1
|
Zajac JWP, Muralikrishnan P, Tohidian I, Zeng X, Heldt CL, Perry SL, Sarupria S. Flipping out: role of arginine in hydrophobic interactions and biological formulation design. Chem Sci 2025; 16:6780-6792. [PMID: 40110519 PMCID: PMC11915020 DOI: 10.1039/d4sc08672d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/09/2025] [Indexed: 03/22/2025] Open
Abstract
Arginine has been a mainstay in biological formulation development for decades. To date, the way arginine modulates protein stability has been widely studied and debated. Here, we employed a hydrophobic polymer to decouple hydrophobic effects from other interactions relevant to protein folding. While existing hypotheses for the effects of arginine can generally be categorized as either direct or indirect, our results indicate that direct and indirect mechanisms of arginine co-exist and oppose each other. At low concentrations, arginine was observed to stabilize hydrophobic polymer folding via a sidechain-dominated direct mechanism, while at high concentrations, arginine stabilized polymer folding via a backbone-dominated indirect mechanism. Upon introducing partially charged polymer sites, arginine destabilized polymer folding. Further, we found arginine-induced destabilization of a model virus similar to direct-mechanism destabilization of the charged polymer and concentration-dependent stabilization of a model protein similar to the indirect mechanism of hydrophobic polymer stabilization. These findings highlight the modular nature of the widely used additive arginine, with relevance in the information-driven design of stable biological formulations.
Collapse
Affiliation(s)
- Jonathan W P Zajac
- Department of Chemistry, University of Minnesota Minneapolis MN 55455 USA
- Chemical Theory Center, University of Minnesota Minneapolis MN 55455 USA
| | - Praveen Muralikrishnan
- Department of Chemical Engineering and Materials Science, University of Minnesota Minneapolis MN 55455 USA
- Chemical Theory Center, University of Minnesota Minneapolis MN 55455 USA
| | - Idris Tohidian
- Department of Chemical Engineering, Michigan Technological University Houghton MI 49931 USA
| | - Xianci Zeng
- Department of Chemical Engineering, University of Massachusetts Amherst MA 01003 USA
| | - Caryn L Heldt
- Department of Chemical Engineering, Michigan Technological University Houghton MI 49931 USA
| | - Sarah L Perry
- Department of Chemical Engineering, University of Massachusetts Amherst MA 01003 USA
| | - Sapna Sarupria
- Department of Chemistry, University of Minnesota Minneapolis MN 55455 USA
- Chemical Theory Center, University of Minnesota Minneapolis MN 55455 USA
| |
Collapse
|
2
|
Kim NA, Noh GY, Hada S, Na KJ, Yoon HJ, Park KW, Park YM, Jeong SH. Enhanced protein aggregation suppressor activity of N-acetyl-l-arginine for agitation-induced aggregation with silicone oil and its impact on innate immune responses. Int J Biol Macromol 2022; 216:42-51. [PMID: 35779650 DOI: 10.1016/j.ijbiomac.2022.06.176] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/07/2022] [Accepted: 06/26/2022] [Indexed: 11/26/2022]
Abstract
Previously, N-acetyl-l-arginine (NALA) suppressed the aggregation of intravenous immunoglobulins (IVIG) more effectively and with a minimum decrease in transition temperature (Tm) than arginine monohydrochloride. In this study, we performed a comparative study with etanercept (commercial product: Enbrel®), where 25 mM arginine monohydrochloride (arginine) was added to the prefilled syringe. The biophysical properties were investigated using differential scanning calorimetry (DSC), dynamic light scattering (DLS), size-exclusion chromatography (SEC), and flow-imaging microscopy (FI). NALA retained the transition temperature of etanercept better than arginine, where arginine significantly reduced the Tm by increasing its concentration. End-over-end rotation was applied to each formulation for 5 days to accelerate protein aggregation and subvisible particle formation. Higher monomeric content was retained with NALA with a decrease in particle level. Higher aggregation onset temperature (Tagg) was detected for etanercept with NALA than arginine. The results of this comparative study were consistent with previous study, suggesting that NALA could be a better excipient for liquid protein formulations. Agitated IVIG and etanercept were injected into C57BL/6 J female mice to observe immunogenic response after 24 h. In the presence of silicone oil, NALA dramatically reduced IL-1 expression, implying that decreased aggregation was related to reduced immunogenicity of both etanercept and IVIG.
Collapse
Affiliation(s)
- Nam Ah Kim
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Gyeonggi 10326, Republic of Korea; College of Pharmacy, Mokpo National University, Jeonnam 58554, Republic of Korea.
| | - Ga Yeon Noh
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Gyeonggi 10326, Republic of Korea
| | - Shavron Hada
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Gyeonggi 10326, Republic of Korea
| | - Kyung Jun Na
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Gyeonggi 10326, Republic of Korea
| | - Hee-Jung Yoon
- Division of Health and Kinesiology, Incheon National University, Incheon 22012, Republic of Korea
| | - Ki-Woong Park
- Division of Health and Kinesiology, Incheon National University, Incheon 22012, Republic of Korea.
| | - Young-Min Park
- Division of Health and Kinesiology, Incheon National University, Incheon 22012, Republic of Korea.
| | - Seong Hoon Jeong
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Gyeonggi 10326, Republic of Korea.
