1
|
Çınaroğlu S, Biggin PC. Computed Protein-Protein Enthalpy Signatures as a Tool for Identifying Conformation Sampling Problems. J Chem Inf Model 2023; 63:6095-6108. [PMID: 37759363 PMCID: PMC10565830 DOI: 10.1021/acs.jcim.3c01041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Indexed: 09/29/2023]
Abstract
Understanding the thermodynamic signature of protein-peptide binding events is a major challenge in computational chemistry. The complexity generated by both components possessing many degrees of freedom poses a significant issue for methods that attempt to directly compute the enthalpic contribution to binding. Indeed, the prevailing assumption has been that the errors associated with such approaches would be too large for them to be meaningful. Nevertheless, we currently have no indication of how well the present methods would perform in terms of predicting the enthalpy of binding for protein-peptide complexes. To that end, we carefully assembled and curated a set of 11 protein-peptide complexes where there is structural and isothermal titration calorimetry data available and then computed the absolute enthalpy of binding. The initial "out of the box" calculations were, as expected, very modest in terms of agreement with the experiment. However, careful inspection of the outliers allows for the identification of key sampling problems such as distinct conformations of peptide termini not being sampled or suboptimal cofactor parameters. Additional simulations guided by these aspects can lead to a respectable correlation with isothermal titration calorimetry (ITC) experiments (R2 of 0.88 and an RMSE of 1.48 kcal/mol overall). Although one cannot know prospectively whether computed ITC values will be correct or not, this work shows that if experimental ITC data are available, then this in conjunction with computed ITC, can be used as a tool to know if the ensemble being simulated is representative of the true ensemble or not. That is important for allowing the correct interpretation of the detailed dynamics of the system with respect to the measured enthalpy. The results also suggest that computational calorimetry is becoming increasingly feasible. We provide the data set as a resource for the community, which could be used as a benchmark to help further progress in this area.
Collapse
Affiliation(s)
| | - Philip C. Biggin
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K.
| |
Collapse
|
2
|
Katte RH, Dowarha D, Chou RH, Yu C. S100P Interacts with p53 while Pentamidine Inhibits This Interaction. Biomolecules 2021; 11:634. [PMID: 33923162 PMCID: PMC8145327 DOI: 10.3390/biom11050634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 11/16/2022] Open
Abstract
S100P, a small calcium-binding protein, associates with the p53 protein with micromolar affinity. It has been hypothesized that the oncogenic function of S100P may involve binding-induced inactivation of p53. We used 1H-15N HSQC experiments and molecular modeling to study the molecular interactions between S100P and p53 in the presence and absence of pentamidine. Our experimental analysis indicates that the S100P-53 complex formation is successfully disrupted by pentamidine, since S100P shares the same binding site for p53 and pentamidine. In addition, we showed that pentamidine treatment of ZR-75-1 breast cancer cells resulted in reduced proliferation and increased p53 and p21 protein levels, indicating that pentamidine is an effective antagonist that interferes with the S100P-p53 interaction, leading to re-activation of the p53-21 pathway and inhibition of cancer cell proliferation. Collectively, our findings suggest that blocking the association between S100P and p53 by pentamidine will prevent cancer progression and, therefore, provide a new avenue for cancer therapy by targeting the S100P-p53 interaction.
Collapse
Affiliation(s)
- Revansiddha H. Katte
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan; (R.H.K.); (D.D.)
| | - Deepu Dowarha
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan; (R.H.K.); (D.D.)
| | - Ruey-Hwang Chou
- Graduate Institute of Biomedical Sciences and Center for Molecular Medicine, China Medical University, Taichung 40402, Taiwan;
- Department of Biotechnology, Asia University, Taichung 41354, Taiwan
| | - Chin Yu
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan; (R.H.K.); (D.D.)
