1
|
Hamid S, Rhaleb IA, Kassem KM, Rhaleb NE. Role of Kinins in Hypertension and Heart Failure. Pharmaceuticals (Basel) 2020; 13:E347. [PMID: 33126450 PMCID: PMC7692223 DOI: 10.3390/ph13110347] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 12/11/2022] Open
Abstract
The kallikrein-kinin system (KKS) is proposed to act as a counter regulatory system against the vasopressor hormonal systems such as the renin-angiotensin system (RAS), aldosterone, and catecholamines. Evidence exists that supports the idea that the KKS is not only critical to blood pressure but may also oppose target organ damage. Kinins are generated from kininogens by tissue and plasma kallikreins. The putative role of kinins in the pathogenesis of hypertension is discussed based on human mutation cases on the KKS or rats with spontaneous mutation in the kininogen gene sequence and mouse models in which the gene expressing only one of the components of the KKS has been deleted or over-expressed. Some of the effects of kinins are mediated via activation of the B2 and/or B1 receptor and downstream signaling such as eicosanoids, nitric oxide (NO), endothelium-derived hyperpolarizing factor (EDHF) and/or tissue plasminogen activator (T-PA). The role of kinins in blood pressure regulation at normal or under hypertension conditions remains debatable due to contradictory reports from various laboratories. Nevertheless, published reports are consistent on the protective and mediating roles of kinins against ischemia and cardiac preconditioning; reports also demonstrate the roles of kinins in the cardiovascular protective effects of the angiotensin-converting enzyme (ACE) and angiotensin type 1 receptor blockers (ARBs).
Collapse
Affiliation(s)
- Suhail Hamid
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI 48202, USA; (S.H.); (I.A.R.)
| | - Imane A. Rhaleb
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI 48202, USA; (S.H.); (I.A.R.)
| | - Kamal M. Kassem
- Division of Cardiology, Department of Internal Medicine, University of Louisville Medical Center, Louisville, KY 40202, USA;
| | - Nour-Eddine Rhaleb
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI 48202, USA; (S.H.); (I.A.R.)
- Department of Physiology, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
2
|
Rhaleb NE, Yang XP, Carretero OA. The kallikrein-kinin system as a regulator of cardiovascular and renal function. Compr Physiol 2013; 1:971-93. [PMID: 23737209 DOI: 10.1002/cphy.c100053] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Autocrine, paracrine, endocrine, and neuroendocrine hormonal systems help regulate cardio-vascular and renal function. Any change in the balance among these systems may result in hypertension and target organ damage, whether the cause is genetic, environmental or a combination of the two. Endocrine and neuroendocrine vasopressor hormones such as the renin-angiotensin system (RAS), aldosterone, and catecholamines are important for regulation of blood pressure and pathogenesis of hypertension and target organ damage. While the role of vasodepressor autacoids such as kinins is not as well defined, there is increasing evidence that they are not only critical to blood pressure and renal function but may also oppose remodeling of the cardiovascular system. Here we will primarily be concerned with kinins, which are oligopeptides containing the aminoacid sequence of bradykinin. They are generated from precursors known as kininogens by enzymes such as tissue (glandular) and plasma kallikrein. Some of the effects of kinins are mediated via autacoids such as eicosanoids, nitric oxide (NO), endothelium-derived hyperpolarizing factor (EDHF), and/or tissue plasminogen activator (tPA). Kinins help protect against cardiac ischemia and play an important part in preconditioning as well as the cardiovascular and renal protective effects of angiotensin-converting enzyme (ACE) and angiotensin type 1 receptor blockers (ARB). But the role of kinins in the pathogenesis of hypertension remains controversial. A study of Utah families revealed that a dominant kallikrein gene expressed as high urinary kallikrein excretion was associated with a decreased risk of essential hypertension. Moreover, researchers have identified a restriction fragment length polymorphism (RFLP) that distinguishes the kallikrein gene family found in one strain of spontaneously hypertensive rats (SHR) from a homologous gene in normotensive Brown Norway rats, and in recombinant inbred substrains derived from these SHR and Brown Norway rats this RFLP cosegregated with an increase in blood pressure. However, humans, rats and mice with a deficiency in one or more components of the kallikrein-kinin-system (KKS) or chronic KKS blockade do not have hypertension. In the kidney, kinins are essential