciences (IQB), The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Takehiko Kobayashi
- Laboratory of Genome Regeneration, Institute for Quantitative Biosciences (IQB), The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| |
Collapse
|
9
|
Nelson JO, Slicko A, Raz AA, Yamashita YM. Insulin signaling regulates R2 retrotransposon expression to orchestrate transgenerational rDNA copy number maintenance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.28.582629. [PMID: 38464041 PMCID: PMC10925281 DOI: 10.1101/2024.02.28.582629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Preserving a large number of essential yet highly unstable ribosomal DNA (rDNA) repeats is critical for the germline to perpetuate the genome through generations. Spontaneous rDNA loss must be countered by rDNA copy number (CN) expansion. Germline rDNA CN expansion is best understood in Drosophila melanogaster, which relies on unequal sister chromatid exchange (USCE) initiated by DNA breaks at rDNA. The rDNA-specific retrotransposon R2 responsible for USCE-inducing DNA breaks is typically expressed only when rDNA CN is low to minimize the danger of DNA breaks; however, the underlying mechanism of R2 regulation remains unclear. Here we identify the insulin receptor (InR) as a major repressor of R2 expression, limiting unnecessary R2 activity. Through single-cell RNA sequencing we find that male germline stem cells (GSCs), the major cell type that undergoes rDNA CN expansion, have reduced InR expression when rDNA CN is low. Reduced InR activity in turn leads to R2 expression and CN expansion. We further find that dietary manipulation alters R2 expression and rDNA CN expansion activity. This work reveals that the insulin pathway integrates rDNA CN surveying with environmental sensing, revealing a potential mechanism by which diet exerts heritable changes to genomic content.
Collapse
Affiliation(s)
- Jonathan O Nelson
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY
- Whitehead Institute for Biomedical Research, Cambridge, MA
- Howard Hughes Medical Institute, Cambridge, MA
| | - Alyssa Slicko
- Whitehead Institute for Biomedical Research, Cambridge, MA
- Howard Hughes Medical Institute, Cambridge, MA
| | - Amelie A Raz
- Whitehead Institute for Biomedical Research, Cambridge, MA
- Howard Hughes Medical Institute, Cambridge, MA
| | - Yukiko M Yamashita
- Whitehead Institute for Biomedical Research, Cambridge, MA
- Howard Hughes Medical Institute, Cambridge, MA
- Department of Biology, MIT, Cambridge, MA
| |
Collapse
|
10
|
Hasegawa Y, Ooka H, Wakatsuki T, Sasaki M, Yamamoto A, Kobayashi T. Acidic growth conditions stabilize the ribosomal RNA gene cluster and extend lifespan through noncoding transcription repression. Genes Cells 2024; 29:111-130. [PMID: 38069450 PMCID: PMC11447830 DOI: 10.1111/gtc.13089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/07/2023] [Accepted: 11/19/2023] [Indexed: 02/06/2024]
Abstract
Blackcurrant (Ribes nigrum L.) is a classical fruit that has long been used to make juice, jam, and liqueur. Blackcurrant extract is known to relieve cells from DNA damage caused by hydrogen peroxide (H2 O2 ), methyl methane sulfonate (MMS), and ultraviolet (UV) radiation. We found that blackcurrant extract (BCE) stabilizes the ribosomal RNA gene cluster (rDNA), one of the most unstable regions in the genome, through repression of noncoding transcription in the intergenic spacer (IGS) which extended the lifespan in budding yeast. Reduced formation of extrachromosomal circles (ERCs) after exposure to fractionated BCE suggested that acidity of the growth medium impacted rDNA stability. Indeed, alteration of the acidity of the growth medium to pH ~4.5 by adding HCl increased rDNA stability and extended the lifespan. We identified RPD3 as the gene responsible for this change, which was mediated by the RPD3L histone deacetylase complex. In mammals, as inflammation sites in a tissue are acidic, DNA maintenance may be similarly regulated to prevent genome instability from causing cancer.
Collapse
Affiliation(s)
- Yo Hasegawa
- Laboratory of Genome RegenerationInstitute for Quantitative Biosciences (IQB)The University of TokyoBunkyo‐kuJapan
- Department of Biological Sciences, Graduate School of ScienceThe University of TokyoBunkyo‐kuJapan
| | - Hiroyuki Ooka
- Laboratory of Genome RegenerationInstitute for Quantitative Biosciences (IQB)The University of TokyoBunkyo‐kuJapan
- Department of Biological Sciences, Graduate School of ScienceThe University of TokyoBunkyo‐kuJapan
| | - Tsuyoshi Wakatsuki
- Laboratory of Genome RegenerationInstitute for Quantitative Biosciences (IQB)The University of TokyoBunkyo‐kuJapan
- Department of Biological Sciences, Graduate School of ScienceThe University of TokyoBunkyo‐kuJapan
- Department of Life Science and TechnologyTokyo Institute of TechnologyMidori‐kuJapan
| | - Mariko Sasaki
- Laboratory of Genome RegenerationInstitute for Quantitative Biosciences (IQB)The University of TokyoBunkyo‐kuJapan
- Present address:
Laboratory of Gene Quantity BiologyNational Institute of GeneticsMishimaJapan
| | - Ayumi Yamamoto
- Department of Industrial System EngineeringHachinohe CollegeHachinoheJapan
| | - Takehiko Kobayashi
- Laboratory of Genome RegenerationInstitute for Quantitative Biosciences (IQB)The University of TokyoBunkyo‐kuJapan
- Department of Biological Sciences, Graduate School of ScienceThe University of TokyoBunkyo‐kuJapan
- Department of Life Science and TechnologyTokyo Institute of TechnologyMidori‐kuJapan
- Collaborative Research Institute for Innovative MicrobiologyThe University of TokyoBunkyo‐kuJapan
| |
Collapse
|
11
|
Sasaki M, Kobayashi T. Regulatory processes that maintain or alter ribosomal DNA stability during the repair of programmed DNA double-strand breaks. Genes Genet Syst 2023; 98:103-119. [PMID: 35922917 DOI: 10.1266/ggs.22-00046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Organisms have evolved elaborate mechanisms that maintain genome stability. Deficiencies in these mechanisms result in changes to the nucleotide sequence as well as copy number and structural variations in the genome. Genome instability has been implicated in numerous human diseases. However, genomic alterations can also be beneficial as they are an essential part of the evolutionary process. Organisms sometimes program genomic changes that drive genetic and phenotypic diversity. Therefore, genome alterations can have both positive and negative impacts on cellular growth and functions, which underscores the need to control the processes that restrict or induce such changes to the genome. The ribosomal RNA gene (rDNA) is highly abundant in eukaryotic genomes, forming a cluster where numerous rDNA copies are tandemly arrayed. Budding yeast can alter the stability of its rDNA cluster by changing the rDNA copy number within the cluster or by producing extrachromosomal rDNA circles. Here, we review the mechanisms that regulate the stability of the budding yeast rDNA cluster during repair of DNA double-strand breaks that are formed in response to programmed DNA replication fork arrest.
Collapse
Affiliation(s)
- Mariko Sasaki
- Laboratory of Genome Regeneration, Institute for Quantitative Biosciences (IQB), The University of Tokyo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo
| | - Takehiko Kobayashi
- Laboratory of Genome Regeneration, Institute for Quantitative Biosciences (IQB), The University of Tokyo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo
| |
Collapse
|
12
|
Zylstra A, Hadj-Moussa H, Horkai D, Whale AJ, Piguet B, Houseley J. Senescence in yeast is associated with amplified linear fragments of chromosome XII rather than ribosomal DNA circle accumulation. PLoS Biol 2023; 21:e3002250. [PMID: 37643194 PMCID: PMC10464983 DOI: 10.1371/journal.pbio.3002250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 07/12/2023] [Indexed: 08/31/2023] Open
Abstract
The massive accumulation of extrachromosomal ribosomal DNA circles (ERCs) in yeast mother cells has been long cited as the primary driver of replicative ageing. ERCs arise through ribosomal DNA (rDNA) recombination, and a wealth of genetic data connects rDNA instability events giving rise to ERCs with shortened life span and other ageing pathologies. However, we understand little about the molecular effects of ERC accumulation. Here, we studied ageing in the presence and absence of ERCs, and unexpectedly found no evidence of gene expression differences that might indicate stress responses or metabolic feedback caused by ERCs. Neither did we observe any global change in the widespread disruption of gene expression that accompanies yeast ageing, altogether suggesting that ERCs are largely inert. Much of the differential gene expression that accompanies ageing in yeast was actually associated with markers of the senescence entry point (SEP), showing that senescence, rather than age, underlies these changes. Cells passed the SEP irrespective of ERCs, but we found the SEP to be associated with copy number amplification of a region of chromosome XII between the rDNA and the telomere (ChrXIIr) forming linear fragments up to approximately 1.8 Mb size, which arise in aged cells due to rDNA instability but through a different mechanism to ERCs. Therefore, although rDNA copy number increases dramatically with age due to ERC accumulation, our findings implicate ChrXIIr, rather than ERCs, as the primary driver of senescence during budding yeast ageing.