| |
Collapse
|
3
|
Ning S, Liu J, Liu N, Yan D. The accuracy of force fields on the simulation of intrinsically disordered proteins: A benchmark test on the human p53 tumor suppressor. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2020. [DOI: 10.1142/s021963362050011x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Intrinsically disordered proteins (IDPs) are a class of proteins without stable three-dimensional structures under physiological conditions. IDPs exhibit high dynamic nature and could be described by structural ensembles. As one of the most widely used tools, molecular dynamics (MD) simulation could provide the atomic descriptions of the structural ensemble of IDPs. However, the accuracy of the MD simulation largely depends on the accuracy of the force field. In this paper, we compared the structural ensembles of the activation domain 1 (AD1) in p53 tumor suppressor obtained from the widely used force fields, AMBER99SB-ILDN, CHARMM27, CHARMM36m with different water models. The results show that CHARMM36m generates more extended conformations than other force fields, while CHARMM27 prefers to sample the [Formula: see text]-helical structure. Moreover, the chemical shifts obtained by CHARMM36m are the closest to the experimental measurements. These results indicate that the CHARMM36m force field performs best in characterizing the structure properties of p53 AD1. Water models are also critical to describe the structural ensemble of IDPs. TIP4P water model can obtain more extended conformations and produce more local helical conformations than the TIP3P model in our simulation. In addition, we also compare the chemical shifts predicted by different chemical shift predicting programs with experimental measurements, the results show that SHIFTX2 obtains the best performance in the chemical shifts prediction.
Collapse
Affiliation(s)
- Shangbo Ning
- School of Biology and Pharmceutical Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, P. R. China
| | - Jun Liu
- School of Biology and Pharmceutical Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, P. R. China
| | - Na Liu
- School of Biology and Pharmceutical Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, P. R. China
| | - Dazhong Yan
- School of Biology and Pharmceutical Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, P. R. China
| |
Collapse
|
4
|
Wang X, Magdziarz P, Enriquez E, Zhao W, Quan C, Darabedian N, Momand J, Zhou F. Surface plasmon resonance and cytotoxicity assays of drug efficacies predicted computationally to inhibit p53/MDM2 interaction. Anal Biochem 2019; 569:53-58. [PMID: 30721669 DOI: 10.1016/j.ab.2019.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 10/17/2018] [Accepted: 01/31/2019] [Indexed: 01/10/2023]
Abstract
Docking on the p53-binding site of murine double minute 2 (MDM2) by small molecules restores p53's tumor-suppressor function. We previously assessed 3244 FDA-approved drugs via "computational conformer selection" for inhibiting MDM2 and p53 interaction. Here, we developed a surface plasmon resonance method to experimentally confirm the inhibitory effects of the known MDM2 inhibitor, nutlin-3a, and two drug candidates predicted by our computational method. This p53/MDM2 interaction displayed a dosage-dependent weakening when MDM2 is pre-mixed with drug candidates. The inhibition efficiency order is nutlin-3a (IC50 = 97 nM) > bepridil (206 nM) > azelastine (307 nM). Furthermore, we verified their anti-proliferation effects on SJSA-1 (wild-type p53 and overexpressed MDM2), SW480 (mutated p53), and SaOs-2 (deleted p53) cancer cell lines. The inhibitory order towards SJSA-1 cell line is nutlin-3a (IC50 = 0.8 μM) > bepridil (23 μM) > azelastine (25 μM). Our experimental results are in line with the computational prediction, and the higher IC50 values from the cell-based assays are due to the requirement of higher drug concentrations to penetrate cell membranes. The anti-proliferation effects of bepridil and azelastine on the cell lines with mutated and deleted p53 implied some p53-independent anti-proliferation effects.