for proper regulation of papillary blood flow and water and sodium excretion. B2-KO mice appear to be more sensitive to the hypertensinogenic effect of salt. Kinins are involved in the acute antihypertensive effects of ACE inhibitors but not their chronic effects (save for mineralocorticoid-salt-induced hypertension). Kinins appear to play a role in the pathogenesis of inflammatory diseases such as arthritis and skin inflammation; they act on innate immunity as mediators of inflammation by promoting maturation of dendritic cells, which activate the body's adaptive immune system and thereby stimulate mechanisms that promote inflammation. On the other hand, kinins acting via NO contribute to the vascular protective effect of ACE inhibitors during neointima formation. In myocardial infarction produced by ischemia/reperfusion, kinins help reduce infarct size following preconditioning or treatment with ACE inhibitors. In heart failure secondary to infarction, the therapeutic effects of ACE inhibitors are partially mediated by kinins via release of NO, while drugs that activate the angiotensin type 2 receptor act in part via kinins and NO. Thus kinins play an important role in regulation of cardiovascular and renal function as well as many of the beneficial effects of ACE inhibitors and ARBs on target organ damage in hypertension.
Collapse
Affiliation(s)
- Nour-Eddine Rhaleb
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan, USA.
| | | | | |
Collapse
|
3
|
Brouwers S, Smolders I, Massie A, Dupont AG. Angiotensin II type 2 receptor-mediated and nitric oxide-dependent renal vasodilator response to compound 21 unmasked by angiotensin-converting enzyme inhibition in spontaneously hypertensive rats in vivo. Hypertension 2013; 62:920-6. [PMID: 24041944 DOI: 10.1161/hypertensionaha.112.00762] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Angiotensin II type 2 receptor (AT2R)-mediated vasodilation has been demonstrated in different vascular beds in vitro and in perfused organs. In vivo studies, however, consistently failed to disclose renal vasodilator responses to compound 21, a selective AT2R agonist, even after angiotensin II type 1 receptor blockade. Here, we investigated in vivo whether angiotensin-converting enzyme inhibition, reducing endogenous angiotensin II levels, could unmask the effects of selective AT2R stimulation on blood pressure and renal hemodynamics in normotensive and hypertensive rats. After pretreatment with the angiotensin-converting enzyme inhibitor captopril, intravenous administration of compound 21 did not affect blood pressure and induced dose-dependent renal vasodilator responses in spontaneously hypertensive but not in normotensive rats. The D1 receptor agonist fenoldopam, used as positive control, reduced blood pressure and renal vascular resistance in both strains. The AT2R antagonist PD123319 and the nitric oxide synthase inhibitor L-NMMA (N(G)-monomethyl-L-arginine acetate) abolished the renal vasodilator response to compound 21 without affecting responses to fenoldopam. The cyclooxygenase inhibitor indomethacin partially inhibited the renal vascular response to compound 21, whereas the bradykinin B2 receptor antagonist icatibant was without effect. Angiotensin-converting enzyme inhibition unmasked a renal vasodilator response to selective AT2R stimulation in vivo, mediated by nitric oxide and partially by prostaglandins. AT2R may have a pathophysiological role to modulate renal hemodynamic effects of angiotensin II in the hypertensive state.
Collapse
Affiliation(s)
- Sofie Brouwers
- Department of Pharmacology, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium.
| | | | | | | |
Collapse
|
4
|
Foulquier S, Steckelings UM, Unger T. Impact of the AT(2) receptor agonist C21 on blood pressure and beyond. Curr Hypertens Rep 2013; 14:403-9. [PMID: 22836386 DOI: 10.1007/s11906-012-0291-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
It is now widely accepted that the angiotensin AT(2) receptor (AT(2)R) plays an important protective role during pathophysiologic conditions, acting as a repair system. The development of the first selective nonpeptide AT(2)R agonist C21 accelerated our understanding of AT(2)R-mediated protective signaling and actions. This article reviews the impact of C21 on blood pressure in normotensive and hypertensive animal models. Although C21 does not act as a classical antihypertensive drug, it could be useful in preventing hypertension-induced vascular and other end organ damages via anti-apoptotic, anti-fibrotic and anti-inflammatory actions. In particular, a strong body of evidence started to emerge around its anti-inflammatory feature. This property should be further investigated for potential clinical indications in cardiovascular diseases and beyond.