Collapse
Affiliation(s)
- Andre Zylstra
- Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom
| | | | - Dorottya Horkai
- Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom
| | - Alex J. Whale
- Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom
| | - Baptiste Piguet
- Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom
| | - Jonathan Houseley
- Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom
| |
Collapse
|
13
|
Yokoyama M, Sasaki M, Kobayashi T. Spt4 promotes cellular senescence by activating non-coding RNA transcription in ribosomal RNA gene clusters. Cell Rep 2023; 42:111944. [PMID: 36640349 DOI: 10.1016/j.celrep.2022.111944] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/06/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Genome instability can drive aging in many organisms. The ribosomal RNA gene (rDNA) cluster is one of the most unstable regions in the genome and the stability of this region impacts replicative lifespan in budding yeast. To understand the underlying mechanism, we search for yeast mutants with stabler rDNA and longer lifespans than wild-type cells. We show that absence of a transcription elongation factor, Spt4, results in increased rDNA stability, reduced levels of non-coding RNA transcripts from the regulatory E-pro promoter in the rDNA, and extended replicative lifespan in a SIR2-dependent manner. Spt4-dependent lifespan restriction is abolished in the absence of non-coding RNA transcription at the E-pro locus. The amount of Spt4 increases and its function becomes more important as cells age. These findings suggest that Spt4 is a promising aging factor that accelerates cellular senescence through rDNA instability driven by non-coding RNA transcription.
Collapse
Affiliation(s)
- Masaaki Yokoyama
- Laboratory of Genome Regeneration, Institute for Quantitative Biosciences (IQB), The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Mariko Sasaki
- Laboratory of Genome Regeneration, Institute for Quantitative Biosciences (IQB), The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Takehiko Kobayashi
- Laboratory of Genome Regeneration, Institute for Quantitative Biosciences (IQB), The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.
| |
Collapse
|
14
|
Hu X, Jin X, Cao X, Liu B. The Anaphase-Promoting Complex/Cyclosome Is a Cellular Ageing Regulator. Int J Mol Sci 2022; 23:ijms232315327. [PMID: 36499653 PMCID: PMC9740938 DOI: 10.3390/ijms232315327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/11/2022] Open
Abstract
The anaphase-promoting complex/cyclosome (APC/C) is a complicated cellular component that plays significant roles in regulating the cell cycle process of eukaryotic organisms. The spatiotemporal regulation mechanisms of APC/C in distinct cell cycle transitions are no longer mysterious, and the components of this protein complex are gradually identified and characterized. Given the close relationship between the cell cycle and lifespan, it is urgent to understand the roles of APC/C in lifespan regulation, but this field still seems to have not been systematically summarized. Furthermore, although several reviews have reported the roles of APC/C in cancer, there are still gaps in the summary of its roles in other age-related diseases. In this review, we propose that the APC/C is a novel cellular ageing regulator based on its indispensable role in the regulation of lifespan and its involvement in age-associated diseases. This work provides an extensive review of aspects related to the underlying mechanisms of APC/C in lifespan regulation and how it participates in age-associated diseases. More comprehensive recognition and understanding of the relationship between APC/C and ageing and age-related diseases will increase the development of targeted strategies for human health.
Collapse
Affiliation(s)
- Xiangdong Hu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Xuejiao Jin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Xiuling Cao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
- Correspondence: (X.C.); (B.L.)
| | - Beidong Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390 Gothenburg, Sweden
- Correspondence: (X.C.); (B.L.)
| |
Collapse
|
15
|
Wagner A, Schosserer M. The epitranscriptome in ageing and stress resistance: A systematic review. Ageing Res Rev 2022; 81:101700. [PMID: 35908668 DOI: 10.1016/j.arr.2022.101700] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/15/2022] [Accepted: 07/25/2022] [Indexed: 01/31/2023]
Abstract
Modifications of RNA, collectively called the "epitranscriptome", might provide novel biomarkers and innovative targets for interventions in geroscience but are just beginning to be studied in the context of ageing and stress resistance. RNA modifications modulate gene expression by affecting translation initiation and speed, miRNA binding, RNA stability, and RNA degradation. Nonetheless, the precise underlying molecular mechanisms and physiological consequences of most alterations of the epitranscriptome are still only poorly understood. We here systematically review different types of modifications of rRNA, tRNA and mRNA, the methodology to analyze them, current challenges in the field, and human disease associations. Furthermore, we compiled evidence for a connection between individual enzymes, which install RNA modifications, and lifespan in yeast, worm and fly. We also included resistance to different stressors and competitive fitness as search criteria for genes potentially relevant to ageing. Promising candidates identified by this approach include RCM1/NSUN5, RRP8, and F33A8.4/ZCCHC4 that introduce base methylations in rRNA, the methyltransferases DNMT2 and TRM9/ALKBH8, as well as factors involved in the thiolation or A to I editing in tRNA, and finally the m6A machinery for mRNA.
Collapse
Affiliation(s)
- Anja Wagner
- Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Markus Schosserer
- Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria; Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria.
| |
Collapse
|
16
|
Paxman J, Zhou Z, O'Laughlin R, Liu Y, Li Y, Tian W, Su H, Jiang Y, Holness SE, Stasiowski E, Tsimring LS, Pillus L, Hasty J, Hao N. Age-dependent aggregation of ribosomal RNA-binding proteins links deterioration in chromatin stability with challenges to proteostasis. eLife 2022; 11:e75978. [PMID: 36194205 PMCID: PMC9578700 DOI: 10.7554/elife.75978] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
Chromatin instability and protein homeostasis (proteostasis) stress are two well-established hallmarks of aging, which have been considered largely independent of each other. Using microfluidics and single-cell imaging approaches, we observed that, during the replicative aging of Saccharomyces cerevisiae, a challenge to proteostasis occurs specifically in the fraction of cells with decreased stability within the ribosomal DNA (rDNA). A screen of 170 yeast RNA-binding proteins identified ribosomal RNA (rRNA)-binding proteins as the most enriched group that aggregate upon a decrease in rDNA stability induced by inhibition of a conserved lysine deacetylase Sir2. Further, loss of rDNA stability induces age-dependent aggregation of rRNA-binding proteins through aberrant overproduction of rRNAs. These aggregates contribute to age-induced proteostasis decline and limit cellular lifespan. Our findings reveal a mechanism underlying the interconnection between chromatin instability and proteostasis stress and highlight the importance of cell-to-cell variability in aging processes.
Collapse
Affiliation(s)
- Julie Paxman
- Department of Molecular Biology, Division of Biological Sciences, University of California, San DiegoLa JollaUnited States
| | - Zhen Zhou
- Department of Molecular Biology, Division of Biological Sciences, University of California, San DiegoLa JollaUnited States
| | - Richard O'Laughlin
- Department of Bioengineering, University of California, San DiegoLa JollaUnited States
| | - Yuting Liu
- Department of Molecular Biology, Division of Biological Sciences, University of California, San DiegoLa JollaUnited States
| | - Yang Li
- Department of Molecular Biology, Division of Biological Sciences, University of California, San DiegoLa JollaUnited States
| | - Wanying Tian
- Department of Molecular Biology, Division of Biological Sciences, University of California, San DiegoLa JollaUnited States
| | - Hetian Su
- Department of Molecular Biology, Division of Biological Sciences, University of California, San DiegoLa JollaUnited States
| | - Yanfei Jiang
- Department of Molecular Biology, Division of Biological Sciences, University of California, San DiegoLa JollaUnited States
| | - Shayna E Holness
- Department of Chemistry and Biochemistry, University of California, San DiegoLa JollaUnited States
| | - Elizabeth Stasiowski
- Department of Bioengineering, University of California, San DiegoLa JollaUnited States
| | - Lev S Tsimring
- Synthetic Biology Institute, University of California, San DiegoLa JollaUnited States
| | - Lorraine Pillus
- Department of Molecular Biology, Division of Biological Sciences, University of California, San DiegoLa JollaUnited States
- UCSD Moores Cancer Center, University of California San, DiegoLa JollaUnited States
| | - Jeff Hasty
- Department of Molecular Biology, Division of Biological Sciences, University of California, San DiegoLa JollaUnited States
- Department of Bioengineering, University of California, San DiegoLa JollaUnited States
- Synthetic Biology Institute, University of California, San DiegoLa JollaUnited States
| | - Nan Hao
- Department of Molecular Biology, Division of Biological Sciences, University of California, San DiegoLa JollaUnited States
- Department of Bioengineering, University of California, San DiegoLa JollaUnited States
- Synthetic Biology Institute, University of California, San DiegoLa JollaUnited States
| |
Collapse
|
17
|
Extrachromosomal circular DNA: biogenesis, structure, functions and diseases. Signal Transduct Target Ther 2022; 7:342. [PMID: 36184613 PMCID: PMC9527254 DOI: 10.1038/s41392-022-01176-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/14/2022] [Accepted: 09/01/2022] [Indexed: 11/08/2022] Open
Abstract
Extrachromosomal circular DNA (eccDNA), ranging in size from tens to millions of base pairs, is independent of conventional chromosomes. Recently, eccDNAs have been considered an unanticipated major source of somatic rearrangements, contributing to genomic remodeling through chimeric circularization and reintegration of circular DNA into the linear genome. In addition, the origin of eccDNA is considered to be associated with essential chromatin-related events, including the formation of super-enhancers and DNA repair machineries. Moreover, our understanding of the properties and functions of eccDNA has continuously and greatly expanded. Emerging investigations demonstrate that eccDNAs serve as multifunctional molecules in various organisms during diversified biological processes, such as epigenetic remodeling, telomere trimming, and the regulation of canonical signaling pathways. Importantly, its special distribution potentiates eccDNA as a measurable biomarker in many diseases, especially cancers. The loss of eccDNA homeostasis facilitates tumor initiation, malignant progression, and heterogeneous evolution in many cancers. An in-depth understanding of eccDNA provides novel insights for precision cancer treatment. In this review, we summarized the discovery history of eccDNA, discussed the biogenesis, characteristics, and functions of eccDNA. Moreover, we emphasized the role of eccDNA during tumor pathogenesis and malignant evolution. Therapeutically, we summarized potential clinical applications that target aberrant eccDNA in multiple diseases.
