1
|
Fu Q, Liu Q, Zhang R, Chen J, Guo H, Ming Z, Yu F, Zheng H. Large-scale analysis of the N-terminal regulatory elements of the kinase domain in plant Receptor-like kinase family. BMC PLANT BIOLOGY 2024; 24:174. [PMID: 38443815 PMCID: PMC10916322 DOI: 10.1186/s12870-024-04846-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 02/21/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND The N-terminal regulatory element (NRE) of Receptor-like kinases (RLKs), consisting of the juxtamembrane segment in receptor kinases (RKs) and the N-terminal extension segment in RLCKs, is a crucial component that regulates the activities of these proteins. However, the features and functions of the NRE have remained largely unexplored. Herein, we comprehensively analyze 510,233 NRE sequences in RLKs from 528 plant species, using information theory and data mining techniques to unravel their common characteristics and diversity. We also use recombinant RKs to investigate the function of the NRE in vitro. RESULTS Our findings indicate that the majority of NRE segments are around 40-80 amino acids in length and feature a serine-rich region and a 14-amino-acid consensus sequence, 'FSYEELEKAT[D/N]NF[S/D]', which contains a characteristic α-helix and ST motif that connects to the core kinase domain. This conserved signature sequence is capable of suppressing FERONIA's kinase activity. A motif discovery algorithm identifies 29 motifs with highly conserved phosphorylation sites in RK and RLCK classes, especially the motif 'VGPWKpTGLpSGQLQKAFVTGVP' in LRR-VI-2 class. Phosphorylation of an NRE motif in an LRR-VI-2 member, MDIS1, modulates the auto-phosphorylation of its co-receptor, MIK1, indicating the potential role of NRE as a 'kinase switch' in RLK activation. Furthermore, the characterization of phosphorylatable NRE motifs improves the accuracy of predicting phosphorylatable sites. CONCLUSIONS Our study provides a comprehensive dataset to investigate NRE segments from individual RLKs and enhances our understanding of the underlying mechanisms of RLK signal transduction and kinase activation processes in plant adaptation.
Collapse
Affiliation(s)
- Qiong Fu
- Bioinformatics Center, Hunan University College of Biology, Hunan, 410082, China
| | - Qian Liu
- Bioinformatics Center, Hunan University College of Biology, Hunan, 410082, China
| | - Rensen Zhang
- Bioinformatics Center, Hunan University College of Biology, Hunan, 410082, China
| | - Jia Chen
- Bioinformatics Center, Hunan University College of Biology, Hunan, 410082, China
| | - Hengchang Guo
- Shenzhen H-Great Optoelectronic Co. Ltd, Shenzhen, 518110, China
| | - Zhenhua Ming
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Feng Yu
- Bioinformatics Center, Hunan University College of Biology, Hunan, 410082, China.
| | - Heping Zheng
- Bioinformatics Center, Hunan University College of Biology, Hunan, 410082, China.
| |
Collapse
|
2
|
Conroy JN, Coulson EJ. High-affinity TrkA and p75 neurotrophin receptor complexes: A twisted affair. J Biol Chem 2022; 298:101568. [PMID: 35051416 PMCID: PMC8889134 DOI: 10.1016/j.jbc.2022.101568] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 10/27/2022] Open
Abstract
Neurotrophin signaling is essential for normal nervous system development and adult function. Neurotrophins are secreted proteins that signal via interacting with two neurotrophin receptor types: the multifaceted p75 neurotrophin receptor and the tropomyosin receptor kinase receptors. In vivo, neurons compete for the limited quantities of neurotrophins, a process that underpins neural plasticity, axonal targeting, and ultimately survival of the neuron. Thirty years ago, it was discovered that p75 neurotrophin receptor and tropomyosin receptor kinase A form a complex and mediate high-affinity ligand binding and survival signaling; however, despite decades of functional and structural research, the mechanism of modulation that yields this high-affinity complex remains unclear. Understanding the structure and mechanism of high-affinity receptor generation will allow development of pharmaceuticals to modulate this function for treatment of the many nervous system disorders in which altered neurotrophin expression or signaling plays a causative or contributory role. Here we re-examine the key older literature and integrate it with more recent studies on the topic of how these two receptors interact. We also identify key outstanding questions and propose a model of inside-out allosteric modulation to assist in resolving the elusive high-affinity mechanism and complex.