Collapse
Affiliation(s)
- Xiaoying Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, PR China
| | - Patrycja Magdziarz
- Department of Chemistry and Biochemistry, California State University, Los Angeles, Los Angeles, CA, 90032, USA
| | - Ernest Enriquez
- Department of Chemistry and Biochemistry, California State University, Los Angeles, Los Angeles, CA, 90032, USA
| | - Wang Zhao
- Department of Chemistry and Biochemistry, California State University, Los Angeles, Los Angeles, CA, 90032, USA
| | - Chris Quan
- Department of Chemistry and Biochemistry, California State University, Los Angeles, Los Angeles, CA, 90032, USA
| | - Narek Darabedian
- Department of Chemistry and Biochemistry, California State University, Los Angeles, Los Angeles, CA, 90032, USA
| | - Jamil Momand
- Department of Chemistry and Biochemistry, California State University, Los Angeles, Los Angeles, CA, 90032, USA.
| | - Feimeng Zhou
- Department of Chemistry and Biochemistry, California State University, Los Angeles, Los Angeles, CA, 90032, USA.
| |
Collapse
|
5
|
Kinetic and thermodynamic effects of phosphorylation on p53 binding to MDM2. Sci Rep 2019; 9:693. [PMID: 30679555 PMCID: PMC6345774 DOI: 10.1038/s41598-018-36589-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 11/15/2018] [Indexed: 02/03/2023] Open
Abstract
p53 is frequently mutated in human cancers. Its levels are tightly regulated by the E3 ubiquitin ligase MDM2. The complex between MDM2 and p53 is largely formed by the interaction between the N-terminal domain of MDM2 and the N-terminal transactivation (TA) domain of p53 (residues 15–29). We investigated the kinetic and thermodynamic basis of the MDM2/p53 interaction by using wild-type and mutant variants of the TA domain. We focus on the effects of phosphorylation at positions Thr18 and Ser20 including their substitution with phosphomimetics. Conformational propensities of the isolated peptides were investigated using in silico methods and experimentally by circular dichroism and 1H-NMR in aqueous solution. Both experimental and computational analyses indicate that the p53 peptides are mainly disordered in aqueous solution, with evidence of nascent helix around the Ser20-Leu25 region. Both phosphorylation and the phosphomimetics at Thr18 result in a decrease in the binding affinity by ten- to twenty-fold when compared to the wild-type. Phosphorylation and phosphomimetics at Ser20 result in a smaller decrease in the affinity. Mutation of Lys24 and Leu25 also disrupts the interaction. Our results may be useful for further development of peptide-based drugs targeting the MDM2/p53 interaction.
Collapse
|
6
|
Kim DH, Han KH. PreSMo Target-Binding Signatures in Intrinsically Disordered Proteins. Mol Cells 2018; 41:889-899. [PMID: 30352491 PMCID: PMC6199570 DOI: 10.14348/molcells.2018.0192] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/07/2018] [Accepted: 08/22/2018] [Indexed: 12/26/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) are highly unorthodox proteins that do not form three-dimensional structures under physiological conditions. The discovery of IDPs has destroyed the classical structure-function paradigm in protein science, 3-D structure = function, because IDPs even without well-folded 3-D structures are still capable of performing important biological functions and furthermore are associated with fatal diseases such as cancers, neurodegenerative diseases and viral pandemics. Pre-structured motifs (PreSMos) refer to transient local secondary structural elements present in the target-unbound state of IDPs. During the last two decades PreSMos have been steadily acknowledged as the critical determinants for target binding in dozens of IDPs. To date, the PreSMo concept provides the most convincing structural rationale explaining the IDP-target binding behavior at an atomic resolution. Here we present a brief developmental history of PreSMos and describe their common characteristics. We also provide a list of newly discovered PreSMos along with their functional relevance.