| |
Collapse
|
3
|
Srivastava A, O'Dell C, Bolessa E, McLinden S, Fortin L, Deorkar N. Viscosity reduction and stability enhancement of monoclonal antibody formulations using derivatives of amino acids. J Pharm Sci 2022; 111:2848-2856. [DOI: 10.1016/j.xphs.2022.05.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/12/2022] [Accepted: 05/12/2022] [Indexed: 11/26/2022]
|
4
|
Santra S, Dhurua S, Jana M. Analyzing the driving forces of insulin stability in the basic amino acid solutions: A perspective from hydration dynamics. J Chem Phys 2021; 154:084901. [PMID: 33639734 DOI: 10.1063/5.0038305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Amino acids having basic side chains, as additives, are known to increase the stability of native-folded state of proteins, but their relative efficiency and the molecular mechanism are still controversial and obscure as well. In the present work, extensive atomistic molecular dynamics simulations were performed to investigate the hydration properties of aqueous solutions of concentrated arginine, histidine, and lysine and their comparative efficiency on regulating the conformational stability of the insulin monomer. We identified that in the aqueous solutions of the free amino acids, the nonuniform relaxation of amino acid-water hydrogen bonds was due to the entrapment of water molecules within the amino acid clusters formed in solutions. Insulin, when tested with these solutions, was found to show rigid conformations, relative to that in pure water. We observed that while the salt bridges formed by the lysine as an additive contributed more toward the direct interactions with insulin, the cation-π was more prominent for the insulin-arginine interactions. Importantly, it was observed that the preferentially more excluded arginine, compared to histidine and lysine from the insulin surface, enriches the hydration layer of the protein. Our study reveals that the loss of configurational entropy of insulin in arginine solution, as compared to that in pure water, is more as compared to the entropy loss in the other two amino acid solutions, which, moreover, was found to be due to the presence of motionally bound less entropic hydration water of insulin in arginine solution than in histidine or lysine solution.
Collapse
Affiliation(s)
- Santanu Santra
- Molecular Simulation Laboratory, Department of Chemistry, National Institute of Technology, Rourkela 769008, India
| | - Shakuntala Dhurua
- Molecular Simulation Laboratory, Department of Chemistry, National Institute of Technology, Rourkela 769008, India
| | - Madhurima Jana
- Molecular Simulation Laboratory, Department of Chemistry, National Institute of Technology, Rourkela 769008, India
| |
Collapse
|
5
|
Hsueh JC, Yeh KL, Lee HL, Lee T. Strategy for polymorphic control by enzymatic reaction and antisolvent crystallization: effect of aminoacylase on metastable β-glycine formation. REACT CHEM ENG 2021. [DOI: 10.1039/d1re00335f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
β-Glycine could only be produced by enzymatic reaction, while other recrystallization methods gave mixture of α- and β-glycine, or α-, β-, γ-glycine no matter whether the pristine aminoacylase was added as auxiliary additive or not.
Collapse
Affiliation(s)
- Jen-Chieh Hsueh
- Department of Chemical and Materials Engineering, National Central University, 300 Zhongda Road, Zhongli District, Taoyuan City 32001, Taiwan, R.O.C
| | - Kuan Lin Yeh
- Department of Chemical and Materials Engineering, National Central University, 300 Zhongda Road, Zhongli District, Taoyuan City 32001, Taiwan, R.O.C
| | - Hung Lin Lee
- Department of Chemical and Materials Engineering, National Central University, 300 Zhongda Road, Zhongli District, Taoyuan City 32001, Taiwan, R.O.C
| | - Tu Lee
- Department of Chemical and Materials Engineering, National Central University, 300 Zhongda Road, Zhongli District, Taoyuan City 32001, Taiwan, R.O.C
| |
Collapse
|
6
|
Santra S, Jana M. Insights into the Sensitivity of Arginine Concentration to Preserve the Folded Form of Insulin Monomer under Thermal Stress. J Chem Inf Model 2020; 60:3105-3119. [PMID: 32479724 DOI: 10.1021/acs.jcim.0c00006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Arginine, although popularly known as aggregation suppressor additive, has been found to quench proteins' structure and function by destabilizing their conformations. Driven by such controversial evidence, in this work we performed a series of atomistic molecular dynamics simulations of insulin monomer, a biologically active hormone protein, in arginine solution of varying concentrations (0.5, 1, and 2 M) at ambient and elevated temperature (400 K) to explore the arginine concentration driven structure-based stability of the protein. Our study reveals that the flexibility of the protein's structure is dependent on the arginine concentration, and among all the used solutions, 2 M arginine, a "neutral crowder" that mimics the cellular environment, can preserve the native folded form of the protein at ambient temperature in an excellent manner. Further, while the protein unfolds at 400 K in pure water, this solution worked satisfactorily to preserve the protein's folded conformation more firmly than the other solutions. The replica-exchange MD of insulin in 2 M arginine solution further supports the fact. In this aspect an important issue in molecular pharmacology is to identify and recognize the physical origin of the stability of a protein, i.e, in this case, how arginine directs the conformational flexibility of the protein and preserves its native folded form. We identified that the exclusion of arginine from the protein surface increases the local structuration of water around the protein, thereby preserving its "biological water" layer, and makes the protein more hydrated at 2 M concentration as compared to the other arginine solutions. Additionally, our microscopic investigation on the interactions of the protein-solvation layer revealed that the structural heterogeneity of the protein surface, arising from the differential physicochemical nature of the amino acid residues, controls the favorable formation of sluggish water-arginine mixed solvation layer at higher arginine concentration that helps the protein to maintain its structural rigidity. Importantly, apart from the protein-solvent hydrogen-bonding interactions, the anion-pi interactions, established between the carboxyl group of arginine and the aromatic amino acid residues of insulin, were recognized to facilitate the protein to maintain its native folded form at the experimental temperatures.