Collapse
Affiliation(s)
- Jacinta N Conroy
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Elizabeth J Coulson
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia; Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia; Clem Jones Centre for Ageing and Disease Research, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
3
|
Two-step release of kinase autoinhibition in discoidin domain receptor 1. Proc Natl Acad Sci U S A 2020; 117:22051-22060. [PMID: 32839343 DOI: 10.1073/pnas.2007271117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Discoidin domain receptor 1 (DDR1) is a collagen-activated receptor tyrosine kinase with important functions in organogenesis and tissue homeostasis. Aberrant DDR1 activity contributes to the progression of human diseases, including fibrosis and cancer. How DDR1 activity is regulated is poorly understood. We investigated the function of the long intracellular juxtamembrane (JM) region of human DDR1 and found that the kinase-proximal segment, JM4, is an important regulator of kinase activity. Crystal structure analysis revealed that JM4 forms a hairpin that penetrates the kinase active site, reinforcing autoinhibition by the activation loop. Using in vitro enzymology with soluble kinase constructs, we established that release from autoinhibition occurs in two distinct steps: rapid autophosphorylation of the JM4 tyrosines, Tyr569 and Tyr586, followed by slower autophosphorylation of activation loop tyrosines. Mutation of JM4 tyrosines abolished collagen-induced DDR1 activation in cells. The insights may be used to develop allosteric, DDR1-specific, kinase inhibitors.
Collapse
|
4
|
Pratz KW, Levis MJ. Bench to bedside targeting of FLT3 in acute leukemia. Curr Drug Targets 2010; 11:781-9. [PMID: 20370649 DOI: 10.2174/138945010791320782] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Accepted: 01/01/2010] [Indexed: 02/03/2023]
Abstract
FMS-Like-Tyrosine kinase-3 (FLT3) mutations are found in about 30% of cases of acute myeloid leukemia and confer an increased relapse rate and reduced overall survival. Targeting this tyrosine kinase by direction inhibition is the focus of both preclinical and clinical research in AML. Several molecules are in clinical development inhibit FLT3, but thus far clinical responses have been limited. Correlative studies from monotherapy trials have established that responses require sustained, effective FLT3 inhibition in vivo. Studies combining FLT3 inhibitors with chemotherapy have demonstrated increased remission rates to date but have yet to produce a survival advantage. Currently the only approved FLT3 inhibitor available for off-label use is sorafenib, which clearly has clinical activity but does not commonly lead to a complete response. Several FLT3 inhibitors are currently being tested as single agents and in combination with chemotherapy, and it seems likely that a clinically useful drug will eventually emerge.
Collapse
Affiliation(s)
- Keith W Pratz
- Department of Oncology, Division of Hematologic Malignancies, Sidney Kimmel Cancer Center at Johns Hopkins, 1650 Orleans Street, Baltimore, MD 21231, USA
| | | |
Collapse
|
5
|
Abstract
In the early 1970s, the Xa21 gene from the wild rice species Oryza longistaminata drew attention of rice breeders because of its broad-spectrum resistance to diverse strains of a serious bacterial disease of rice in Asia and Africa, called 'bacterial blight disease', caused by the Gram-negative bacterium, Xanthomonas oryzae pv. oryzae (Xoo). In 1995, we isolated the gene controlling this resistance and in 2009 demonstrated that XA21 recognizes a highly conserved peptide, called 'Ax21' (activator of XA21-mediated immunity). Tyrosine sulfation of Ax21 is required for recognition by rice XA21. A decade of genetic, molecular and biochemical studies have uncovered key components of the XA21-mediated signalling cascade. Ax21 recognition by XA21 at the cell surface induces phosphorylation-mediated events, which are predicted to alter subcellular localization and/or DNA-binding activity of a WRKY family of transcription factors. Because XA21 is representative of the large number of predicted pattern recognition receptors (PRRs) in rice (n = 328), Arabidopsis (n = 35) and other plant species, further characterization of XA21-mediated signalling pathways will contribute to elucidation of these important defence responses.