Collapse
|
18
|
Aspert T, Hentsch D, Charvin G. DetecDiv, a generalist deep-learning platform for automated cell division tracking and survival analysis. eLife 2022; 11:79519. [PMID: 35976090 PMCID: PMC9444243 DOI: 10.7554/elife.79519] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
Automating the extraction of meaningful temporal information from sequences of microscopy images represents a major challenge to characterize dynamical biological processes. So far, strong limitations in the ability to quantitatively analyze single-cell trajectories have prevented large-scale investigations to assess the dynamics of entry into replicative senescence in yeast. Here, we have developed DetecDiv, a microfluidic-based image acquisition platform combined with deep learning-based software for high-throughput single-cell division tracking. We show that DetecDiv can automatically reconstruct cellular replicative lifespans with high accuracy and performs similarly with various imaging platforms and geometries of microfluidic traps. In addition, this methodology provides comprehensive temporal cellular metrics using time-series classification and image semantic segmentation. Last, we show that this method can be further applied to automatically quantify the dynamics of cellular adaptation and real-time cell survival upon exposure to environmental stress. Hence, this methodology provides an all-in-one toolbox for high-throughput phenotyping for cell cycle, stress response, and replicative lifespan assays.
Collapse
Affiliation(s)
- Théo Aspert
- Department of Developmental Biology and Stem Cells, Institute of Genetics and Molecular and Cellular Biology, Illkirch, France
| | - Didier Hentsch
- Department of Developmental Biology and Stem Cells, Institute of Genetics and Molecular and Cellular Biology, Illkirch, France
| | - Gilles Charvin
- Department of Developmental Biology and Stem Cells, Institute of Genetics and Molecular and Cellular Biology, Illkirch, France
| |
Collapse
|
19
|
Arrey G, Keating ST, Regenberg B. A unifying model for extrachromosomal circular DNA load in eukaryotic cells. Semin Cell Dev Biol 2022; 128:40-50. [PMID: 35292190 DOI: 10.1016/j.semcdb.2022.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/03/2022] [Accepted: 03/03/2022] [Indexed: 02/06/2023]
Abstract
Extrachromosomal circular DNA (eccDNA) with exons and whole genes are common features of eukaryotic cells. Work from especially tumours and the yeast Saccharomyces cerevisiae has revealed that eccDNA can provide large selective advantages and disadvantages. Besides the phenotypic effect due to expression of an eccDNA fragment, eccDNA is different from other mutations in that it is released from 1:1 segregation during cell division. This means that eccDNA can quickly change copy number, pickup secondary mutations and reintegrate into a chromosome to establish substantial genetic variation that could not have evolved via canonical mechanisms. We propose a unifying 5-factor model for conceptualizing the eccDNA load of a eukaryotic cell, emphasizing formation, replication, segregation, selection and elimination. We suggest that the magnitude of these sequential events and their interactions determine the copy number of eccDNA in mitotically dividing cells. We believe that our model will provide a coherent framework for eccDNA research, to understand its biology and the factors that can be manipulated to modulate eccDNA load in eukaryotic cells.
Collapse
Affiliation(s)
- Gerard Arrey
- Section for Ecology and Evolution, University of Copenhagen, Copenhagen, Denmark
| | - Samuel T Keating
- Section for Ecology and Evolution, University of Copenhagen, Copenhagen, Denmark
| | - Birgitte Regenberg
- Section for Ecology and Evolution, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
20
|
The long and short of rDNA and yeast replicative aging. Proc Natl Acad Sci U S A 2022; 119:e2205124119. [PMID: 35658078 DOI: 10.1073/pnas.2205124119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
21
|
Yanagi S, Iida T, Kobayashi T. RPS12 and UBC4 Are Related to Senescence Signal Production in the Ribosomal RNA Gene Cluster. Mol Cell Biol 2022; 42:e0002822. [PMID: 35384721 PMCID: PMC9119118 DOI: 10.1128/mcb.00028-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/16/2022] [Accepted: 03/08/2022] [Indexed: 11/20/2022] Open
Abstract
Genome instability causes cellular senescence in many organisms. The rRNA gene cluster (rDNA) is one of the most unstable regions in the genome and this instability might convey a signal that induces senescence in the budding yeast. The instability of rDNA mostly depends on replication fork blocking (RFB) activity which induces recombination and gene amplification. By overexpression of Fob1, responsible for the RFB activity, we found that unstable rDNA induces cell cycle arrest and restricts replicative life span. We isolated yeast mutants that grew normally while Fob1 was overexpressed, expecting that some of the mutated genes would be related to the production of a "senescence signal" that elongates cell cycle, stops cell division and finally restricts replicative life span. Our screen identified three suppressor genes, RPS12, UBC4, and CCR4. Replicative life spans of the rps12 and ubc4 mutants were longer than that of wild-type cells. An increase in the levels of extrachromosomal rDNA circles and noncoding transcripts, known to shorten replicative life span, was observed in ubc4 and rps12 respectively, while DNA double strand-breaks at the RFB that are triggers of rDNA instability were reduced in the rps12 mutant. Overall, our observations indicate that Rps12 and Ubc4 contribute to the connection between rDNA instability and replicative life span.
Collapse
Affiliation(s)
- Shuichi Yanagi
- Laboratory of Genome Regeneration, Institute for Quantitative Biosciences (IQB), The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Tetsushi Iida
- Laboratory of Genome Regeneration, Institute for Quantitative Biosciences (IQB), The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Takehiko Kobayashi
- Laboratory of Genome Regeneration, Institute for Quantitative Biosciences (IQB), The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
22
|
Antiaging Effect of 4-N-Furfurylcytosine in Yeast Model Manifests through Enhancement of Mitochondrial Activity and ROS Reduction. Antioxidants (Basel) 2022; 11:antiox11050850. [PMID: 35624714 PMCID: PMC9137487 DOI: 10.3390/antiox11050850] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 12/04/2022] Open
Abstract
Small compounds are a large group of chemicals characterized by various biological properties. Some of them also have antiaging potential, which is mainly attributed to their antioxidant activity. In this study, we examined the antiaging effect of 4-N-Furfurylcytosine (FC), a cytosine derivative belonging to a group of small compounds, on budding yeast Saccharomyces cerevisiae. We chose this yeast model as it is known to contain multiple conserved genes and mechanisms identical to that of humans and has been proven to be successful in aging research. The chronological lifespan assay performed in the study revealed that FC improved the viability of yeast cells in a concentration-dependent manner. Furthermore, enhanced mitochondrial activity, together with reduced intracellular ROS level, was observed in FC-treated yeast cells. The gene expression analysis confirmed that FC treatment resulted in the restriction of the TORC1 signaling pathway. These results indicate that FC has antiaging properties.
Collapse
|
23
|
Hotz M, Thayer NH, Hendrickson DG, Schinski EL, Xu J, Gottschling DE. rDNA array length is a major determinant of replicative lifespan in budding yeast. Proc Natl Acad Sci U S A 2022; 119:e2119593119. [PMID: 35394872 PMCID: PMC9169770 DOI: 10.1073/pnas.2119593119] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/01/2022] [Indexed: 12/29/2022] Open
Abstract
The complex processes and interactions that regulate aging and determine lifespan are not fully defined for any organism. Here, taking advantage of recent technological advances in studying aging in budding yeast, we discovered a previously unappreciated relationship between the number of copies of the ribosomal RNA gene present in its chromosomal array and replicative lifespan (RLS). Specifically, the chromosomal ribosomal DNA (rDNA) copy number (rDNA CN) positively correlated with RLS and this interaction explained over 70% of variability in RLS among a series of wild-type strains. In strains with low rDNA CN, SIR2 expression was attenuated and extrachromosomal rDNA circle (ERC) accumulation was increased, leading to shorter lifespan. Suppressing ERC formation by deletion of FOB1 eliminated the relationship between rDNA CN and RLS. These data suggest that previously identified rDNA CN regulatory mechanisms limit lifespan. Importantly, the RLSs of reported lifespan-enhancing mutations were significantly impacted by rDNA CN, suggesting that changes in rDNA CN might explain the magnitude of some of those reported effects. We propose that because rDNA CN is modulated by environmental, genetic, and stochastic factors, considering rDNA CN is a prerequisite for accurate interpretation of lifespan data.
Collapse
Affiliation(s)
- Manuel Hotz
- Calico Life Sciences LLC, South San Francisco, CA 94080
| | | | | | | | - Jun Xu
- Calico Life Sciences LLC, South San Francisco, CA 94080
| | | |
Collapse
|
24
|
Meinema AC, Marzelliusardottir A, Mirkovic M, Aspert T, Lee SS, Charvin G, Barral Y. DNA circles promote yeast ageing in part through stimulating the reorganization of nuclear pore complexes. eLife 2022; 11:71196. [PMID: 35373738 PMCID: PMC9020822 DOI: 10.7554/elife.71196] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 04/03/2022] [Indexed: 11/13/2022] Open
Abstract
The nuclear pore complex (NPC) mediates nearly all exchanges between nucleus and cytoplasm, and in many species it changes composition as the organism ages. However, how these changes arise and whether they contribute themselves to ageing is poorly understood. We show that SAGA-dependent attachment of DNA circles to NPCs in replicatively ageing yeast cells causes NPCs to lose their nuclear basket and cytoplasmic complexes. These NPCs were not recognized as defective by the NPC quality control machinery (SINC) and not targeted by ESCRTs. They interacted normally or more effectively with protein import and export factors but specifically lost mRNA export factors. Acetylation of Nup60 drove the displacement of basket and cytoplasmic complexes from circle-bound NPCs. Mutations preventing this remodeling extended the replicative lifespan of the cells. Thus, our data suggest that the anchorage of accumulating circles locks NPCs in a specialized state and that this process is intrinsically linked to the mechanisms by which ERCs promote ageing.