Collapse
Affiliation(s)
- Sébastien Foulquier
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands.
| | | | | |
Collapse
|
5
|
Savoia C, Ebrahimian T, He Y, Gratton JP, Schiffrin EL, Touyz RM. Angiotensin II/AT2 receptor-induced vasodilation in stroke-prone spontaneously hypertensive rats involves nitric oxide and cGMP-dependent protein kinase. J Hypertens 2007; 24:2417-22. [PMID: 17082724 DOI: 10.1097/01.hjh.0000251902.85675.7e] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
BACKGROUND Angiotensin II (Ang II) induces vasodilation, in part, through angiotensin type 2 receptor (AT2R)-induced actions in conditions associated with angiotensin type 1 receptor (AT1R) blockade and AT2R upregulation. Ang II/AT2R-induced vasodilation involves nitric oxide (NO)-cyclic guanosine monophosphate (cGMP)-dependent processes. We previously demonstrated that AT2R-mediated effects involve inhibition of the RhoA/Rho kinase pathway. However, molecular mechanisms underlying this phenomenon are unknown. AIMS In the present in-vivo study we tested the hypothesis that AT2R-elicited vasodilation is associated with nitric oxide synthase (NOS) activation and NO production, and that a cGMP-dependent protein kinase (cGKI), which inactivates RhoA, is upregulated when stroke-prone spontaneously hypertensive rats (SHRSP) are treated with AT1R blockers. METHODS SHRSP and Wistar-Kyoto (WKY) rats were treated with the AT1R blocker valsartan for 14 days. Dilatory responses to Ang II with or without the NOS inhibitor N-nitro-L-arginine methyl ester (L-NAME) were performed in norepinephrine-precontracted vessels in the presence of valsartan. Expression of AT2R, endothelial NOS (eNOS) and cGKI was assessed by immunoblotting. NO bioavailability and NAD(P)H oxidase activity were evaluated by chemiluminescence. RESULTS Ang II elicited vasodilation in valsartan-treated SHRSP. L-NAME inhibited this effect, indicating a role for NO. eNOS expression and NO concentration were increased twofold by valsartan, only in SHRSP. Expression of cGKI was reduced in SHRSP and restored after valsartan treatment. NAD(P)H oxidase activity was approximately threefold higher in SHRSP versus WKY (P < 0.05) and reduced by valsartan. CONCLUSIONS Ang II, via AT2R, facilitates vasodilation through NOS/NO-mediated pathways and upregulation [corrected] of CGK1 [corrected] after chronic AT1R antagonism. These effects may contribute in part to beneficial actions of AT1R blockers in the treatment of hypertension.