Collapse
Affiliation(s)
- Santanu Santra
- Molecular Simulation Laboratory, Department of Chemistry, National Institute of Technology, Rourkela-769008, India
| | - Madhurima Jana
- Molecular Simulation Laboratory, Department of Chemistry, National Institute of Technology, Rourkela-769008, India
| |
Collapse
|
7
|
Emami F, Vatanara A, Vakhshiteh F, Kim Y, Kim TW, Na DH. Amino acid-based stable adalimumab formulation in spray freeze-dried microparticles for pulmonary delivery. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101249] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
8
|
Swiontek M, Wasko J, Fraczyk J, Galecki K, Kaminski ZJ, Kolesinska B. Insulin Hot-Spot Analogs Formed with N-Methylated Amino Acid Residues Inhibit Aggregation of Native Hormone. Molecules 2019; 24:molecules24203706. [PMID: 31618999 PMCID: PMC6832904 DOI: 10.3390/molecules24203706] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 10/07/2019] [Accepted: 10/11/2019] [Indexed: 11/27/2022] Open
Abstract
In this study, N-methylated analogs of hot-spots of insulin were designed and synthesized, in the expectation that they would inhibit the aggregation of both insulin hot-spots and the entire hormone. Synthesis of insulin “amyloidogenic” analogs containing N-methylated amino acid residues was performed by microwave-assisted solid phase according to the Fmoc/tert-Bu strategy. As a coupling reagent 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium toluene-4-sulfonate (DMT/NMM/TosO-) was used. Three independent methods were applied in aggregation studies of the complexes of insulin with its N-methylated peptides. Additionally, circular dichroism (CD) measurements were used to confirm that aggregation processes did not occur in the presence of the N-methylated analogs of hot-spot insulin fragments, and that insulin retains its native conformation. Of the seven N-methylated analogs of the A- and B-chain hot-spots of insulin, six inhibited insulin aggregation (peptides 1 and 3–7). All tested peptides were found to have a lower ability to inhibit the aggregation of insulin hot-spots compared to the capability to inhibit native hormone aggregation.
Collapse
Affiliation(s)
- Monika Swiontek
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland.
| | - Joanna Wasko
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland.
| | - Justyna Fraczyk
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland.
| | - Krystian Galecki
- Institute of General Food Chemistry, Faculty of Biotechnology & Food Sciences, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz, Poland.
| | - Zbigniew J Kaminski
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland.
| | - Beata Kolesinska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland.
| |
Collapse
|
9
|
Anumalla B, Prabhu NP. Counteracting Effect of Charged Amino Acids Against the Destabilization of Proteins by Arginine. Appl Biochem Biotechnol 2019; 189:541-555. [PMID: 31056736 DOI: 10.1007/s12010-019-03026-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 04/22/2019] [Indexed: 10/26/2022]
Abstract
Studies on osmolyte-induced effects on proteins help in enhancing protein stability under stressed conditions for various applications. Using mixtures of osmolytes could indeed widen their applications. The combinatorial effects of osmolytes with methylamines are majorly found in the literature; however, such studies are limited on the amino acid class of osmolytes. The present study examines the effect of charged amino acids Arg, Asp, and Lys on the stability of RNase A and α-LA. The thermal stabilities of the proteins in the presence of osmolytes are monitored by absorption changes, and the structural changes are analyzed using fluorescence quenching and near-UV circular dichroism (CD). These results are compared with our previous report on the effect of Glu. Arg destabilizes both the proteins whereas Asp, Lys, and Glu stabilize the proteins. The extent of stability provided by Asp and Glu is almost same and higher than Lys in RNase A. However, the stability acquired in the presence of Asp and Lys is comparable for α-LA and Glu provides higher stability. Further, the quenching and CD results suggest that the addition of amino acids do not alter the structure of the proteins significantly. The counteracting abilities of the stabilizing amino acids (stAAs) against Arg are then investigated. The results show that Glu could counteract Arg at the lowest fraction in the mixture. Lys requires nearly equimolar concentration whereas Asp needs almost double the concentration to counteract Arg induced destabilization of the proteins. At higher concentrations, the counteracting ability of Asp and Lys is similar for both the proteins. The counteracting ratio might slightly vary among the proteins, and it is not necessary that the amino acid providing higher stability to the protein could more effectively counteract Arg. This could be due to the change in the extent of preferential hydration of the proteins by stAAs in the presence of Arg. The results suggest that the addition of stAAs could be an effective strategy to increase the protein stability in biotechnology and biopharma applications.
Collapse
Affiliation(s)
- Bramhini Anumalla
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, 500 046, India
| | - N Prakash Prabhu
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, 500 046, India.
| |
Collapse
|
10
|
Chura-Chambi RM, da Silva CMR, Pereira LR, Bartolini P, Ferreira LCDS, Morganti L. Protein refolding based on high hydrostatic pressure and alkaline pH: Application on a recombinant dengue virus NS1 protein. PLoS One 2019; 14:e0211162. [PMID: 30682103 PMCID: PMC6347194 DOI: 10.1371/journal.pone.0211162] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 01/08/2019] [Indexed: 12/13/2022] Open
Abstract
In this study we evaluated the association of high hydrostatic pressure (HHP) and alkaline pH as a minimally denaturing condition for the solubilization of inclusion bodies (IBs) generated by recombinant proteins expressed by Escherichia coli strains. The method was successfully applied to a recombinant form of the dengue virus (DENV) non-structural protein 1 (NS1). The minimal pH for IBs solubilization at 1 bar was 12 while a pH of 10 was sufficient for solubilization at HHP: 2.4 kbar for 90 min and 0.4 kbar for 14 h 30 min. An optimal refolding condition was achieved by compression of IBs at HHP and pH 10.5 in the presence of arginine, oxidized and reduced glutathiones, providing much higher yields (up to 8-fold) than association of HHP and GdnHCl via an established protocol. The refolded NS1, 109 ± 9.5 mg/L bacterial culture was recovered mainly as monomer and dimer, corresponding up to 90% of the total protein and remaining immunologically active. The proposed conditions represent an alternative for the refolding of immunologically active recombinant proteins expressed as IBs.