Collapse
Affiliation(s)
| | | | | | - Théo Aspert
- Department of Developmental Biology and Stem Cells, Institute of Genetics and Molecular and Cellular Biology, Illkirch, France
| | - Sung Sik Lee
- Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Gilles Charvin
- Department of Developmental Biology and Stem Cells, Institute of Genetics and Molecular and Cellular Biology, Illkirch, France
| | - Yves Barral
- Department of Biology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
25
|
Nakajima T, Hosoyamada S, Kobayashi T, Mukai Y. Secreted acid phosphatases maintain replicative lifespan via inositol polyphosphate metabolism in budding yeast. FEBS Lett 2022; 596:189-198. [PMID: 34845723 DOI: 10.1002/1873-3468.14245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/03/2021] [Accepted: 11/24/2021] [Indexed: 11/07/2022]
Abstract
Secreted acid phosphatases (APases) dephosphorylate extracellular organic phosphate compounds to supply inorganic phosphate (Pi) to maintain cellular functions. Here, we show that APases are necessary to maintain a normal replicative lifespan in Saccharomyces cerevisiae. Deletion of all four APase genes shortened the lifespan in yeast strains on synthetic media (irrespective of the concentrations of Pi in the media), but it did not affect the intracellular ortho- and polyphosphate levels. Deletion of inositol-pentakisphosphate 2-kinase (IPK1), which encodes inositol-pentakisphosphate 2-kinase, restored the lifespan in APase-null mutants, and IPK1 overexpression shortened the lifespan in wild-type strains. Overexpression of inositol hexakisphosphate (IP6 ) and heptakisphosphate kinases, KCS1 and VIP1, recovered the lifespan in APase-null mutants. Thus, yeast APases modulate the replicative lifespan, probably through dephosphorylation of intracellular IP6 .
Collapse
Affiliation(s)
- Toshio Nakajima
- Department of Frontier Bioscience, Nagahama Institute of Bio-Science and Technology, Shiga, Japan
| | - Shun Hosoyamada
- Institute for Quantitative Biosciences, The University of Tokyo, Japan
| | - Takehiko Kobayashi
- Institute for Quantitative Biosciences, The University of Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Japan
| | - Yukio Mukai
- Department of Frontier Bioscience, Nagahama Institute of Bio-Science and Technology, Shiga, Japan
| |
Collapse
|
26
|
Kasselimi E, Pefani DE, Taraviras S, Lygerou Z. Ribosomal DNA and the nucleolus at the heart of aging. Trends Biochem Sci 2022; 47:328-341. [DOI: 10.1016/j.tibs.2021.12.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/15/2022]
|
27
|
St Germain C, Zhao H, Barlow JH. Transcription-Replication Collisions-A Series of Unfortunate Events. Biomolecules 2021; 11:1249. [PMID: 34439915 PMCID: PMC8391903 DOI: 10.3390/biom11081249] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/12/2021] [Accepted: 08/17/2021] [Indexed: 02/07/2023] Open
Abstract
Transcription-replication interactions occur when DNA replication encounters genomic regions undergoing transcription. Both replication and transcription are essential for life and use the same DNA template making conflicts unavoidable. R-loops, DNA supercoiling, DNA secondary structure, and chromatin-binding proteins are all potential obstacles for processive replication or transcription and pose an even more potent threat to genome integrity when these processes co-occur. It is critical to maintaining high fidelity and processivity of transcription and replication while navigating through a complex chromatin environment, highlighting the importance of defining cellular pathways regulating transcription-replication interaction formation, evasion, and resolution. Here we discuss how transcription influences replication fork stability, and the safeguards that have evolved to navigate transcription-replication interactions and maintain genome integrity in mammalian cells.
Collapse
Affiliation(s)
- Commodore St Germain
- School of Mathematics and Science, Solano Community College, 4000 Suisun Valley Road, Fairfield, CA 94534, USA
- Department of Microbiology and Molecular Genetics, University of California Davis, One Shields Avenue, Davis, CA 95616, USA;
| | - Hongchang Zhao
- Department of Microbiology and Molecular Genetics, University of California Davis, One Shields Avenue, Davis, CA 95616, USA;
| | - Jacqueline H. Barlow
- Department of Microbiology and Molecular Genetics, University of California Davis, One Shields Avenue, Davis, CA 95616, USA;
| |
Collapse
|
28
|
Hori Y, Shimamoto A, Kobayashi T. The human ribosomal DNA array is composed of highly homogenized tandem clusters. Genome Res 2021; 31:1971-1982. [PMID: 34407983 PMCID: PMC8559705 DOI: 10.1101/gr.275838.121] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/09/2021] [Indexed: 11/25/2022]
Abstract
The structure of the human ribosomal DNA (rDNA) cluster has traditionally been hard to analyze owing to its highly repetitive nature. However, the recent development of long-read sequencing technology, such as Oxford Nanopore sequencing, has enabled us to study the large-scale structure of the genome. Using this technology, we found that human cells have a quite regular rDNA structure. Although each human rDNA copy has some variations in its noncoding region, contiguous copies of rDNA are similar, suggesting that homogenization through gene conversion frequently occurs between copies. Analysis of rDNA methylation by Nanopore sequencing further showed that all the noncoding regions are heavily methylated, whereas about half of the coding regions are clearly unmethylated. The ratio of unmethylated copies, which are speculated to be transcriptionally active, was lower in individuals with a higher rDNA copy number, suggesting that there is a mechanism that keeps the active copy number stable. In addition, the rDNA in progeroid syndrome patient cells with reduced DNA repair activity had more unstable copies compared with control normal cells, although the rate was much lower than previously reported using a fiber-FISH method. Collectively, our results clarify the view of rDNA stability and transcription regulation in human cells, indicating the presence of mechanisms for both homogenizations to ensure sequence quality and maintenance of active copies for cellular functions.
Collapse
Affiliation(s)
- Yutaro Hori
- Institute for Quantitative Biosciences, the University of Tokyo, Tokyo 133-0032, Japan
| | - Akira Shimamoto
- Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyo Onoda, Yamaguchi 756-0884, Japan
| | - Takehiko Kobayashi
- Institute for Quantitative Biosciences, the University of Tokyo, Tokyo 133-0032, Japan
| |
Collapse
|
29
|
Moradi‐Fard S, Mojumdar A, Chan M, Harkness TA, Cobb JA. Smc5/6 in the rDNA modulates lifespan independently of Fob1. Aging Cell 2021; 20:e13373. [PMID: 33979898 PMCID: PMC8208791 DOI: 10.1111/acel.13373] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/18/2021] [Accepted: 04/08/2021] [Indexed: 12/28/2022] Open
Abstract
The ribosomal DNA (rDNA) in Saccharomycescerevisiae is in one tandem repeat array on Chromosome XII. Two regions within each repetitive element, called intergenic spacer 1 (IGS1) and IGS2, are important for organizing the rDNA within the nucleolus. The Smc5/6 complex localizes to IGS1 and IGS2. We show that Smc5/6 has a function in the rDNA beyond its role in homologous recombination (HR) at the replication fork barrier (RFB) located in IGS1. Fob1 is required for optimal binding of Smc5/6 at IGS1 whereas the canonical silencing factor Sir2 is required for its optimal binding at IGS2, independently of Fob1. Through interdependent interactions, Smc5/6 stabilizes Sir2 and Cohibin at both IGS and its recovery at IGS2 is important for nucleolar compaction and transcriptional silencing, which in turn supports rDNA stability and lifespan.
Collapse
Affiliation(s)
- Sarah Moradi‐Fard
- Departments of Biochemistry & Molecular Biology and Oncology Robson DNA Science Centre Arnie Charbonneau Cancer Institute Cumming School of Medicine University of Calgary Calgary AB Canada
| | - Aditya Mojumdar
- Departments of Biochemistry & Molecular Biology and Oncology Robson DNA Science Centre Arnie Charbonneau Cancer Institute Cumming School of Medicine University of Calgary Calgary AB Canada
| | - Megan Chan
- Departments of Biochemistry & Molecular Biology and Oncology Robson DNA Science Centre Arnie Charbonneau Cancer Institute Cumming School of Medicine University of Calgary Calgary AB Canada
| | - Troy A.A. Harkness
- Department of Biochemistry, Microbiology and Immunology University of Saskatchewan Saskatoon SK Canada
| | - Jennifer A. Cobb
- Departments of Biochemistry & Molecular Biology and Oncology Robson DNA Science Centre Arnie Charbonneau Cancer Institute Cumming School of Medicine University of Calgary Calgary AB Canada
| |
Collapse
|
30
|
Guo HB, Ghafari M, Dang W, Qin H. Protein interaction potential landscapes for yeast replicative aging. Sci Rep 2021; 11:7143. [PMID: 33785798 PMCID: PMC8010020 DOI: 10.1038/s41598-021-86415-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 03/15/2021] [Indexed: 11/17/2022] Open
Abstract
We proposed a novel interaction potential landscape approach to map the systems-level profile changes of gene networks during replicative aging in Saccharomyces cerevisiae. This approach enabled us to apply quasi-potentials, the negative logarithm of the probabilities, to calibrate the elevation of the interaction landscapes with young cells as a reference state. Our approach detected opposite landscape changes based on protein abundances from transcript levels, especially for intra-essential gene interactions. We showed that essential proteins play different roles from hub proteins on the age-dependent interaction potential landscapes. We verified that hub proteins tend to avoid other hub proteins, but essential proteins prefer to interact with other essential proteins. Overall, we showed that the interaction potential landscape is promising for inferring network profile change during aging and that the essential hub proteins may play an important role in the uncoupling between protein and transcript levels during replicative aging.