Collapse
Affiliation(s)
- Carmine Savoia
- Lady Davis Institute for Medical Research, SMBD Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
6
|
Quaschning T, Hocher B, Ruhl S, Kraemer-Guth A, Tilgner J, Wanner C, Galle J. Vasopeptidase inhibition normalizes blood pressure and restores endothelial function in renovascular hypertension. Kidney Blood Press Res 2006; 29:351-9. [PMID: 17139187 DOI: 10.1159/000097625] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2006] [Accepted: 10/27/2006] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Vasopeptidase inhibitors by definition inhibit both angiotensin-converting enzyme (ACE) and neutral endopeptidase (NEP), therefore they may exceed the effect of ACE inhibitors in the treatment of hypertension. The present study investigated the effect of the vasopeptidase inhibitor AVE7688 in comparison to the ACE inhibitor ramipril on systolic blood pressure (SBP) and endothelial function in renovascular hypertension. METHODS Wistar-Kyoto rats with renovascular hypertension (two-kidney one-clamp-model) were randomized 2 weeks after unilateral clamping of the right renal artery for 3 weeks' oral treatment with either AVE7688 (30 mg/kg/day), ramipril (1 mg/kg/day) or placebo. SBP was measured by the tail-cuff method and endothelium-dependent and -independent vascular function was assessed in isolated preconstricted (norepinephrine 10(-7) mol/l) aortic rings as relaxation to acetylcholine (10(-10)-10(-4) mol/l) and sodium nitroprusside (10(-10)-10(-4) mol/l), respectively. RESULTS Two weeks after clamping, SBP was significantly elevated (196 +/- 16 vs. 145 +/- 8 mm Hg for sham-operated rats; p < 0.01) and further increased in placebo-treated animals to 208 +/- 19 mm Hg. Treatment with AVE7688 and ramipril had a similar blood pressure-lowering effect (119 +/- 8 and 124 +/- 10 mm Hg, respectively; p < 0.01 vs. placebo). Maximum endothelium-dependent relaxation was reduced in hypertensive rats (72 +/- 6 vs. 99 +/- 7% in control rats; p < 0.05). Endothelium-dependent relaxation was restored by AVE7688 (101 +/- 6%) and ramipril (94 +/- 8%), respectively, whereas endothelium-independent relaxation was comparable in all groups. CONCLUSION In renovascular hypertension the vasopeptidase inhibitor AVE7688 exhibited similar blood pressure-lowering and endothelial protective properties as compared to the ACE inhibitor ramipril. Therefore, in high renin models of hypertension, vasopeptidase inhibition may be considered an alternative treatment option to ACE inhibition.
Collapse
Affiliation(s)
- Thomas Quaschning
- Department of Nephrology, University Hospital of Freiburg, Freiburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
7
|
Protective Effects of BAY 41-2272 (sGC Stimulator) on Hypertension, Heart, and Cardiomyocyte Hypertrophy Induced by Chronic L-NAME Treatment in Rats. J Cardiovasc Pharmacol 2006. [DOI: 10.1097/01.fjc.0000210071.54828.9b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Abstract
In 1989, the development of specific angiotensin receptor antagonists which distinguish between two angiotensin receptor subtypes (AT1 and AT2) led to a breakthrough in angiotensin research. It turned out, that the AT1 receptor was almost entirely responsible for the "classical" actions of angiotensin II related to the regulation of blood pressure as well as volume and electrolyte balance. However, actions and signal transduction mechanisms coupled to the AT2 receptor remained enigmatic for a long time. The present review summarizes the current knowledge of AT2 receptor distribution, signaling and function with an emphasis on growth/anti-growth, differentiation and the regeneration of neuronal tissue.
Collapse
Affiliation(s)
- U M Steckelings
- Center for Cardiovascular Research, Institut für Pharmakologie und Toxikologie, Charité-Universitätsmedizin Berlin, Hessische Strasse 3-4, 10115 Berlin, Germany.
| | | | | |
Collapse
|
9
|
Duke LM, Evans RG, Widdop RE. AT2 receptors contribute to acute blood pressure-lowering and vasodilator effects of AT1 receptor antagonism in conscious normotensive but not hypertensive rats. Am J Physiol Heart Circ Physiol 2005; 288:H2289-97. [PMID: 15615839 DOI: 10.1152/ajpheart.01096.2004] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aims of this study were to determine the contribution of the AT2 receptor to the antihypertensive and regional vasodilatory effects of AT1 receptor blockade in adult spontaneously hypertensive rats (SHR), 2-kidney, 1-clip hypertensive (2K1C) rats, and sham-operated normotensive rats. Several studies have provided evidence to support the notion that the AT2 receptor may have opposing effects to those mediated by the AT1 receptor. We therefore tested the hypothesis that the depressor and vasodilator effects of acute AT1 receptor blockade are dependent on AT2 receptor activation. Heart rate, mean arterial pressure, and regional hemodynamics were measured over a 4-day protocol in rats that received the following treatments in randomized order: saline vehicle, the AT1 receptor antagonist candesartan (0.1 mg/kg iv bolus), the AT2 receptor antagonist PD-123319 (50 μg·kg−1·min−1), or both antagonists. Intravenous candesartan reduced mean arterial pressure in all groups of rats, and this was accompanied by renal and mesenteric vasodilation. Neither saline nor PD-123319 significantly affected these variables. Concomitant PD-123319 administration partially reversed the depressor and mesenteric vasodilator effects of candesartan in sham-operated normotensive rats but not in SHR or 2K1C rats. These data indicate that the AT2 receptor contributes to the blood pressure-lowering and mesenteric vasodilator effects of AT1 receptor blockade in the acute setting in conscious normotensive but not hypertensive rats.