Collapse
Affiliation(s)
- Rosa Maria Chura-Chambi
- Centro de Biotecnologia, Instituto de Pesquisas Energéticas e Nucleares, IPEN-CNEN/SP, São Paulo, São Paulo, Brazil
| | - Cleide Mara Rosa da Silva
- Centro de Biotecnologia, Instituto de Pesquisas Energéticas e Nucleares, IPEN-CNEN/SP, São Paulo, São Paulo, Brazil
| | - Lennon Ramos Pereira
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Paolo Bartolini
- Centro de Biotecnologia, Instituto de Pesquisas Energéticas e Nucleares, IPEN-CNEN/SP, São Paulo, São Paulo, Brazil
| | - Luis Carlos de Souza Ferreira
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Ligia Morganti
- Centro de Biotecnologia, Instituto de Pesquisas Energéticas e Nucleares, IPEN-CNEN/SP, São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
11
|
Kim NA, Hada S, Thapa R, Jeong SH. Arginine as a protein stabilizer and destabilizer in liquid formulations. Int J Pharm 2016; 513:26-37. [DOI: 10.1016/j.ijpharm.2016.09.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 08/15/2016] [Accepted: 09/02/2016] [Indexed: 12/30/2022]
|
12
|
Platts L, Darby SJ, Falconer RJ. Control of Globular Protein Thermal Stability in Aqueous Formulations by the Positively Charged Amino Acid Excipients. J Pharm Sci 2016; 105:3532-3536. [PMID: 27776770 DOI: 10.1016/j.xphs.2016.09.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 09/06/2016] [Accepted: 09/09/2016] [Indexed: 01/07/2023]
Abstract
The positively charged amino acids are commonly used excipients in biopharmaceutical formulations for stabilization of therapeutic proteins, yet the mechanisms for their modulation of protein stability are poorly understood. In this study, both lysine and histidine are shown to affect the thermal stability of myoglobin, bovine serum albumin, and lysozyme through a combination of mechanisms governed by their respective functional side chains and glycine, similar to arginine. This study provides evidence that at low concentrations, lysine and histidine interact with proteins by a combination of (1) direct electrostatic interactions with negatively charged side chains, (2) possible binding to high-affinity hydrophobic binding sites, and (3) glycine-mediated weak interactions with peptide backbone and polar side chains. At high concentrations, lysine and histidine act via (4) glycine-mediated competition for water between the unfolding protein and the excipient and (5) sidechain-mediated interaction with apolar regions exposed during unfolding (histidine). Lysine and histidine are useful for biopharmaceutical formulations as they were less destabilizing of the protein structures tested than arginine at concentrations above 100 mM.
Collapse
Affiliation(s)
- Lauren Platts
- Department of Chemical & Biological Engineering, ChELSI Institute, University of Sheffield, Sheffield S1 3JD, UK
| | - Samuel J Darby
- Department of Chemical & Biological Engineering, ChELSI Institute, University of Sheffield, Sheffield S1 3JD, UK
| | - Robert J Falconer
- Department of Chemical & Biological Engineering, ChELSI Institute, University of Sheffield, Sheffield S1 3JD, UK.
| |
Collapse
|
13
|
Platts L, Falconer RJ. Controlling protein stability: Mechanisms revealed using formulations of arginine, glycine and guanidinium HCl with three globular proteins. Int J Pharm 2015; 486:131-5. [DOI: 10.1016/j.ijpharm.2015.03.051] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/23/2015] [Accepted: 03/25/2015] [Indexed: 10/23/2022]
|
14
|
pH-responsive modulation of insulin aggregation and structural transformation of the aggregates. Biochimie 2015; 109:49-59. [DOI: 10.1016/j.biochi.2014.12.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 12/09/2014] [Indexed: 12/19/2022]
|
15
|
Preferential interactions between protein and arginine: Effects of arginine on tertiary conformational and colloidal stability of protein solution. Int J Pharm 2015; 478:753-61. [DOI: 10.1016/j.ijpharm.2014.12.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 12/08/2014] [Accepted: 12/16/2014] [Indexed: 01/01/2023]
|
16
|
The effect of Arg on the structure perturbation and chaperone activity of α-crystallin in the presence of the crowding agent, dextran. Appl Biochem Biotechnol 2014; 174:739-50. [PMID: 25091326 DOI: 10.1007/s12010-014-1092-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 07/21/2014] [Indexed: 10/24/2022]
Abstract
α-Crystallin is a protein that is expressed at high levels in all vertebrate eye lenses. It has a molecular weight of 20 kDa and is composed of two subunits: αA and αB. α-Crystallin is a member of the small heat shock protein (sHsps) family that has been shown to prevent protein aggregation. Small molecules are organic compounds that have low molecular weight (<800 Da). Arginin (Arg) is a small molecule and has been shown to prevent protein aggregation through interaction with partially folded intermediates. In this study, the effect of Arg on the chaperone activity of α-crystallin in the presence of dextran, as a crowding agent, against ordered and disordered aggregation of different target proteins (α-lactalbumin, ovotransferrin, and catalase) has been investigated. The experiments were done using visible absorption spectroscopy, ThT-binding assay, fluorescence spectroscopy, and CD spectroscopy. The results showed that in amorphous aggregation and amyloid fibril formation, both in the presence and absence of dextran, Arg had a positive effect on the chaperone action of α-crystallin. However, in the presence of dextran, the effect of Arg on the chaperone ability of α-crystallin was less than in its absence. Thus, our result suggests that crowding interior media decreases the positive effect of Arg on the chaperone ability of α-crystallin. This is a very important issue, since we are trying to find a mechanism to protect living cells against the toxic effect of protein aggregation.
Collapse
|
17
|
Smirnova E, Safenkova I, Stein-Margolina V, Shubin V, Gurvits B. Can aggregation of insulin govern its fate in the intestine? Implications for oral delivery of the drug. Int J Pharm 2014; 471:65-8. [DOI: 10.1016/j.ijpharm.2014.05.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 05/15/2014] [Accepted: 05/16/2014] [Indexed: 10/25/2022]
|
18
|
Dual effect of arginine on aggregation of phosphorylase kinase. Int J Biol Macromol 2014; 68:225-32. [DOI: 10.1016/j.ijbiomac.2014.04.056] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 04/24/2014] [Accepted: 04/29/2014] [Indexed: 01/20/2023]
|
19
|
Biopharmaceutical liquid formulation: a review of the science of protein stability and solubility in aqueous environments. Biotechnol Lett 2014; 36:869-75. [PMID: 24557073 DOI: 10.1007/s10529-013-1445-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 12/20/2013] [Indexed: 10/25/2022]
Abstract
Formulation scientists employed in the biopharmaceutical industry face the challenge of creating liquid aqueous formulations for proteins that never had evolutionary pressure to be exceptionally stable or soluble. Yet commercial products usually need a shelf life of 2 years to be economically viable. The research done in this field is dominated by physical chemists who have developed theories like preferential interaction, preferential hydration and excluded volume to explain the mechanisms for the interaction between salt, small organic molecules and proteins. This review aims to translate the research findings on protein stability and solubility produced by the physical chemists and make it accessible to formulation scientists working within the biopharmaceutical industry.