Collapse
Affiliation(s)
- Do-Hyoung Kim
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141,
Korea
| | - Kyou-Hoon Han
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141,
Korea
| |
Collapse
|
7
|
Yadahalli S, Li J, Lane DP, Gosavi S, Verma CS. Characterizing the conformational landscape of MDM2-binding p53 peptides using Molecular Dynamics simulations. Sci Rep 2017; 7:15600. [PMID: 29142290 PMCID: PMC5688104 DOI: 10.1038/s41598-017-15930-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 11/03/2017] [Indexed: 11/09/2022] Open
Abstract
The conformational landscapes of p53 peptide variants and phage derived peptide (12/1) variants, all known to bind to MDM2, are studied using hamiltonian replica exchange molecular dynamics simulations. Complementing earlier observations, the current study suggests that the p53 peptides largely follow the ‘conformational selection’ paradigm in their recognition of and complexation by MDM2 while the 12/1 peptides likely undergo some element of conformational selection but are mostly driven by ‘binding induced folding’. This hypothesis is further supported by pulling simulations that pull the peptides away from their bound states with MDM2. This data extends the earlier mechanisms proposed to rationalize the entropically driven binding of the p53 set and the enthalpically driven binding of the 12/1 set. Using our hypothesis, we suggest mutations to the 12/1 peptide that increase its helicity in simulations and may, in turn, shift the binding towards conformational selection. In summary, understanding the conformational landscapes of the MDM2-binding peptides may suggest new peptide designs with bespoke binding mechanisms.
Collapse
Affiliation(s)
- Shilpa Yadahalli
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road, Bangalore, 560065, India.,Bioinformatics Institute, A*STAR (Agency for Science, Technology and Research), 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Singapore.,Manipal University, Madhav Nagar, Manipal, 576104, India.,p53 Laboratory, A*STAR (Agency for Science, Technology and Research), 8A Biomedical Grove, #06-04/05 Neuros/Immunos, Singapore, 138648, Singapore
| | - Jianguo Li
- Bioinformatics Institute, A*STAR (Agency for Science, Technology and Research), 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Singapore.,Singapore Eye Research Institute, 11 Third Hospital Avenue, #06-00, Singapore, 168751, Singapore
| | - David P Lane
- p53 Laboratory, A*STAR (Agency for Science, Technology and Research), 8A Biomedical Grove, #06-04/05 Neuros/Immunos, Singapore, 138648, Singapore
| | - Shachi Gosavi
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road, Bangalore, 560065, India
| | - Chandra S Verma
- Bioinformatics Institute, A*STAR (Agency for Science, Technology and Research), 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Singapore. .,Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 11758, Singapore. .,School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.
| |
Collapse
|
8
|
Zhou G, Pantelopulos GA, Mukherjee S, Voelz VA. Bridging Microscopic and Macroscopic Mechanisms of p53-MDM2 Binding with Kinetic Network Models. Biophys J 2017; 113:785-793. [PMID: 28834715 DOI: 10.1016/j.bpj.2017.07.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 07/10/2017] [Accepted: 07/20/2017] [Indexed: 01/16/2023] Open
Abstract
Under normal cellular conditions, the tumor suppressor protein p53 is kept at low levels in part due to ubiquitination by MDM2, a process initiated by binding of MDM2 to the intrinsically disordered transactivation domain (TAD) of p53. Many experimental and simulation studies suggest that disordered domains such as p53 TAD bind their targets nonspecifically before folding to a tightly associated conformation, but the microscopic details are unclear. Toward a detailed prediction of binding mechanisms, pathways, and rates, we have performed large-scale unbiased all-atom simulations of p53-MDM2 binding. Markov state models (MSMs) constructed from the trajectory data predict p53 TAD binding pathways and on-rates in good agreement with experiment. The MSM reveals that two key bound intermediates, each with a nonnative arrangement of hydrophobic residues in the MDM2 binding cleft, control the overall on-rate. Using microscopic rate information from the MSM, we parameterize a simple four-state kinetic model to 1) determine that induced-fit pathways dominate the binding flux over a large range of concentrations, and 2) predict how modulation of residual p53 helicity affects binding, in good agreement with experiment. These results suggest new ways in which microscopic models of peptide binding, coupled with simple few-state binding flux models, can be used to understand biological function in physiological contexts.