Collapse
Affiliation(s)
- Chang-Jin Park
- Department of Plant Pathology, University of California Davis, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
6
|
Chen X, Chern M, Canlas PE, Jiang C, Ruan D, Cao P, Ronald PC. A conserved threonine residue in the juxtamembrane domain of the XA21 pattern recognition receptor is critical for kinase autophosphorylation and XA21-mediated immunity. J Biol Chem 2010; 285:10454-63. [PMID: 20118235 DOI: 10.1074/jbc.m109.093427] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Despite the key role that pattern recognition receptors (PRRs) play in regulating immunity in plants and animals, the mechanism of activation of the associated non-arginine-aspartate (non-RD) kinases is unknown. The rice PRR XA21 recognizes the pathogen-associated molecular pattern, Ax21 (activator of XA21-mediated immunity). Here we show that the XA21 juxtamembrane (JM) domain is required for kinase autophosphorylation. Threonine 705 in the XA21 JM domain is essential for XA21 autophosphorylation in vitro and XA21-mediated innate immunity in vivo. The replacement of Thr(705) by an alanine or glutamic acid abolishes XA21 autophosphorylation and eliminates interactions between XA21 and four XA21-binding proteins in yeast and rice. Although threonine residues analogous to Thr(705) of XA21 are present in the JM domains of most RD and non-RD plant receptor-like kinases, this residue is not required for autophosphorylation of the Arabidopsis RD RLK BRI1 (brassinosteroid insensitive 1). The threonine 705 of XA21 is conserved only in the JM domains of plant RLKs but not in those of fly, human, or mouse suggesting distinct regulatory mechanisms. These results contribute to growing knowledge regarding the mechanism by which non-RD RLKs function in plant.
Collapse
Affiliation(s)
- Xuewei Chen
- Department of Plant Pathology, University of California, Davis, California 95616, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Pratz K, Levis M. Incorporating FLT3 inhibitors into acute myeloid leukemia treatment regimens. Leuk Lymphoma 2008; 49:852-63. [PMID: 18452067 DOI: 10.1080/10428190801895352] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
FMS-Like-Tyrosine kinase-3 (FLT3) mutations are found in about 30% of cases of acute myeloid leukemia and confer an increased relapse rate and reduced overall survival. Targeting of this tyrosine kinase by direction inhibition is the focus of both preclinical and clinical research in AML. Several molecules in clinical development inhibit FLT3 with varying degrees of specificity. Preclinical models suggest that these compounds enhance the cytotoxicity of conventional chemotherapeutics against FLT3 mutant leukemia cells. The pharmacodynamic interactions between FLT3 inhibitors and chemotherapy appear to be sequence dependent. When the FLT3 inhibitor is used prior to chemotherapy, antagonism is displayed, while if FLT3 inhibition is instituted after to exposure to chemotherapy, synergistic cytotoxicity is seen. The combination of FLT3 inhibitors with chemotherapy is also complicated by potential pharmacokinetic obstacles, such as plasma protein binding and p-glycoprotein interactions. Ongoing and future studies are aimed at incorporating FLT3 inhibitors into conventional induction and consolidation therapy specifically for patients with FLT3 mutant AML.
Collapse
Affiliation(s)
- Keith Pratz
- Division of Hematologic Malignancies, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | | |
Collapse
|
8
|
Himanen JP, Saha N, Nikolov DB. Cell-cell signaling via Eph receptors and ephrins. Curr Opin Cell Biol 2007; 19:534-42. [PMID: 17928214 DOI: 10.1016/j.ceb.2007.08.004] [Citation(s) in RCA: 197] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Accepted: 08/14/2007] [Indexed: 11/18/2022]
Abstract
Eph receptors are the largest subfamily of receptor tyrosine kinases regulating cell shape, movements, and attachment. The interactions of the Ephs with their ephrin ligands are restricted to the sites of cell-cell contact since both molecules are membrane attached. This review summarizes recent advances in our understanding of the molecular mechanisms underlining the diverse functions of the molecules during development and in the adult organism. The unique properties of this signaling system that are of highest interest and have been the focus of intense investigations are as follows: (i) the signal is simultaneously transduced in both ligand-expressing cells and receptor-expressing cells, (ii) signaling via the same molecules can generate opposing cellular reactions depending on the context, and (iii) the Ephs and the ephrins are divided into two subclasses with promiscuous intrasubclass interactions, but rarely observed intersubclass interactions.