Collapse
|
20
|
Sharma S, Sarkar S, Paul SS, Roy S, Chattopadhyay K. A small molecule chemical chaperone optimizes its unfolded state contraction and denaturant like properties. Sci Rep 2013; 3:3525. [PMID: 24342892 PMCID: PMC3865464 DOI: 10.1038/srep03525] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 11/29/2013] [Indexed: 11/24/2022] Open
Abstract
Protein aggregation is believed to occur through the formation of misfolded conformations. It is expected that, in order to minimize aggregation, an effective small molecule chaperone would destabilize these intermediates. To study the mechanism of a chemical chaperone, we have designed a series of mutant proteins in which a tryptophan residue experiences different local environments and solvent exposures. We show that these mutants correspond to a series of conformationally altered proteins with varying degree of misfolding stress and aggregation propensities. Using arginine as a model small molecule, we show that a combination of unfolded state contraction and denaturant like properties results in selective targeting and destabilization of the partially folded proteins. In comparison, the effect of arginine towards the folded like control mutant, which is not aggregation prone, is significantly less. Other small molecules, lacking either of the above two properties, do not offer any specificity towards the misfolded proteins.
Collapse
Affiliation(s)
- Sunny Sharma
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032
| | - Suparna Sarkar
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032
| | - Simanta Sarani Paul
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032
| | - Syamal Roy
- Infectious diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032
| | - Krishnananda Chattopadhyay
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032
| |
Collapse
|
21
|
Smirnova E, Safenkova I, Stein-Margolina B, Shubin V, Gurvits B. L-arginine induces protein aggregation and transformation of supramolecular structures of the aggregates. Amino Acids 2013; 45:845-55. [PMID: 23744402 DOI: 10.1007/s00726-013-1528-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Accepted: 05/29/2013] [Indexed: 12/14/2022]
Abstract
Protein misfolding, self-assembly, and aggregation are an essential problem in cell biology, biotechnology, and biomedicine. The protein aggregates are very different morphologically varying from soluble amorphous aggregates to highly ordered amyloid-like fibrils. The objective of this study was to elucidate the role of the amino acid L-arginine (Arg), a widely used suppressor of protein aggregation, in the regulation of transformations of soluble aggregation-prone proteins into supramolecular structures of higher order. However, a striking potential of Arg to govern the initial events in the process of protein aggregation has been revealed under environment conditions where the protein aggregation in its absence was not observed. Using dynamic light scattering we have demonstrated that Arg (10-100 mM) dramatically accelerated the dithiothreitol-induced aggregation of acidic model proteins. The inhibitory effect on the protein aggregation was revealed at higher concentrations of Arg. Using atomic force microscopy it was shown that aggregation of α-lactalbumin from bovine milk induced upon addition of Arg reached a state of formation of supramolecular structures of non-fibrillar species profoundly differing from those of the individual protein in type, size, and shape. The interaction of another positively charged amino acid L-lysine with α-lactalbumin also resulted in profound acceleration of the aggregation process and transformation of supramolecular structures of the aggregates.
Collapse
Affiliation(s)
- Ekaterina Smirnova
- A. N. Bach Institute of Biochemistry, Russian Academy of Sciences, 119071, Moscow, Russia
| | | | | | | | | |
Collapse
|
22
|
Pal S, Das M, Dasgupta D. Structural studies of arginine induced enhancement in the activity of T7 RNA polymerase. Biochem Biophys Res Commun 2012; 421:27-32. [PMID: 22480683 DOI: 10.1016/j.bbrc.2012.03.098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 03/20/2012] [Indexed: 11/17/2022]
Abstract
Addition of arginine enhances the activity of the enzyme T7 RNA polymerase. Different methods have been employed to understand the enhancement in the light of arginine induced alteration of the tertiary structure. The increase in activity of the enzyme reaches a maximum value around a concentration of 125 mM arginine. Fluorescence, circular dichroism and dynamic light scattering studies indicate an alteration in the tertiary structure of the enzyme. Enthalpy change as a function of input concentration of arginine to a fixed concentration of the enzyme (5 μM) shows a dip at 100 mM concentration of arginine. Differential scanning calorimetric studies of the denaturation of the enzyme in absence and presence of arginine indicates arginine induced destabilization of the C-terminal domain of the enzyme. Structural alterations induced by arginine have been compared with those induced by the denaturant guanidine hydrochloride.