Collapse
Affiliation(s)
- Guangfeng Zhou
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania
| | | | - Sudipto Mukherjee
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania
| | - Vincent A Voelz
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania.
| |
Collapse
|
9
|
Raj N, Attardi LD. The Transactivation Domains of the p53 Protein. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a026047. [PMID: 27864306 DOI: 10.1101/cshperspect.a026047] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The p53 tumor suppressor is a transcriptional activator, with discrete domains that participate in sequence-specific DNA binding, tetramerization, and transcriptional activation. Mutagenesis and reporter studies have delineated two distinct activation domains (TADs) and specific hydrophobic residues within these TADs that are critical for their function. Knockin mice expressing p53 mutants with alterations in either or both of the two TADs have revealed that TAD1 is critical for responses to acute DNA damage, whereas both TAD1 and TAD2 participate in tumor suppression. Biochemical and structural studies have identified factors that bind either or both TADs, including general transcription factors (GTFs), chromatin modifiers, and negative regulators, helping to elaborate a model through which p53 activates transcription. Posttranslational modifications (PTMs) of the p53 TADs through phosphorylation also regulate TAD activity. Together, these studies on p53 TADs provide great insight into how p53 serves as a tumor suppressor.
Collapse
Affiliation(s)
- Nitin Raj
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305
| | - Laura D Attardi
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305.,Department of Genetics, Stanford University School of Medicine, Stanford, California 94305
| |
Collapse
|
10
|
Costa DCF, de Oliveira GAP, Cino EA, Soares IN, Rangel LP, Silva JL. Aggregation and Prion-Like Properties of Misfolded Tumor Suppressors: Is Cancer a Prion Disease? Cold Spring Harb Perspect Biol 2016; 8:cshperspect.a023614. [PMID: 27549118 DOI: 10.1101/cshperspect.a023614] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Prion diseases are disorders that share several characteristics that are typical of many neurodegenerative diseases. Recently, several studies have extended the prion concept to pathological aggregation in malignant tumors involving misfolded p53, a tumor-suppressor protein. The aggregation of p53 and its coaggregation with p53 family members, p63 and p73, have been shown. Certain p53 mutants exert a dominant-negative regulatory effect on wild-type (WT) p53. The basis for this dominant-negative effect is that amyloid-like mutant p53 converts WT p53 into an aggregated species, leading to a gain-of-function (GoF) phenotype and the loss of its tumor-suppressor function. Recently, it was shown that p53 aggregates can be internalized by cells and can coaggregate with endogenous p53, corroborating the prion-like properties of p53 aggregates. The prion-like behavior of oncogenic p53 mutants provides an explanation for its dominant-negative and GoF properties, including the high metastatic potential of cancer cells carrying p53 mutations. The inhibition of p53 aggregation appears to represent a promising target for therapeutic intervention in patients with malignant tumors.