Collapse
Affiliation(s)
- Juha-Pekka Himanen
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | | | | |
Collapse
|
9
|
Abstract
Acute myeloid leukaemia (AML) is an aggressive haematological malignancy that is curable in approximately 40% of cases. Activating mutations of the receptor tyrosine kinase FLT3 (FMS-like tyrosine kinase-3) are the single most common molecular abnormalities in AML and are associated with a distinctly worse prognosis. In an effort to target this mutation and improve outcomes in this subgroup of AML patients, several novel small-molecule FLT3 tyrosine kinase inhibitors are currently in development. Some of these FLT3 inhibitors are useful only as laboratory tools, while others clearly have clinical potential. These compounds are derived from a wide variety of chemical classes and differ significantly both in their potency and selectivity. This review summarises these developments and examines these novel agents with regard to both the assays used to characterise them and their clinical potential.
Collapse
Affiliation(s)
- Mark Levis
- Johns Hopkins University School of Medicine, Department of Oncology, Baltimore, MD 21231-1000, USA
| | | |
Collapse
|
10
|
Bennasroune A, Gardin A, Aunis D, Crémel G, Hubert P. Tyrosine kinase receptors as attractive targets of cancer therapy. Crit Rev Oncol Hematol 2004; 50:23-38. [PMID: 15094157 DOI: 10.1016/j.critrevonc.2003.08.004] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2003] [Indexed: 12/24/2022] Open
Abstract
Receptor tyrosine kinases (RTKs) are the main mediators of the signaling network that transmit extracellular signals into the cell, and control cellular differentiation and proliferation. Recent and rapid advances in our understanding of cellular signaling by receptor tyrosine kinases, in normal and malignant cells, have brought to light the potential of RTKs as selective anti-cancer targets. Their activity is normally tightly controlled and regulated. Overexpression of RTK proteins or functional alterations caused by mutations in the corresponding genes or abnormal stimulation by autocrine growth factor loops contribute to constitutive RTK signaling, resulting in dysregulated cell growth and cancer. The mechanisms of uncontrolled RTK signaling that leads to cancer has provided the rationale for anti-RTK drug development. Herceptin, Gleevec, and Iressa are the first examples of drugs which have successfully translated basic research on oncogenes into cancer therapeutics. RTKs can be viewed as multifunctional targets, and strategies towards the prevention and inhibition of RTK signaling include antibodies, antagonist ligands, small molecule inhibitors of protein kinase activity, and inhibitors of protein-protein interactions. Progresses in the field of rational drug design and computational chemistry will vastly benefit from the availability of increasing structural knowledge of both the kinase domains and the ligand-binding sites of these receptors.
Collapse
Affiliation(s)
- Amar Bennasroune
- INSERM Unit 575, 5 rue Blaise Pascal, 67084 Strasbourg Cedex, France
| | | | | | | | | |
Collapse
|
11
|
Levis M, Small D. Kinase inhibitors in leukemia. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2004; 51:1-33. [PMID: 15464903 DOI: 10.1016/s1054-3589(04)51001-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Affiliation(s)
- Mark Levis
- Johns Hopkins University School of Medicine, Departments of Oncology, Baltimore, Maryland, USA
| | | |
Collapse
|
12
|
Barton WA, Himanen JP, Antipenko A, Nikolov DB. Structures of Axon Guidance Molecules and their Neuronal Receptors. CELL SURFACE RECEPTORS 2004; 68:65-106. [PMID: 15500859 DOI: 10.1016/s0065-3233(04)68003-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- William A Barton
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | | | | | |
Collapse
|
13
|
Abstract
FMS-like tyrosine kinase-3 (FLT3), a receptor tyrosine kinase, is important for the development of the hematopoietic and immune systems. Activating mutations of FLT3 are now recognized as the most common molecular abnormality in acute myeloid leukemia, and FLT3 mutations may play a role in other hematologic malignancies as well. The poor prognosis of patients harboring these mutations renders FLT3 an obvious target of therapy. This review summarizes the data on the molecular biology and clinical impact of FLT3 mutations, as well as the therapeutic potential of several small-molecule FLT3 inhibitors currently in development.