Collapse
Affiliation(s)
- Hao-Bo Guo
- Department of Computer Science and Engineering, The University of Tennessee at Chattanooga, Chattanooga, TN, 37405, USA.
- SimCenter, The University of Tennessee at Chattanooga, Chattanooga, TN, 37405, USA.
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, OH, 45433, USA.
| | - Mehran Ghafari
- Department of Computer Science and Engineering, The University of Tennessee at Chattanooga, Chattanooga, TN, 37405, USA
| | - Weiwei Dang
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Hong Qin
- Department of Computer Science and Engineering, The University of Tennessee at Chattanooga, Chattanooga, TN, 37405, USA.
- SimCenter, The University of Tennessee at Chattanooga, Chattanooga, TN, 37405, USA.
- Department of Biology, Geology and Environmental Science, The University of Tennessee at Chattanooga, Chattanooga, TN, 37405, USA.
| |
Collapse
|
31
|
Cook D, Long S, Stanton J, Cusick P, Lawrimore C, Yeh E, Grant S, Bloom K. Behavior of dicentric chromosomes in budding yeast. PLoS Genet 2021; 17:e1009442. [PMID: 33735169 PMCID: PMC8009378 DOI: 10.1371/journal.pgen.1009442] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 03/30/2021] [Accepted: 02/24/2021] [Indexed: 12/15/2022] Open
Abstract
DNA double-strand breaks arise in vivo when a dicentric chromosome (two centromeres on one chromosome) goes through mitosis with the two centromeres attached to opposite spindle pole bodies. Repair of the DSBs generates phenotypic diversity due to the range of monocentric derivative chromosomes that arise. To explore whether DSBs may be differentially repaired as a function of their spatial position in the chromosome, we have examined the structure of monocentric derivative chromosomes from cells containing a suite of dicentric chromosomes in which the distance between the two centromeres ranges from 6.5 kb to 57.7 kb. Two major classes of repair products, homology-based (homologous recombination (HR) and single-strand annealing (SSA)) and end-joining (non-homologous (NHEJ) and micro-homology mediated (MMEJ)) were identified. The distribution of repair products varies as a function of distance between the two centromeres. Genetic dependencies on double strand break repair (Rad52), DNA ligase (Lif1), and S phase checkpoint (Mrc1) are indicative of distinct repair pathway choices for DNA breaks in the pericentromeric chromatin versus the arms. A challenge in chromosome biology is to integrate the linear code with spatial organization and chromosome dynamics within the nucleus. The major sub-division of function in the nucleus is the nucleolus, the site of ribosomal RNA synthesis. We report that the pericentromere DNA surrounding the centromere is another region of confined biochemistry. We have found that chromosome breaks between two centromeres that both lie within the pericentromeric region of the chromosomes are repaired via pathways that do not rely on sequence homology (MMEJ or NHEJ). Chromosome breaks in dicentric chromosomes whose centromeres are separated by > 20 kb are repaired via pathways that rely mainly on sequence homology (HR, SSA). The repair of breaks in the pericentromere versus breaks in the arms are differentially dependent on Rad52, Lif1, and Mrc1, further indicative of spatial control over DNA repair pathways.
Collapse
Affiliation(s)
- Diana Cook
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Sarah Long
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - John Stanton
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Patrick Cusick
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Colleen Lawrimore
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Elaine Yeh
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Sarah Grant
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Kerry Bloom
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
32
|
Martínez Corrales G, Filer D, Wenz KC, Rogan A, Phillips G, Li M, Feseha Y, Broughton SJ, Alic N. Partial Inhibition of RNA Polymerase I Promotes Animal Health and Longevity. Cell Rep 2021; 30:1661-1669.e4. [PMID: 32049000 PMCID: PMC7013379 DOI: 10.1016/j.celrep.2020.01.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/12/2019] [Accepted: 01/03/2020] [Indexed: 12/19/2022] Open
Abstract
Health and survival in old age can be improved by changes in gene expression. RNA polymerase (Pol) I is the essential, conserved enzyme whose task is to generate the pre-ribosomal RNA (rRNA). We find that reducing the levels of Pol I activity is sufficient to extend lifespan in the fruit fly. This effect can be recapitulated by partial, adult-restricted inhibition, with both enterocytes and stem cells of the adult midgut emerging as important cell types. In stem cells, Pol I appears to act in the same longevity pathway as Pol III, implicating rRNA synthesis in these cells as the key lifespan determinant. Importantly, reduction in Pol I activity delays broad, age-related impairment and pathology, improving the function of diverse organ systems. Hence, our study shows that Pol I activity in the adult drives systemic, age-related decline in animal health and anticipates mortality. Partial inhibition of RNA polymerase I (Pol I) can extend lifespan in the fruit fly Reducing Pol I activity after development and only in the gut is sufficient Pol I activity affects aging from both post-mitotic and mitotically active cells Pol I activity affects the age-related decline in performance of multiple organs
Collapse
Affiliation(s)
- Guillermo Martínez Corrales
- Institute of Healthy Ageing and the Research Department of Genetics, Evolution, and Environment, University College London, WC1E 6BT London, UK
| | - Danny Filer
- Institute of Healthy Ageing and the Research Department of Genetics, Evolution, and Environment, University College London, WC1E 6BT London, UK
| | - Katharina C Wenz
- Institute of Healthy Ageing and the Research Department of Genetics, Evolution, and Environment, University College London, WC1E 6BT London, UK
| | - Abbie Rogan
- Institute of Healthy Ageing and the Research Department of Genetics, Evolution, and Environment, University College London, WC1E 6BT London, UK
| | - George Phillips
- Institute of Healthy Ageing and the Research Department of Genetics, Evolution, and Environment, University College London, WC1E 6BT London, UK
| | - Mengjia Li
- Institute of Healthy Ageing and the Research Department of Genetics, Evolution, and Environment, University College London, WC1E 6BT London, UK
| | - Yodit Feseha
- Institute of Healthy Ageing and the Research Department of Genetics, Evolution, and Environment, University College London, WC1E 6BT London, UK
| | - Susan J Broughton
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, LA1 4YQ Lancaster, UK
| | - Nazif Alic
- Institute of Healthy Ageing and the Research Department of Genetics, Evolution, and Environment, University College London, WC1E 6BT London, UK.
| |
Collapse
|
33
|
Fukuda APM, Camandona VDL, Francisco KJM, Rios-Anjos RM, Lucio do Lago C, Ferreira-Junior JR. Simulated microgravity accelerates aging in Saccharomyces cerevisiae. LIFE SCIENCES IN SPACE RESEARCH 2021; 28:32-40. [PMID: 33612178 DOI: 10.1016/j.lssr.2020.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 12/01/2020] [Accepted: 12/29/2020] [Indexed: 06/12/2023]
Abstract
The human body experiences physiological changes under microgravity environment that phenocopy aging on Earth. These changes include early onset osteoporosis, skeletal muscle atrophy, cardiac dysfunction, and immunosenescence, and such adaptations to the space environment may pose some risk to crewed missions to Mars. To investigate the effect of microgravity on aging, many model organisms have been used such as the nematode Caenorhabditis elegans, the fruit fly Drosophila melanogaster, and mice. Herein we report that the budding yeast Saccharomyces cerevisiae show decreased replicative lifespan (RLS) under simulated microgravity in a clinostat. The reduction of yeast lifespan is not a result of decreased tolerance to heat shock or oxidative stress and could be overcome either by deletion of FOB1 or calorie restriction, two known interventions that extend yeast RLS. Deletion of the sirtuin gene SIR2 worsens the simulated microgravity effect on RLS, and together with the fob1Δ mutant phenotype, it suggests that simulated microgravity augments the formation of extrachromosomal rDNA circles, which accumulate in yeast during aging. We also show that the chronological lifespan in minimal medium was not changed when cells were grown in the clinostat. Our data suggest that the reduction in longevity due to simulated microgravity is conserved in yeast, worms, and flies, and these findings may have potential implications for future crewed missions in space, as well as the use of microgravity as a model for human aging.
Collapse
Affiliation(s)
| | | | | | | | - Claudimir Lucio do Lago
- Departamento de Química Fundamental - Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | | |
Collapse
|
34
|
Goffová I, Fajkus J. The rDNA Loci-Intersections of Replication, Transcription, and Repair Pathways. Int J Mol Sci 2021; 22:1302. [PMID: 33525595 PMCID: PMC7865372 DOI: 10.3390/ijms22031302] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/25/2021] [Accepted: 01/25/2021] [Indexed: 12/28/2022] Open
Abstract
Genes encoding ribosomal RNA (rDNA) are essential for cell survival and are particularly sensitive to factors leading to genomic instability. Their repetitive character makes them prone to inappropriate recombinational events arising from collision of transcriptional and replication machineries, resulting in unstable rDNA copy numbers. In this review, we summarize current knowledge on the structure and organization of rDNA, its role in sensing changes in the genome, and its linkage to aging. We also review recent findings on the main factors involved in chromatin assembly and DNA repair in the maintenance of rDNA stability in the model plants Arabidopsis thaliana and the moss Physcomitrella patens, providing a view across the plant evolutionary tree.