Collapse
Affiliation(s)
- Danielly C F Costa
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil Instituto Nacional de Ciência e Tecnologia (INCT) de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil Instituto de Nutrição, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ 20550-013, Brazil
| | - Guilherme A P de Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil Instituto Nacional de Ciência e Tecnologia (INCT) de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Elio A Cino
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil Instituto Nacional de Ciência e Tecnologia (INCT) de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Iaci N Soares
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil Instituto Nacional de Ciência e Tecnologia (INCT) de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Luciana P Rangel
- Instituto Nacional de Ciência e Tecnologia (INCT) de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Jerson L Silva
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil Instituto Nacional de Ciência e Tecnologia (INCT) de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| |
Collapse
|
11
|
Recognition of the disordered p53 transactivation domain by the transcriptional adapter zinc finger domains of CREB-binding protein. Proc Natl Acad Sci U S A 2016; 113:E1853-62. [PMID: 26976603 DOI: 10.1073/pnas.1602487113] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An important component of the activity of p53 as a tumor suppressor is its interaction with the transcriptional coactivators cyclic-AMP response element-binding protein (CREB)-binding protein (CBP) and p300, which activate transcription of p53-regulated stress response genes and stabilize p53 against ubiquitin-mediated degradation. The highest affinity interactions are between the intrinsically disordered N-terminal transactivation domain (TAD) of p53 and the TAZ1 and TAZ2 domains of CBP/p300. The NMR spectra of simple binary complexes of the TAZ1 and TAZ2 domains with the p53TAD suffer from exchange broadening, but innovations in construct design and isotopic labeling have enabled us to obtain high-resolution structures using fusion proteins, uniformly labeled in the case of the TAZ2-p53TAD fusion and segmentally labeled through transintein splicing for the TAZ1-p53TAD fusion. The p53TAD is bipartite, with two interaction motifs, termed AD1 and AD2, which fold to form short amphipathic helices upon binding to TAZ1 and TAZ2 whereas intervening regions of the p53TAD remain flexible. Both the AD1 and AD2 motifs bind to hydrophobic surfaces of the TAZ domains, with AD2 making more extensive hydrophobic contacts consistent with its greater contribution to the binding affinity. Binding of AD1 and AD2 is synergistic, and structural studies performed with isolated motifs can be misleading. The present structures of the full-length p53TAD complexes demonstrate the versatility of the interactions available to an intrinsically disordered domain containing bipartite interaction motifs and provide valuable insights into the structural basis of the affinity changes that occur upon stress-related posttranslational modification.
Collapse
|
12
|
de Oliveira GAP, Rangel LP, Costa DC, Silva JL. Misfolding, Aggregation, and Disordered Segments in c-Abl and p53 in Human Cancer. Front Oncol 2015; 5:97. [PMID: 25973395 PMCID: PMC4413674 DOI: 10.3389/fonc.2015.00097] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 04/10/2015] [Indexed: 01/31/2023] Open
Abstract
The current understanding of the molecular mechanisms that lead to cancer is not sufficient to explain the loss or gain of function in proteins related to tumorigenic processes. Among them, more than 100 oncogenes, 20-30 tumor-suppressor genes, and hundreds of genes participating in DNA repair and replication have been found to play a role in the origins of cancer over the last 25 years. The phosphorylation of serine, threonine, or tyrosine residues is a critical step in cellular growth and development and is achieved through the tight regulation of protein kinases. Phosphorylation plays a major role in eukaryotic signaling as kinase domains are found in 2% of our genes. The deregulation of kinase control mechanisms has disastrous consequences, often leading to gains of function, cell transformation, and cancer. The c-Abl kinase protein is one of the most studied targets in the fight against cancer and is a hotspot for drug development because it participates in several solid tumors and is the hallmark of chronic myelogenous leukemia. Tumor suppressors have the opposite effects. Their fundamental role in the maintenance of genomic integrity has awarded them a role as the guardians of DNA. Among the tumor suppressors, p53 is the most studied. The p53 protein has been shown to be a transcription factor that recognizes and binds to specific DNA response elements and activates gene transcription. Stress triggered by ionizing radiation or other mutagenic events leads to p53 phosphorylation and cell-cycle arrest, senescence, or programed cell death. The p53 gene is the most frequently mutated gene in cancer. Mutations in the DNA-binding domain are classified as class I or class II depending on whether substitutions occur in the DNA contact sites or in the protein core, respectively. Tumor-associated p53 mutations often lead to the loss of protein function, but recent investigations have also indicated gain-of-function mutations. The prion-like aggregation of mutant p53 is associated with loss-of-function, dominant-negative, and gain-of-function effects. In the current review, we focused on the most recent insights into the protein structure and function of the c-Abl and p53 proteins that will provide us guidance to understand the loss and gain of function of these misfolded tumor-associated proteins.