Collapse
Affiliation(s)
- M Levis
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | | |
Collapse
|
14
|
Madec E, Stensballe A, Kjellström S, Cladière L, Obuchowski M, Jensen ON, Séror SJ. Mass spectrometry and site-directed mutagenesis identify several autophosphorylated residues required for the activity of PrkC, a Ser/Thr kinase from Bacillus subtilis. J Mol Biol 2003; 330:459-72. [PMID: 12842463 DOI: 10.1016/s0022-2836(03)00579-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have shown recently that PrkC, which is involved in developmental processes in Bacillus subtilis, is a Ser/Thr kinase with features of the receptor kinase family of eukaryotic Hanks kinases. In this study, we expressed and purified from Escherichia coli the cytoplasmic domain of PrkC containing the kinase and a short juxtamembrane region. This fragment, which we designate PrkCc, undergoes autophosphorylation in E.coli. PrkCc is further autophosphorylated in vitro, apparently through a trans-kinase, intermolecular reaction. PrkC also displays kinase activity with myelin basic protein. Using high mass accuracy electrospray tandem mass spectrometry (LC-MS/MS) and nanoelectrospray tandem mass spectrometry, we identified seven phosphorylated threonine and one serine residue in PrkCc. All the corresponding residues were replaced by systematic site-directed mutagenesis and the purified mutant proteins were tested for in vitro kinase activity. Single and multiple replacement of four threonine residues, clustered between residues 162 and 167 in a putative activation loop, substantially reduced kinase activity and the effect was clearly additive. Replacement of the other three threonine residues, clustered between residues 290 and 320, had relatively little effect on activity. In contrast, substitution of Ser214, which is conserved in closely related receptor kinase-like bacterial proteins, independently affected activity and may represent a novel regulatory mechanism. When projected onto a 3D structure of PrkC modelled on the structure of known Hanks kinases, the first cluster of phospho-threonine residues falls precisely in the activation loop, controlling the access of substrate and ATP to the catalytic site of many eukaryotic receptor kinases, whereas the second cluster is located in the juxtamembrane region. These results indicate that regulation of PrkC kinase activity (and presumably autophosphorylation) includes a conserved activation loop mechanism. The juxtamembrane phospho-threonine residues may be essential, for example for the recruitment of other proteins necessary for a PrkC signalling cascade or for coupling to other signalling pathways. This is the first structure-function analysis of a bacterial receptor-like kinase of the Hanks family.
Collapse
Affiliation(s)
- Edwige Madec
- Institut de Génétique et Microbiologie, Bât. 409, UMR CNRS 8621, Université Paris-Sud, 91405 Orsay cedex, France
| | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
The sequencing of complete genomes provides a list that includes the proteins responsible for cellular regulation. However, this does not immediately reveal what these proteins do, nor how they are assembled into the molecular machines and functional networks that control cellular behavior. The regulation of many different cellular processes requires the use of protein interaction domains to direct the association of polypeptides with one another and with phospholipids, small molecules, or nucleic acids. The modular nature of these domains, and the flexibility of their binding properties, have likely facilitated the evolution of cellular pathways. Conversely, aberrant interactions can induce abnormal cellular behavior and disease. The fundamental properties of protein interaction domains are discussed in this review and in detailed reviews on individual domains at Science's STKE at http://www.sciencemag.org/cgi/content/full/300/5618/445/DC1.
Collapse
Affiliation(s)
- Tony Pawson
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada.
| | | |
Collapse
|
16
|
Abstract
Eph receptors, the largest subfamily of receptor tyrosine kinases, and their ephrin ligands are important mediators of cell-cell communication regulating cell attachment, shape and mobility. Both Ephs and ephrins are membrane-bound and their interactions at sites of cell-cell contact initiate unique bidirectional signaling cascades, with information transduced in both the receptor-expressing and the ligand-expressing cells. Recent structural and biophysical studies summarized in this review reveal unique molecular features not previously observed in any other receptor-ligand families and explain many of the biochemical and signaling properties of Ephs and ephrins. Of particular importance is the insight into how approximation of ligand-expressing and receptor-expressing cells could lead to the formation and activation of highly ordered signaling centers at cell-cell interfaces.