Collapse
Affiliation(s)
- Sudipta Pal
- Biophysics Division, Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700 064, India
| | | | | |
Collapse
|
23
|
Shah D, Li J, Shaikh AR, Rajagopalan R. Arginine-aromatic interactions and their effects on arginine-induced solubilization of aromatic solutes and suppression of protein aggregation. Biotechnol Prog 2011; 28:223-31. [DOI: 10.1002/btpr.710] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 06/21/2011] [Indexed: 11/06/2022]
|
24
|
Cirkovas A, Sereikaite J. Different effects of l-arginine on the heat-induced unfolding and aggregation of proteins. Biologicals 2011; 39:181-8. [DOI: 10.1016/j.biologicals.2011.04.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 03/18/2011] [Accepted: 04/07/2011] [Indexed: 11/30/2022] Open
|
25
|
Shah D, Shaikh AR, Peng X, Rajagopalan R. Effects of arginine on heat-induced aggregation of concentrated protein solutions. Biotechnol Prog 2011; 27:513-20. [DOI: 10.1002/btpr.563] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Revised: 12/13/2010] [Indexed: 11/06/2022]
|
26
|
Haghani K, Khajeh K, Salmanian AH, Ranjbar B, Bakhtiyari S. Acid-Induced Formation of Molten Globule States in the Wild Type Escherichia coli 5-Enolpyruvylshikimate 3-Phosphate Synthase and its Three Mutated Forms: G96A, A183T and G96A/A183T. Protein J 2011; 30:132-7. [DOI: 10.1007/s10930-011-9308-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
27
|
Siddiqui KS, Poljak A, De Francisci D, Guerriero G, Pilak O, Burg D, Raftery MJ, Parkin DM, Trewhella J, Cavicchioli R. A chemically modified alpha-amylase with a molten-globule state has entropically driven enhanced thermal stability. Protein Eng Des Sel 2010; 23:769-80. [PMID: 20696745 DOI: 10.1093/protein/gzq051] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The thermostability properties of TAA were investigated by chemically modifying carboxyl groups on the surface of the enzyme with AMEs. The TAA(MOD) exhibited a 200% improvement in starch-hydrolyzing productivity at 60 degrees C. By studying the kinetic, thermodynamic and biophysical properties, we found that TAA(MOD) had formed a thermostable, MG state, in which the unfolding of the tertiary structure preceded that of the secondary structure by at least 20 degrees C. The X-ray crystal structure of TAA(MOD) revealed no new permanent interactions (electrostatic or other) resulting from the modification. By deriving thermodynamic activation parameters of TAA(MOD), we rationalised that thermostabilisation have been caused by a decrease in the entropy of the transition state, rather than being enthalpically driven. Far-UV CD shows that the origin of decreased entropy may have arisen from a higher helical content of TAA(MOD). This study provides new insight into the intriguing properties of an MG state resulting from the chemical modification of TAA.
Collapse
Affiliation(s)
- Khawar Sohail Siddiqui
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Ouberai M, Dumy P, Chierici S, Garcia J. Synthesis and Biological Evaluation of Clicked Curcumin and Clicked KLVFFA Conjugates as Inhibitors of β-Amyloid Fibril Formation. Bioconjug Chem 2009; 20:2123-32. [DOI: 10.1021/bc900281b] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Myriam Ouberai
- Département de Chimie Moléculaire (DCM), UMR 5250, ICMG-FR, Université Joseph Fourier, BP 53, 38041 Grenoble Cedex 9, France
| | - Pascal Dumy
- Département de Chimie Moléculaire (DCM), UMR 5250, ICMG-FR, Université Joseph Fourier, BP 53, 38041 Grenoble Cedex 9, France
| | - Sabine Chierici
- Département de Chimie Moléculaire (DCM), UMR 5250, ICMG-FR, Université Joseph Fourier, BP 53, 38041 Grenoble Cedex 9, France
| | - Julian Garcia
- Département de Chimie Moléculaire (DCM), UMR 5250, ICMG-FR, Université Joseph Fourier, BP 53, 38041 Grenoble Cedex 9, France
| |
Collapse
|
29
|
Characterization of Acid-Induced Partially Folded Conformation Resembling a Molten Globule State of Polygalacturonase from a Filamentous Fungus Tetracoccosporium sp. Appl Biochem Biotechnol 2009; 160:1921-32. [DOI: 10.1007/s12010-009-8723-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Accepted: 07/13/2009] [Indexed: 10/20/2022]
|
30
|
Chen J, Liu Y, Wang Y, Ding H, Su Z. Different effects of L-arginine on protein refolding: suppressing aggregates of hydrophobic interaction, not covalent binding. Biotechnol Prog 2009; 24:1365-72. [PMID: 19194951 DOI: 10.1002/btpr.93] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Arginine is one of the most favorable additives in protein refolding. However, arginine does not work for certain disulfide-bond-containing proteins, which is not yet well explained. In this work, refolding of three proteins in the presence of 0-2 M arginine was investigated and compared. Bovine carbonic anhydrase B (CAB), containing no cysteine, was successfully refolded with the help of arginine. The refolding yield could reach almost 100% in the presence of 0.75 M arginine. However, recombinant human colony stimulating factor (rhG-CSF), containing five cysteines, could only achieve 65% refolding yield. The formation of aggregates was found. Blocking of free SH groups of the denatured rhG-CSF by iodoacetamide and subsequently refolding of the protein could reduce the aggregate formation substantially. Further investigation on recombinant green fluorescence protein (GFP), containing two cysteines, also revealed the accumulation of oligomers. The content of oligomers increased with the concentration of arginine, reaching about 30% at 2 M arginine. Comparison of reduced and nonreduced SDS-PAGE revealed that the oligomers were formed through intermolecular disulfide binding. Analysis of the refolding kinetics indicated that intermolecular disulfide bonds were probably formed in the intermediate stage where arginine slowed down the refolding rate and stabilized the intermediates. The accumulated intermediates with unpaired cysteine possessed more chances to react with each other to form oligomers, whereas arginine failed to inhibit disulfide bond formation.