Collapse
Affiliation(s)
- Lisa M Duke
- Department of Physiology, Monash University, Victoria, Australia
| | | | | |
Collapse
|
10
|
Forder JP, Munzenmaier DH, Greene AS. Angiogenic protection from focal ischemia with angiotensin II type 1 receptor blockade in the rat. Am J Physiol Heart Circ Physiol 2005; 288:H1989-96. [PMID: 15498820 DOI: 10.1152/ajpheart.00839.2004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Angiogenesis within an ischemic region of the brain may increase tissue viability and act to limit the extent of an infarct. The ANG II pathway can both stimulate and inhibit angiogenesis depending on the tissue and the activated receptors. Previous work showed that 2-wk losartan administration (ANG II type 1 receptor blockade) initiates a significant cerebral angiogenic response. We hypothesized that administration of losartan in the drinking water of rats for 2 wk before initiation of focal ischemia would decrease the extent of the resulting infarct. Adult male Sprague-Dawley rats were given losartan (50 mg/day) in drinking water for 2 wk before initiation of cerebral focal ischemia produced by cauterization of cortical surface vessels. Controls received normal drinking water. In control animals, three main vessels feeding the whisker barrel cortex were cauterized, resulting in cessation of blood flow. The same protocol was followed for losartan-treated animals but did not result in cessation of blood flow in the whisker barrel cortex. Another group of losartan-treated animals received between 8 and 14 cauterizations of surface vessels feeding the whisker barrel cortex, and cessation of blood flow was verified. Rats were killed 72 h after surgery. Morphological examination revealed angiogenesis, maintained vascular delivery, and significantly decreased infarct size in losartan-treated animals compared with controls. These results demonstrate that pretreatment with losartan reduces infarct size after cerebral focal ischemia and support the hypothesis that cerebral angiogenesis may be one of the mechanisms responsible.
Collapse
Affiliation(s)
- Joan P Forder
- Dept. of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | |
Collapse
|
11
|
Wilms H, Rosenstiel P, Unger T, Deuschl G, Lucius R. Neuroprotection with angiotensin receptor antagonists: a review of the evidence and potential mechanisms. Am J Cardiovasc Drugs 2005; 5:245-53. [PMID: 15984907 DOI: 10.2165/00129784-200505040-00004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The peptide hormone angiotensin (A)-II, the major effector peptide of the renin-angiotensin system (RAS), is well established to play a pivotal role in the systemic regulation of blood pressure, fluid, and electrolyte homeostasis. Recent biochemical and neurophysiologic studies have documented local intrinsic angiotensin-generating systems in organs and tissues such as the brain, retina, bone marrow, liver, and pancreas. The locally generated angiotensin peptides have multiple and novel actions including stimulating cell growth and anti-proliferative and/or antiapoptotic actions. In the mammalian brain, all components of the RAS are present including angiotensin receptor subtypes 1 (AT(1)) and 2 (AT(2)). A-II exerts most of its well defined physiologic and pathophysiologic actions, including those on the central and peripheral nervous system, through its AT(1) receptor subtype. While the AT(1) receptor is responsible for the classical effects of A-II, it has been found that the AT(2) receptor is linked to totally different signalling mechanisms and this has revealed hitherto unknown functions of A-II. AT(2) receptors are expressed at low density in many healthy adult tissues, but are upregulated in a variety of human diseases. This receptor not only contributes to stroke-related pathologic mechanisms (e.g. hypertension, atherothrombosis, and cardiac hypertrophy) but may also be involved in post-ischemic damage to the brain. It has been reported that the AT(2) receptor regulates several functions of nerve cells, e.g. ionic fluxes, cell differentiation, and neuronal tissue regeneration, and also modulates programmed cell death. In this article, we review the experimental evidence supporting the notion that blockade of brain AT(1) receptors can be beneficial with respect to stroke incidence and outcome. We further delineate how AT(2) receptors could be involved in neuronal regeneration following brain injury such as stroke or CNS trauma. The current review is focussed on some of the new functions arising from the locally formed A-II with particular attention to its emerging neuroprotective role in the brain.