Collapse
Affiliation(s)
- Juha-Pekka Himanen
- Cellular Biochemistry and Biophysics Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA
| | | |
Collapse
|
17
|
Munshi S, Kornienko M, Hall DL, Reid JC, Waxman L, Stirdivant SM, Darke PL, Kuo LC. Crystal structure of the Apo, unactivated insulin-like growth factor-1 receptor kinase. Implication for inhibitor specificity. J Biol Chem 2002; 277:38797-802. [PMID: 12138114 DOI: 10.1074/jbc.m205580200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The x-ray structure of the unactivated kinase domain of insulin-like growth factor-1 receptor (IGFRK-0P) is reported here at 2.7 A resolution. IGFRK-0P is composed of two lobes connected by a hinge region. The N-terminal lobe of the kinase is a twisted beta-sheet flanked by a single helix, and the C-terminal lobe comprises eight alpha-helices and four short beta-strands. The ATP binding pocket and the catalytic center reside at the interface of the two lobes. Despite the overall similarity to other receptor tyrosine kinases, three notable conformational modifications are observed: 1) this kinase adopts a more closed structure, with its two lobes rotated further toward each other; 2) the conformation of the proximal end of the activation loop (residues 1121-1129) is different; 3) the orientation of the nucleotide-binding loop is altered. Collectively, these alterations lead to a different ATP-binding pocket that might impact on inhibitor designs for IGFRK-0P. Two molecules of IGFRK-0P are seen in the asymmetric unit; they are associated as a dimer with their ATP binding clefts facing each other. The ordered N terminus of one monomer approaches the active site of the other, suggesting that the juxtamembrane region of one molecule could come into close proximity to the active site of the other.
Collapse
Affiliation(s)
- Sanjeev Munshi
- Department of Structural Biology, Merck Research Laboratories, West Point, Pennsylvania 19486, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
FLT3 is a receptor tyrosine kinase expressed by immature hematopoietic cells and is important for the normal development of stem cells and the immune system. The ligand for FLT3 is expressed by marrow stromal cells and other cells and synergizes with other growth factors to stimulate proliferation of stem cells, progenitor cells, dendritic cells, and natural killer cells. Mutations of FLT3 have been detected in about 30% of patients with acute myelogenous leukemia and a small number of patients with acute lymphocytic leukemia or myelodysplastic syndrome. Patients with FLT3 mutations tend to have a poor prognosis. The mutations most often involve small tandem duplications of amino acids within the juxtamembrane domain of the receptor and result in constitutive tyrosine kinase activity. Expression of a mutant FLT3 receptor in murine marrow cells results in a lethal myeloproliferative syndrome and preliminary studies suggest that mutant FLT3 cooperates with other leukemia oncogenes to confer a more aggressive phenotype. Taken together, these results suggest that FLT3 is an attractive therapeutic target for kinase inhibitors or other approaches for patients with mutations of this gene.
Collapse
Affiliation(s)
- D Gary Gilliland
- Brigham and Women's Hospital, Howard Hughes Medical Institute, Boston, MA, USA.
| | | |
Collapse
|
19
|
Abstract
FLT3 is the most frequently mutated gene in cases of acute myelogenous leukemia (AML). About 30 to 35% of patients have either internal tandem duplications (ITDs) in the juxtamembrane domain or mutations in the activating loop of FLT3. FLT3 mutations occur in a broad spectrum of FAB subtypes in adult and pediatric AML and are particularly common in acute promyelocytic leukemia (APL). FLT3 mutations confer a poor prognosis in most retrospective studies. The consequence of either FLT3-ITD or activating loop mutations, which occur predominantly at position D835, is constitutive activation of the tyrosine kinase; FLT3 mutants confer factor-independent growth to Ba/F3 and 32D cells and activate similar transduction pathways as the native receptor in response to ligand, including the STAT, RAS/mitogen-activated protein kinase (MAPK), and phosphatidylinositol 3; kinase (PI3K)/AKT pathways. Injection of FLT3-ITD transformed cells, such as Ba/F3 or 32D, into syngeneic recipient mice results in a leukemia-like syndrome, and expression in primary murine bone marrow cells in a retroviral transduction assay results in a myeloproliferative disorder. Mutations that abrogate FLT3 kinase activity result in loss of transforming properties in these assays. Further, FLT3-selective inhibitors impair transformation of primary AML cells that harbor these mutations, and also inhibit FLT3 transformed hematopoietic cell lines, and leukemias induced by activated FLT3 mutants in murine models. Collectively, these data indicate that FLT3 may be a viable therapeutic target for treatment of AML.
Collapse
Affiliation(s)
- D Gary Gilliland
- Brigham and Women's Hospital, Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts, USA.
| | | |
Collapse
|