Collapse
Affiliation(s)
- Ivana Goffová
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, CZ-61137 Brno, Czech Republic;
- Chromatin Molecular Complexes, Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, CZ-62500 Brno, Czech Republic
| | - Jiří Fajkus
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, CZ-61137 Brno, Czech Republic;
- Chromatin Molecular Complexes, Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, CZ-62500 Brno, Czech Republic
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, CZ-61265 Brno, Czech Republic
| |
Collapse
|
35
|
Lee JW, Ong EBB. Genomic Instability and Cellular Senescence: Lessons From the Budding Yeast. Front Cell Dev Biol 2021; 8:619126. [PMID: 33511130 PMCID: PMC7835410 DOI: 10.3389/fcell.2020.619126] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/15/2020] [Indexed: 01/14/2023] Open
Abstract
Aging is a complex biological process that occurs in all living organisms. Aging is initiated by the gradual accumulation of biomolecular damage in cells leading to the loss of cellular function and ultimately death. Cellular senescence is one such pathway that leads to aging. The accumulation of nucleic acid damage and genetic alterations that activate permanent cell-cycle arrest triggers the process of senescence. Cellular senescence can result from telomere erosion and ribosomal DNA instability. In this review, we summarize the molecular mechanisms of telomere length homeostasis and ribosomal DNA stability, and describe how these mechanisms are linked to cellular senescence and longevity through lessons learned from budding yeast.
Collapse
Affiliation(s)
- Jee Whu Lee
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang, Malaysia.,USM-RIKEN International Centre for Aging Science (URICAS), Universiti Sains Malaysia, Penang, Malaysia
| | - Eugene Boon Beng Ong
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang, Malaysia.,USM-RIKEN International Centre for Aging Science (URICAS), Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|
36
|
Egidi A, Di Felice F, Camilloni G. Saccharomyces cerevisiae rDNA as super-hub: the region where replication, transcription and recombination meet. Cell Mol Life Sci 2020; 77:4787-4798. [PMID: 32476055 PMCID: PMC11104796 DOI: 10.1007/s00018-020-03562-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/04/2020] [Accepted: 05/25/2020] [Indexed: 11/29/2022]
Abstract
Saccharomyces cerevisiae ribosomal DNA, the repeated region where rRNAs are synthesized by about 150 encoding units, hosts all the protein machineries responsible for the main DNA transactions such as replication, transcription and recombination. This and its repetitive nature make rDNA a unique and complex genetic locus compared to any other. All the different molecular machineries acting in this locus need to be accurately and finely controlled and coordinated and for this reason rDNA is one of the most impressive examples of highly complex molecular regulated loci. The region in which the large molecular complexes involved in rDNA activity and/or regulation are recruited is extremely small: that is, the 2.5 kb long intergenic spacer, interrupting each 35S RNA coding unit from the next. All S. cerevisiae RNA polymerases (I, II and III) transcribing the different genetic rDNA elements are recruited here; a sequence responsible for each rDNA unit replication, which needs its molecular apparatus, also localizes here; moreover, it is noteworthy that the rDNA replication proceeds almost unidirectionally because each replication fork is stopped in the so-called replication fork barrier. These localized fork blocking events induce, with a given frequency, the homologous recombination process by which cells maintain a high identity among the rDNA repeated units. Here, we describe the different processes involving the rDNA locus, how they influence each other and how these mutual interferences are highly regulated and coordinated. We propose that an rDNA conformation as a super-hub could help in optimizing the micro-environment for all basic DNA transactions.
Collapse
Affiliation(s)
- Alessandra Egidi
- Dipartimento di Biologia e Biotecnologie, Università di Roma, Sapienza, Rome, Italy
| | - Francesca Di Felice
- Dipartimento di Biologia e Biotecnologie, Università di Roma, Sapienza, Rome, Italy
| | - Giorgio Camilloni
- Dipartimento di Biologia e Biotecnologie, Università di Roma, Sapienza, Rome, Italy.
| |
Collapse
|
37
|
Age-Dependent Ribosomal DNA Variations in Mice. Mol Cell Biol 2020; 40:MCB.00368-20. [PMID: 32900821 PMCID: PMC7588874 DOI: 10.1128/mcb.00368-20] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/02/2020] [Indexed: 12/22/2022] Open
Abstract
The rRNA gene, which consists of tandem repetitive arrays (ribosomal DNA [rDNA] repeat), is one of the most unstable regions in the genome. The rDNA repeat in the budding yeast Saccharomyces cerevisiae is known to become unstable as the cell ages. However, it is unclear how the rDNA repeat changes in aging mammalian cells. Using quantitative single-cell analyses, we identified age-dependent alterations in rDNA copy number and levels of methylation in mice. The degree of methylation and copy number of rDNA from bone marrow cells of 2-year-old mice were increased by comparison to levels in 4-week-old mice in two mouse strains, BALB/cA and C57BL/6. The rRNA gene, which consists of tandem repetitive arrays (ribosomal DNA [rDNA] repeat), is one of the most unstable regions in the genome. The rDNA repeat in the budding yeast Saccharomyces cerevisiae is known to become unstable as the cell ages. However, it is unclear how the rDNA repeat changes in aging mammalian cells. Using quantitative single-cell analyses, we identified age-dependent alterations in rDNA copy number and levels of methylation in mice. The degree of methylation and copy number of rDNA from bone marrow cells of 2-year-old mice were increased by comparison to levels in 4-week-old mice in two mouse strains, BALB/cA and C57BL/6. Moreover, the level of pre-rRNA transcripts was reduced in older BALB/cA mice. We also identified many sequence variations in the rDNA. Among them, three mutations were unique to old mice, and two of them were found in the conserved region in budding yeast. We established yeast strains with the old-mouse-specific mutations and found that they shortened the life span of the cells. Our findings suggest that rDNA is also fragile in mammalian cells and that alterations within this region have a profound effect on cellular function.
Collapse
|
38
|
Excessive rDNA Transcription Drives the Disruption in Nuclear Homeostasis during Entry into Senescence in Budding Yeast. Cell Rep 2020; 28:408-422.e4. [PMID: 31291577 DOI: 10.1016/j.celrep.2019.06.032] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/09/2019] [Accepted: 06/07/2019] [Indexed: 01/11/2023] Open
Abstract
Budding yeast cells undergo a limited number of divisions before they enter senescence and die. Despite recent mechanistic advances, whether and how molecular events are temporally and causally linked during the transition to senescence remain elusive. Here, using real-time observation of the accumulation of extrachromosomal rDNA circles (ERCs) in single cells, we provide evidence that ERCs build up rapidly with exponential kinetics well before any physiological decline. We then show that ERCs fuel a massive increase in ribosomal RNA (rRNA) levels in the nucleolus, which do not mature into functional ribosomes. This breakdown in nucleolar coordination is followed by a loss of nuclear homeostasis, thus defining a chronology of causally related events leading to cell death. A computational analysis supports a model in which a series of age-independent processes lead to an age-dependent increase in cell mortality, hence explaining the emergence of aging in budding yeast.
Collapse
|
39
|
Harvey EF, Cristescu ME, Dale J, Hunter H, Randall C, Crease TJ. Metal exposure causes rDNA copy number to fluctuate in mutation accumulation lines of Daphnia pulex. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 226:105556. [PMID: 32652413 DOI: 10.1016/j.aquatox.2020.105556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 05/29/2020] [Accepted: 06/26/2020] [Indexed: 06/11/2023]
Abstract
Ribosomal (r)DNA is a highly dynamic, conserved, multigene family whose sequence homogeneity is thought to be maintained by intra- and interchromosomal recombination, which are capable of changing rDNA copy number. It is generally not known how environmental stress such as sublethal exposure to environmentally relevant concentrations of metals impacts rDNA copy number. To determine how chronic metal exposure affects rDNA, we measured copy number of the 18S rRNA gene in 355 copper and nickel-exposed samples and 132 metal-free samples derived from 325 mutation accumulation (MA) lines of two genetically distinct Daphnia pulex lineages. The MA lines were sampled at four time points over 100+ generations of clonal propagation. The copy number of rDNA was also measured in 15 individuals sampled from a metal-free non-MA control population established from the same progenitor as one of the MA lineages. We found that mean rDNA copy number fluctuated across lines exposed to metals with a tendency to decrease over time. In contrast, mean rDNA copy number in the metal-free control lines and the non-MA population remained stable over time. It is generally accepted that extreme rDNA loss results in the loss of organism fitness. Thus, fluctuations in rDNA copy number, including losses, could affect the long-term viability of natural populations of Daphnia in metal-contaminated habitats.
Collapse
Affiliation(s)
- Eleanor F Harvey
- Department of Integrative Biology, University of Guelph, 50 Stone Road West, Guelph, ON, N1G 2W1, Canada
| | - Melania E Cristescu
- Biology Department, McGill University, Stewart Biology Building, 1205 Dr Penfield Ave, Montreal, QC, H3A 1B1, Canada
| | - Jenna Dale
- Department of Integrative Biology, University of Guelph, 50 Stone Road West, Guelph, ON, N1G 2W1, Canada
| | - Hailey Hunter
- Department of Integrative Biology, University of Guelph, 50 Stone Road West, Guelph, ON, N1G 2W1, Canada
| | - Connor Randall
- Department of Integrative Biology, University of Guelph, 50 Stone Road West, Guelph, ON, N1G 2W1, Canada
| | - Teresa J Crease
- Department of Integrative Biology, University of Guelph, 50 Stone Road West, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
40
|
Moreno DF, Aldea M. Proteostatic stress as a nodal hallmark of replicative aging. Exp Cell Res 2020; 394:112163. [PMID: 32640194 DOI: 10.1016/j.yexcr.2020.112163] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/01/2020] [Accepted: 07/03/2020] [Indexed: 11/30/2022]
Abstract
Aging is characterized by the progressive decline of physiology at the cell, tissue and organism level, leading to an increased risk of mortality. Proteotoxic stress, mitochondrial dysfunction and genomic instability are considered major universal drivers of cell aging, and accumulating evidence establishes clear biunivocal relationships among these key hallmarks. In this regard, the finite lifespan of the budding yeast, together with the extensive armamentarium of available analytical tools, has made this single cell eukaryote a key model to study aging at molecular and cellular levels. Here we review the current data that link proteostasis to cell cycle progression in the budding yeast, focusing on senescence as an inherent phenotype displayed by aged cells. Recent advances in high-throughput systems to study yeast mother cells while they replicate are providing crucial information on aging-related processes and their temporal interdependencies at a systems level. In our view, the available data point to the existence of multiple feedback mechanisms among the major causal factors of aging, which would converge into the loss of proteostasis as a nodal driver of cell senescence and death.