Collapse
Affiliation(s)
- Henrik Wilms
- Clinic of Neurology, Christian-Albrechts-University, Kiel, Germany
| | | | | | | | | |
Collapse
|
12
|
Hannan RE, Gaspari TA, Davis EA, Widdop RE. Differential regulation by AT(1) and AT(2) receptors of angiotensin II-stimulated cyclic GMP production in rat uterine artery and aorta. Br J Pharmacol 2004; 141:1024-31. [PMID: 14993097 PMCID: PMC1574268 DOI: 10.1038/sj.bjp.0705694] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2003] [Accepted: 01/12/2004] [Indexed: 11/08/2022] Open
Abstract
1. In the present study we determined whether angiotensin II (Ang II) could increase cyclic GMP levels in two blood vessels that exhibit markedly different angiotensin II receptor subtype expression: rat uterine artery (UA; AT(2) receptor-predominant) and aorta (AT(1) receptor-predominant), and investigated the receptor subtype(s) and intracellular pathways involved. 2. UA and aorta were treated with Ang II in the absence and presence of losartan (AT(1) antagonist; 0.1 microm), PD 123319 (AT(2) antagonist; 1 microm), NOLA (NOS inhibitor; 30 microm), and HOE 140 (B(2) antagonist; 0.1 microm), or in combination. 3. Ang II (10 nm) induced a 60% increase in UA cyclic GMP content; an effect that was augmented with PD 123319 and HOE 140 pretreatment, and abolished by cotreatment with losartan, as well as by NOLA. 4. In aorta, Ang II produced concentration-dependent increases in cyclic GMP levels. Unlike effects in UA, these responses were abolished by PD 123319 and by NOLA, whereas losartan and HOE 140 caused partial inhibition. 5. Thus, in rat UA, Ang II stimulates cyclic GMP production through AT(1) and, to a less extent, AT(2) receptors. In rat aorta, the Ang II-mediated increase in cyclic GMP production is predominantly AT(2) receptor-mediated. In both preparations, NO plays a critical role in mediating the effect of Ang II, whereas bradykinin has differential roles in the two vessels. In UA, B(2) receptor blockade may result in a compensatory increase in cyclic GMP production, whilst in aorta, bradykinin accounts for approximately half of the cyclic GMP produced in response to Ang II.
Collapse
Affiliation(s)
- Ruth E Hannan
- Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia
| | - Tracey A Gaspari
- Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia
| | - Elizabeth A Davis
- Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia
| | - Robert E Widdop
- Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
13
|
Widdop RE, Jones ES, Hannan RE, Gaspari TA. Angiotensin AT2 receptors: cardiovascular hope or hype? Br J Pharmacol 2003; 140:809-24. [PMID: 14530223 PMCID: PMC1574085 DOI: 10.1038/sj.bjp.0705448] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2003] [Revised: 06/30/2003] [Accepted: 07/10/2003] [Indexed: 02/02/2023] Open
Abstract
British Journal of Pharmacology (2003) 140, 809–824. doi:10.1038/sj.bjp.0705448
Collapse
Affiliation(s)
- Robert E Widdop
- Department of Pharmacology, Monash University, Melbourne, Victoria 3800, Australia.
| | | | | | | |
Collapse
|