Collapse
Affiliation(s)
- Jing Chen
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | |
Collapse
|
31
|
Ghosh R, Sharma S, Chattopadhyay K. Effect of Arginine on Protein Aggregation Studied by Fluorescence Correlation Spectroscopy and Other Biophysical Methods. Biochemistry 2009; 48:1135-43. [DOI: 10.1021/bi802065j] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ranendu Ghosh
- Structural Biology and Bioinformatics, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 4, Raja S. C. Mullick Road, Kolkata 700032, India
| | - Sunny Sharma
- Structural Biology and Bioinformatics, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 4, Raja S. C. Mullick Road, Kolkata 700032, India
| | - Krishnananda Chattopadhyay
- Structural Biology and Bioinformatics, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 4, Raja S. C. Mullick Road, Kolkata 700032, India
| |
Collapse
|
32
|
Ecroyd H, Carver JA. The effect of small molecules in modulating the chaperone activity of αB-crystallin against ordered and disordered protein aggregation. FEBS J 2008; 275:935-47. [DOI: 10.1111/j.1742-4658.2008.06257.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Unterhaslberger G, Schmitt C, Sanchez C, Appolonia-Nouzille C, Raemy A. Heat denaturation and aggregation of β-lactoglobulin enriched WPI in the presence of arginine HCl, NaCl and guanidinium HCl at pH 4.0 and 7.0. Food Hydrocoll 2006. [DOI: 10.1016/j.foodhyd.2005.10.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
34
|
Abstract
Under conditions of acidic pH and elevated temperature, insulin partially unfolds and aggregates into highly structured amyloid fibrils. Aggregation of insulin leads to loss of activity and can trigger an unwanted immune response. Compounds that prevent protein aggregation have been used to stabilize insulin; these compounds generally suppress aggregation only at relatively high inhibitor concentrations. For example, effective inhibition of aggregation of 0.5 mM insulin required arginine concentrations of > or =100 mM. Here, we investigate a targeted approach toward inhibiting insulin aggregation. VEALYL, corresponding to residues B12-17 of full-length insulin, was identified as a short peptide that interacts with full-length insulin. A hybrid peptide was synthesized that contained this binding domain and hexameric arginine; this peptide significantly reduced the rate of insulin aggregation at near-equimolar concentrations. An effective binding domain and N-terminal placement of the arginine hexamer were necessary for inhibitory activity. The data were analyzed using a simple two-step model of aggregation kinetics. These results are useful not only in identifying an insulin aggregation inhibitor but also in extending a targeted protein strategy for modifying aggregation of amyloidogenic proteins.
Collapse
Affiliation(s)
- Todd J Gibson
- Department of Chemical and Biological Engineering, University of Wisconsin, Madison, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
35
|
Shokri MM, Khajeh K, Alikhajeh J, Asoodeh A, Ranjbar B, Hosseinkhani S, Sadeghi M. Comparison of the molten globule states of thermophilic and mesophilic alpha-amylases. Biophys Chem 2006; 122:58-65. [PMID: 16516372 DOI: 10.1016/j.bpc.2005.12.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2005] [Revised: 12/17/2005] [Accepted: 12/21/2005] [Indexed: 11/23/2022]
Abstract
In recent years great interest has been generated in the process of protein folding, and the formation of intermediates during the folding process has been proven with new experimental strategies. In the present work, we have examined the molten globule state of Bacillus licheniformis alpha-amylase (BLA) by intrinsic fluorescence and circular dichroism spectra, 1-anilino naphthalene-8-sulfonate (ANS) binding and proteolytic digestion by pepsin, for comparison to its mesophilic counterpart, Bacillus amyloliquefaciens alpha-amylase (BAA). At pH 4.0, both enzymes acquire partially folded state which show characteristics of molten globule state. They unfold in such a way that their hydrophobic surfaces are exposed to a greater extent compared to the native forms. Chemical denaturation studies by guanidine hydrochloride and proteolytic digestion with pepsin show that molten globule state of BLA is more stable than from BAA. Results from gel filtration indicate that BAA has the same compactness at pH 4.0 and 7.5. However, molten globule state of BLA is less compact than its native state. The effects of polyols such as trehalose, sorbitol and glycerol on refolding of enzymes from molten globule to native state were also studied. These polyols are effective on refolding of mesophilic alpha-amylase but only slightly effect on BLA refolding. In addition, the folding pathway and stability of intermediate state of the thermophilic and the mesophilic alpha-amylases are discussed.
Collapse
Affiliation(s)
- Maryam Monsef Shokri
- Department of Biochemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| | | | | | | | | | | | | |
Collapse
|
36
|
Pan N, Cai X, Tang K, Zou G. Unfolding Features of Bovine Testicular Hyaluronidase Studied by Fluorescence Spectroscopy and Fourier Transformed Infrared Spectroscopy. J Fluoresc 2005; 15:841-7. [PMID: 16292497 DOI: 10.1007/s10895-005-0011-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2005] [Accepted: 11/08/2005] [Indexed: 10/25/2022]
Abstract
Chemical unfolding of bovine testicular hyaluronidase (HAase) has been studied by fluorescence spectroscopy and Fourier transformed infrared spectroscopy (FTIR). Thermodynamic parameters were determined for unfolding HAase from changes in the intrinsic fluorescence emission intensity and the formations of several possible unfolding intermediates have been identified. This was further confirmed by representation of fluorescence data in terms of 'phase diagram'. The secondary structures of HAase have been assigned and semiquantitatively estimated from the FTIR. The occurrence of conformational change during chemical unfolding as judged by fluorescence and FTIR spectroscopy indicated that the unfolding of HAase may not follow the typical two-state model.
Collapse
Affiliation(s)
- Nina Pan
- State Key Laboratory of Virology, Department of Biotechnology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | | | | | | |
Collapse
|
37
|
Ishibashi M, Tsumoto K, Tokunaga M, Ejima D, Kita Y, Arakawa T. Is arginine a protein-denaturant? Protein Expr Purif 2005; 42:1-6. [PMID: 15893471 DOI: 10.1016/j.pep.2005.03.028] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2005] [Revised: 03/22/2005] [Accepted: 03/28/2005] [Indexed: 11/25/2022]
Abstract
Arginine is a useful solvent additive for many applications, including refolding and solubilization of proteins from insoluble pellets, and suppression of protein aggregation and non-specific adsorption during formulation and purification. However, there is a concern that arginine may be a protein-denaturant, which may limit the expansion of its applications. Such concern arises from the facts that arginine decreases melting temperature and perturbs the spectroscopic properties of certain proteins and contains a guanidinium group, which is a critical chemical structure for denaturing activity of guanidine hydrochloride. Here, we show that although arginine does lower the melting temperatures of certain proteins, the extent is insufficient to cause denaturation of proteins at or below room temperature. The proteins described here show enzymatic activity and folded structure in the presence of arginine, although the local structure around aromatic amino acids is perturbed by arginine. Arginine differs from guandinine hydrochloride in the mode of interactions with proteins, which may be a primary reason why arginine is not a protein-denaturant.