Collapse
Affiliation(s)
- David F Moreno
- Molecular Biology Institute of Barcelona (IBMB), CSIC, 08028, Barcelona, Catalonia, Spain
| | - Martí Aldea
- Molecular Biology Institute of Barcelona (IBMB), CSIC, 08028, Barcelona, Catalonia, Spain.
| |
Collapse
|
41
|
Dahiya R, Mohammad T, Alajmi MF, Rehman MT, Hasan GM, Hussain A, Hassan MI. Insights into the Conserved Regulatory Mechanisms of Human and Yeast Aging. Biomolecules 2020; 10:E882. [PMID: 32526825 PMCID: PMC7355435 DOI: 10.3390/biom10060882] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 05/22/2020] [Accepted: 05/27/2020] [Indexed: 12/12/2022] Open
Abstract
Aging represents a significant biological process having strong associations with cancer, diabetes, and neurodegenerative and cardiovascular disorders, which leads to progressive loss of cellular functions and viability. Astonishingly, age-related disorders share several genetic and molecular mechanisms with the normal aging process. Over the last three decades, budding yeast Saccharomyces cerevisiae has emerged as a powerful yet simple model organism for aging research. Genetic approaches using yeast RLS have led to the identification of hundreds of genes impacting lifespan in higher eukaryotes. Numerous interventions to extend yeast lifespan showed an analogous outcome in multi-cellular eukaryotes like fruit flies, nematodes, rodents, and humans. We collected and analyzed a multitude of observations from published literature and provide the contribution of yeast in the understanding of aging hallmarks most applicable to humans. Here, we discuss key pathways and molecular mechanisms that underpin the evolutionarily conserved aging process and summarize the current understanding and clinical applicability of its trajectories. Gathering critical information on aging biology would pave the way for future investigation targeted at the discovery of aging interventions.
Collapse
Affiliation(s)
- Rashmi Dahiya
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India;
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India;
| | - Mohamed F. Alajmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.F.A.); (M.T.R.); (A.H.)
| | - Md. Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.F.A.); (M.T.R.); (A.H.)
| | - Gulam Mustafa Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia;
| | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.F.A.); (M.T.R.); (A.H.)
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India;
| |
Collapse
|
42
|
The adaptive potential of circular DNA accumulation in ageing cells. Curr Genet 2020; 66:889-894. [PMID: 32296868 PMCID: PMC7497353 DOI: 10.1007/s00294-020-01069-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/12/2020] [Accepted: 03/14/2020] [Indexed: 12/20/2022]
Abstract
Carefully maintained and precisely inherited chromosomal DNA provides long-term genetic stability, but eukaryotic cells facing environmental challenges can benefit from the accumulation of less stable DNA species. Circular DNA molecules lacking centromeres segregate randomly or asymmetrically during cell division, following non-Mendelian inheritance patterns that result in high copy number instability and massive heterogeneity across populations. Such circular DNA species, variously known as extrachromosomal circular DNA (eccDNA), microDNA, double minutes or extrachromosomal DNA (ecDNA), are becoming recognised as a major source of the genetic variation exploited by cancer cells and pathogenic eukaryotes to acquire drug resistance. In budding yeast, circular DNA molecules derived from the ribosomal DNA (ERCs) have been long known to accumulate with age, but it is now clear that aged yeast also accumulate other high-copy protein-coding circular DNAs acquired through both random and environmentally-stimulated recombination processes. Here, we argue that accumulation of circular DNA provides a reservoir of heterogeneous genetic material that can allow rapid adaptation of aged cells to environmental insults, but avoids the negative fitness impacts on normal growth of unsolicited gene amplification in the young population.
Collapse
|
43
|
Storci G, Bacalini MG, Bonifazi F, Garagnani P, De Carolis S, Salvioli S, Olivieri F, Bonafè M. Ribosomal DNA instability: An evolutionary conserved fuel for inflammaging. Ageing Res Rev 2020; 58:101018. [PMID: 31926964 DOI: 10.1016/j.arr.2020.101018] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 12/07/2019] [Accepted: 01/08/2020] [Indexed: 02/07/2023]
Abstract
Across eukaryotes, ribosomal DNA (rDNA) loci are characterized by intrinsic genomic instability due to their repetitive nature and their base composition that facilitate DNA double strand breaks and RNA:DNA hybrids formation. In the yeast, ribosomal DNA instability affects lifespan via the formation of extrachromosomal rDNA circles (ERC) that accrue into aged cells. In humans, rDNA instability has long been reported in a variety of progeric syndromes caused by the dysfunction of DNA helicases, but its role in physiological aging and longevity still needs to be clarified. Here we propose that rDNA instability leads to the activation of innate immunity and inflammation via the interaction with the cytoplasmic DNA sensing machinery. Owing to the recent clarified role of cytoplasmic DNA in the pro-inflammatory phenotype of senescent cells, we hypothesize that the accrual of rDNA derived molecules (i.e. ERC and RNA:DNA hybrids) may have a role in aging by contributing to inflammaging i.e. the systemic pro-inflammatory drift that associates with the onset of geriatric syndromes and age related dysfunctions in humans.
Collapse
Affiliation(s)
- Gianluca Storci
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Italy; Center for Applied Biomedical Research, CRBA, S. Orsola-Malpighi, University Hospital, Bologna, Italy.
| | | | - Francesca Bonifazi
- Institute of Hematology "L. and A. Seràgnoli", University Hospital S. Orsola-Malpighi, Bologna, Italy
| | - Paolo Garagnani
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Italy
| | - Sabrina De Carolis
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Italy; Center for Applied Biomedical Research, CRBA, S. Orsola-Malpighi, University Hospital, Bologna, Italy
| | - Stefano Salvioli
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Italy; Center for Applied Biomedical Research, CRBA, S. Orsola-Malpighi, University Hospital, Bologna, Italy
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy; Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA National Institute, Ancona, Italy
| | - Massimiliano Bonafè
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Italy; Center for Applied Biomedical Research, CRBA, S. Orsola-Malpighi, University Hospital, Bologna, Italy.
| |
Collapse
|
44
|
Crane MM, Chen KL, Blue BW, Kaeberlein M. Trajectories of Aging: How Systems Biology in Yeast Can Illuminate Mechanisms of Personalized Aging. Proteomics 2020; 20:e1800420. [PMID: 31385433 PMCID: PMC7000301 DOI: 10.1002/pmic.201800420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/02/2019] [Indexed: 02/02/2023]
Abstract
All organisms age, but the extent to which all organisms age the same way remains a fundamental unanswered question in biology. Across species, it is now clear that at least some aspects of aging are highly conserved and are perhaps universal, but other mechanisms of aging are private to individual species or sets of closely related species. Within the same species, however, it has generally been assumed that the molecular mechanisms of aging are largely invariant from one individual to the next. With the development of new tools for studying aging at the individual cell level in budding yeast, recent data has called this assumption into question. There is emerging evidence that individual yeast mother cells may undergo fundamentally different trajectories of aging. Individual trajectories of aging are difficult to study by traditional population level assays, but through the application of systems biology approaches combined with novel microfluidic technologies, it is now possible to observe and study these phenomena in real time. Understanding the spectrum of mechanisms that determine how different individuals age is a necessary step toward the goal of personalized geroscience, where healthy longevity is optimized for each individual.
Collapse
Affiliation(s)
- Matthew M Crane
- Department of Pathology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Kenneth L Chen
- Department of Pathology, School of Medicine, University of Washington, Seattle, WA, USA,Department of Genome Sciences, University of Washington, Seattle, WA, USA,Medical Scientist Training Program, University of Washington, Seattle, WA, USA
| | - Ben W. Blue
- Department of Pathology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Matt Kaeberlein
- Department of Pathology, School of Medicine, University of Washington, Seattle, WA, USA,Department of Genome Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
45
|
The CCR4-NOT Complex Maintains Stability and Transcription of rRNA Genes by Repressing Antisense Transcripts. Mol Cell Biol 2019; 40:MCB.00320-19. [PMID: 31611247 PMCID: PMC6908257 DOI: 10.1128/mcb.00320-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 09/26/2019] [Indexed: 12/21/2022] Open
Abstract
The rRNA genes (rDNA) in eukaryotes are organized into highly repetitive gene clusters. Each organism maintains a particular number of copies, suggesting that the rDNA is actively stabilized. We previously identified about 700 Saccharomyces cerevisiae genes that could contribute to rDNA maintenance. Here, we further analyzed these deletion mutants with unstable rDNA by measuring the amounts of extrachromosomal rDNA circles (ERCs) that are released as by-products of intrachromosomal recombination. The rRNA genes (rDNA) in eukaryotes are organized into highly repetitive gene clusters. Each organism maintains a particular number of copies, suggesting that the rDNA is actively stabilized. We previously identified about 700 Saccharomyces cerevisiae genes that could contribute to rDNA maintenance. Here, we further analyzed these deletion mutants with unstable rDNA by measuring the amounts of extrachromosomal rDNA circles (ERCs) that are released as by-products of intrachromosomal recombination. We found that extremely high levels of ERCs were formed in the absence of Pop2 (Caf1), which is a subunit of the CCR4-NOT complex, important for the regulation of all stages of gene expression. In the pop2 mutant, transcripts from the noncoding promoter E-pro in the rDNA accumulated, and the amounts of cohesin and condensin were reduced, which could promote recombination events. Moreover, we discovered that the amount of rRNA was decreased in the pop2 mutant. Similar phenotypes were observed in the absence of subunits Ccr4 and Not4 that, like Pop2, convey enzymatic activity to the complex. These findings indicate that lack of any CCR4-NOT-associated enzymatic activity resulted in a severe unstable rDNA phenotype related to the accumulation of noncoding RNA from E-pro.