Collapse
Affiliation(s)
- Matsujiro Ishibashi
- Laboratory of Applied and Molecular Microbiology, Faculty of Agriculture, Kagoshima University, Korimoto, Japan
| | | | | | | | | | | |
Collapse
|
38
|
Naeem A, Khan RH. Characterization of molten globule state of cytochrome c at alkaline, native and acidic pH induced by butanol and SDS. Int J Biochem Cell Biol 2005; 36:2281-92. [PMID: 15313473 DOI: 10.1016/j.biocel.2004.04.023] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/26/2004] [Accepted: 04/14/2004] [Indexed: 11/23/2022]
Abstract
In our earlier communications, we had studied the acid induced unfolding of stem bromelain, glucose oxidase and fetuin [Eur. J. Biochem. 269 (2002) 47; Biochem. Biophys. Res. Comm. 303 (2003) 685; Biochim. Biophys. Acta 1649 (2003) 164] and effect of salts and alcohols on the acid unfolded state of alpha-chymotrypsinogen and stem bromelain [Biochim. Biophy. Acta 1481 (2000) 229; Arch. Biochem. Biophys. 413 (2) (2003) 199]. Here, we report the presence of molten globule like equilibrium intermediate state under alkaline, native and acid conditions in the presence of SDS and butanol. A systematic investigation of sodium dodecyl sulphate and butanol induced conformational alterations in alkaline (U(1)) and acidic (U(2)) unfolded states of horse heart ferricytochrome c was examined by circular dichroism (CD), tryptophan fluorescence and 1-anilino-8-napthalene sulfonate (ANS) binding. The cytochrome c (cyt c) at pH 9 and 2 shows the loss of approximately 61% and 65% helical secondary structure. Addition of increasing concentrations of butanol (0-7.2 M) and sodium dodecyl sulphate (0-5 mM) led to an increase in ellipticity value at 208 and 222 nm, which is the characteristic of formation of alpha-helical structure. Cyt c is a heme protein in which the tryptophan fluorescence is quenched in the native state by resonance energy transfer to the heme group attached to cystines at positions 14 and 17. At alkaline and acidic pH protein shows enhancement in tryptophan fluorescence and quenched ANS fluorescence. Addition of increasing concentration of butanol and SDS to alkaline or acid unfolded state leads to decrease in tryptophan and increase in ANS fluorescence with a blue shift in lambda(max), respectively. In the presence of 7.2 M butanol and 5 mM SDS two different intermediate states I(1) and I(2) were obtained at alkaline and acidic pH, respectively. States I(1) and I(2) have native like secondary structure with disordered side chains (loss of tertiary structure) as predicted from tryptophan fluorescence and high ANS binding. These results altogether imply that the butanol and SDS induced intermediate states at alkaline and acid pH lies between the unfolded and native state. At pH 6, in the presence of 7.2 M butanol or 5 mM SDS leads to the loss of CD bands at 208 and 222 nm with the appearance of trough at 228 nm also with increase in tryptophan and ANS fluorescence in contrast to native protein. This partially unfolded intermediate state obtained represents the folding pathway from native to unfolded structure. To summarize; the 7.2 M butanol and 5 mM SDS stabilizes the intermediate state (I(1) and I(2)) obtained at low and alkaline pH. While the same destabilizes the native structure of protein at pH 6, suggesting a difference in the mechanism of conformational stability.
Collapse
Affiliation(s)
- Aabgeena Naeem
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | | |
Collapse
|
39
|
Naeem A, Khan KA, Khan RH. Characterization of a partially folded intermediate of papain induced by fluorinated alcohols at low pH. Arch Biochem Biophys 2004; 432:79-87. [PMID: 15519299 DOI: 10.1016/j.abb.2004.08.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2004] [Revised: 08/16/2004] [Indexed: 10/26/2022]
Abstract
A systematic investigation of the effects of aqueous 1,1,1,3,3,3-hexafluoroisopropanol (HFIP) and 2,2,2-trifluoroethanol (TFE) on the structure of acid-unfolded papain (EC. 3.4.22.2) was made using circular dichroism (CD), intrinsic tryptophan fluorescence, and 1-anilino 8-sulfonic acid (ANS) binding. At pH 2, papain exhibits substantial secondary structure as beta-sheet and is relatively less denatured as compared to 6 M guanidine hydrochloride (GdnHCl) but loses the persistent tertiary structure of the native state. Addition of HFIP and TFE caused an induction of alpha-helical structure as evident from the increase in the mean residue ellipticity value at 208 and 222 nm. Induction was 20% more in HFIP than TFE. Interestingly, at 13% (v/v) HFIP and 30% (v/v) TFE a near-UV CD spectrum approaches the native-like spectral features. Tryptophan fluorescence studies indicate the change in the environment of the tryptophan residues on the addition of HFIP and TFE to acid-unfolded papain. Maximum ANS binding occurs at 13% (v/v) HFIP and 30% (v/v) TFE, suggesting a compact "molten globule"-like conformation with enhanced exposure of hydrophobic surface area. Acid-unfolded papain in presence of 13% (v/v) HFIP and 30% (v/v) TFE showed the recovery of enzymatic activity by 54 and 61%, respectively. Thermal stability of these states was assessed by changes in fluorescence emission maximum and absorbance at 292 nm. Temperature-induced unfolding of papain at pH 2 was non-cooperative and the transition curves were biphasic in nature. Temperature-induced unfolding of HFIP and TFE-induced state was weakly cooperative in comparison to cooperative transition of native.
Collapse
Affiliation(s)
- Aabgeena Naeem
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | | | | |
Collapse
|