Collapse
|
46
|
Hull RM, King M, Pizza G, Krueger F, Vergara X, Houseley J. Transcription-induced formation of extrachromosomal DNA during yeast ageing. PLoS Biol 2019; 17:e3000471. [PMID: 31794573 PMCID: PMC6890164 DOI: 10.1371/journal.pbio.3000471] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/31/2019] [Indexed: 12/22/2022] Open
Abstract
Extrachromosomal circular DNA (eccDNA) facilitates adaptive evolution by allowing rapid and extensive gene copy number variation and is implicated in the pathology of cancer and ageing. Here, we demonstrate that yeast aged under environmental copper accumulate high levels of eccDNA containing the copper-resistance gene CUP1. Transcription of the tandemly repeated CUP1 gene causes CUP1 eccDNA accumulation, which occurs in the absence of phenotypic selection. We have developed a sensitive and quantitative eccDNA sequencing pipeline that reveals CUP1 eccDNA accumulation on copper exposure to be exquisitely site specific, with no other detectable changes across the eccDNA complement. eccDNA forms de novo from the CUP1 locus through processing of DNA double-strand breaks (DSBs) by Sae2, Mre11 and Mus81, and genome-wide analyses show that other protein coding eccDNA species in aged yeast share a similar biogenesis pathway. Although abundant, we find that CUP1 eccDNA does not replicate efficiently, and high-copy numbers in aged cells arise through frequent formation events combined with asymmetric DNA segregation. The transcriptional stimulation of CUP1 eccDNA formation shows that age-linked genetic change varies with transcription pattern, resulting in gene copy number profiles tailored by environment. Transcription can cause the de novo formation of protein-coding extrachromosomal DNA that accumulates in ageing yeast cells; these extrachromosomal circular DNA molecules form frequently by a DNA double strand break repair mechanism.
Collapse
Affiliation(s)
- Ryan M. Hull
- Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom
| | - Michelle King
- Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom
| | - Grazia Pizza
- Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom
| | - Felix Krueger
- Babraham Bioinformatics, Babraham Institute, Cambridge, United Kingdom
| | - Xabier Vergara
- Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom
| | - Jonathan Houseley
- Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
47
|
Abstract
The genes that encode rRNA in Saccharomyces cerevisiae are organized as multiple repeats. The repetitive nature and heavy transcription of this region make it prone to DNA breaks. DNA breaks could lead to recombination, which could result in either loss or gain of repeats with detrimental consequences to the cell. Multiple mechanisms operate to maintain the stability of rDNA. Earlier studies reported that the absence of Ulp2, a deSUMOylase, resulted in declining levels of Tof2 and thereby disrupted rDNA silencing. In contrast, our findings suggest that accumulation of Tof2 can also result in increased rDNA recombination, through a mechanism that involves Fob1, an RFB-bound protein. While our study has examined only Tof2, rDNA recombination could be regulated by other proteins through a mechanism similar to this. Ribosomal DNA (rDNA) recombination in budding yeast is regulated by multiple converging processes, including posttranslational modifications such as SUMOylation. In this study, we report that the absence of a SUMO E3 ligase, Siz2, results in increased unequal rDNA exchange. We show that Siz2 is enriched at the replication fork barrier (RFB) in the rDNA and also controls the homeostasis of Tof2 protein. siz2Δ resulted in increased accumulation of total Tof2 in the cell and a consequent increase in the enrichment of Tof2 at the rDNA. Overproducing Tof2 ectopically or conditional overexpression of Tof2 also resulted in higher levels of rDNA recombination, suggesting a direct role for Tof2. Additionally, our chromatin immunoprecipitation (ChIP) data indicate that the accumulation of Tof2 in a siz2Δ mutant resulted in an enhanced association of Fob1, an RFB binding protein at the rDNA at the RFB. This increased Fob1 association at the RFB may have resulted in the elevated rDNA recombination. Our study thus demonstrates that the Tof2 levels modulate recombination at the rDNA. IMPORTANCE The genes that encode rRNA in Saccharomyces cerevisiae are organized as multiple repeats. The repetitive nature and heavy transcription of this region make it prone to DNA breaks. DNA breaks could lead to recombination, which could result in either loss or gain of repeats with detrimental consequences to the cell. Multiple mechanisms operate to maintain the stability of rDNA. Earlier studies reported that the absence of Ulp2, a deSUMOylase, resulted in declining levels of Tof2 and thereby disrupted rDNA silencing. In contrast, our findings suggest that accumulation of Tof2 can also result in increased rDNA recombination, through a mechanism that involves Fob1, an RFB-bound protein. While our study has examined only Tof2, rDNA recombination could be regulated by other proteins through a mechanism similar to this.
Collapse
|
48
|
Crane MM, Russell AE, Schafer BJ, Blue BW, Whalen R, Almazan J, Hong MG, Nguyen B, Goings JE, Chen KL, Kelly R, Kaeberlein M. DNA damage checkpoint activation impairs chromatin homeostasis and promotes mitotic catastrophe during aging. eLife 2019; 8:e50778. [PMID: 31714209 PMCID: PMC6850777 DOI: 10.7554/elife.50778] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/30/2019] [Indexed: 02/01/2023] Open
Abstract
Genome instability is a hallmark of aging and contributes to age-related disorders such as cancer and Alzheimer's disease. The accumulation of DNA damage during aging has been linked to altered cell cycle dynamics and the failure of cell cycle checkpoints. Here, we use single cell imaging to study the consequences of increased genomic instability during aging in budding yeast and identify striking age-associated genome missegregation events. This breakdown in mitotic fidelity results from the age-related activation of the DNA damage checkpoint and the resulting degradation of histone proteins. Disrupting the ability of cells to degrade histones in response to DNA damage increases replicative lifespan and reduces genomic missegregations. We present several lines of evidence supporting a model of antagonistic pleiotropy in the DNA damage response where histone degradation, and limited histone transcription are beneficial to respond rapidly to damage but reduce lifespan and genomic stability in the long term.
Collapse
Affiliation(s)
- Matthew M Crane
- Department of PathologyUniversity of WashingtonSeattleUnited States
| | - Adam E Russell
- Department of PathologyUniversity of WashingtonSeattleUnited States
| | - Brent J Schafer
- Department of PathologyUniversity of WashingtonSeattleUnited States
| | - Ben W Blue
- Department of PathologyUniversity of WashingtonSeattleUnited States
| | - Riley Whalen
- Department of PathologyUniversity of WashingtonSeattleUnited States
| | - Jared Almazan
- Department of PathologyUniversity of WashingtonSeattleUnited States
| | - Mung Gi Hong
- Department of PathologyUniversity of WashingtonSeattleUnited States
| | - Bao Nguyen
- Department of PathologyUniversity of WashingtonSeattleUnited States
| | - Joslyn E Goings
- Department of PathologyUniversity of WashingtonSeattleUnited States
| | - Kenneth L Chen
- Department of PathologyUniversity of WashingtonSeattleUnited States
- Department of Genome SciencesUniversity of WashingtonSeattleUnited States
- Medical Scientist Training ProgramUniversity of WashingtonSeattleUnited States
| | - Ryan Kelly
- Department of PathologyUniversity of WashingtonSeattleUnited States
| | - Matt Kaeberlein
- Department of PathologyUniversity of WashingtonSeattleUnited States
| |
Collapse
|
49
|
Mariam J, Krishnamoorthy G, Anand R. Use of 6‐Methylisoxanthopterin, a Fluorescent Guanine Analog, to Probe Fob1‐Mediated Dynamics at the Stalling Fork Barrier DNA Sequences. Chem Asian J 2019; 14:4760-4766. [DOI: 10.1002/asia.201901061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 09/19/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Jessy Mariam
- Department of ChemistryIndian Institute of Technology Bombay Powai Mumbai 400076 Maharashtra India
| | | | - Ruchi Anand
- Department of ChemistryIndian Institute of Technology Bombay Powai Mumbai 400076 Maharashtra India
| |
Collapse
|
50
|
Cell organelles and yeast longevity: an intertwined regulation. Curr Genet 2019; 66:15-41. [PMID: 31535186 DOI: 10.1007/s00294-019-01035-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/12/2019] [Accepted: 09/12/2019] [Indexed: 12/16/2022]
Abstract
Organelles are dynamic structures of a eukaryotic cell that compartmentalize various essential functions and regulate optimum functioning. On the other hand, ageing is an inevitable phenomenon that leads to irreversible cellular damage and affects optimum functioning of cells. Recent research shows compelling evidence that connects organelle dysfunction to ageing-related diseases/disorders. Studies in several model systems including yeast have led to seminal contributions to the field of ageing in uncovering novel pathways, proteins and their functions, identification of pro- and anti-ageing factors and so on. In this review, we present a comprehensive overview of findings that highlight the role of organelles in ageing and ageing-associated functions/pathways in yeast.
Collapse
|