Collapse
Affiliation(s)
- Guilherme A. P. de Oliveira
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciana P. Rangel
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Danielly C. Costa
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jerson L. Silva
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
13
|
Sim AYL, Joseph T, Lane DP, Verma C. Mechanism of Stapled Peptide Binding to MDM2: Possible Consequences for Peptide Design. J Chem Theory Comput 2014; 10:1753-61. [DOI: 10.1021/ct4009238] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Adelene Y. L. Sim
- Bioinformatics
Institute (A*STAR), 30
Biopolis Street #07-01, Matrix, Singapore 138671
| | - Thomas Joseph
- Bioinformatics
Institute (A*STAR), 30
Biopolis Street #07-01, Matrix, Singapore 138671
| | - David P. Lane
- p53
Laboratory (p53Lab, A*STAR), 8A Biomedical Grove, #06-06, Immunos, Singapore 138648
| | - Chandra Verma
- Bioinformatics
Institute (A*STAR), 30
Biopolis Street #07-01, Matrix, Singapore 138671
- School
of Biological Sciences, Nanyang Technological University, 60 Nanyang
Drive, Singapore 637551
- Department
of Biological Sciences, National University of Singapore, 14 Science
Drive 4, Singapore 117543
| |
Collapse
|
14
|
Guo Z, Li B, Dzubiella J, Cheng LT, McCammon JA, Che J. Heterogeneous Hydration of p53/MDM2 Complex. J Chem Theory Comput 2014; 10:1302-1313. [PMID: 24803860 PMCID: PMC3958133 DOI: 10.1021/ct400967m] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Indexed: 12/23/2022]
Abstract
![]()
Water-mediated
interactions play critical roles in biomolecular
recognition processes. Explicit solvent molecular dynamics (MD) simulations
and the variational implicit-solvent model (VISM) are used to study
those hydration properties during binding for the biologically important
p53/MDM2 complex. Unlike simple model solutes, in such a realistic
and heterogeneous solute–solvent system with both geometrical
and chemical complexity, the local water distribution sensitively
depends on nearby amino acid properties and the geometric shape of
the protein. We show that the VISM can accurately describe the locations
of high and low density solvation shells identified by the MD simulations
and can explain them by a local coupling balance of solvent–solute
interaction potentials and curvature. In particular, capillary transitions
between local dry and wet hydration states in the binding pocket are
captured for interdomain distance between 4 to 6 Å, right at
the onset of binding. The underlying physical connection between geometry
and polarity is illustrated and quantified. Our study offers a microscopic
and physical insight into the heterogeneous hydration behavior of
the biologically highly relevant p53/MDM2 system and demonstrates
the fundamental importance of hydrophobic effects for biological binding
processes. We hope our study can help to establish new design rules
for drugs and medical substances.
Collapse
Affiliation(s)
- Zuojun Guo
- Genomics Institute of the Novartis Research Foundation , 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Bo Li
- Department of Mathematics and Center for Theoretical Biological Physics, University of California, San Diego , 9500 Gilman Drive, La Jolla, California 92093-0112, United States
| | - Joachim Dzubiella
- Department of Physics, Humboldt University of Berlin , Newtonstr. 15, 12489 Berlin, Germany ; Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin , Hahn-Meitner Platz 1, 14109 Berlin, Germany
| | - Li-Tien Cheng
- Department of Mathematics, University of California, San Diego , 9500 Gilman Drive, La Jolla, California 92093-0112, United States
| | - J Andrew McCammon
- Department of Chemistry and Biochemistry, Department of Pharmacology, Howard Hughes Medical Institute, and Center for Theoretical Biological Physics, University of California , San Diego, 9500 Gilman Drive, La Jolla, California 92093-0365, United States
| | - Jianwei Che
- Genomics Institute of the Novartis Research Foundation , 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| |
Collapse
|
15
|
da Zhan YA, Wu H, Powell AT, Daughdrill GW, Ytreberg FM. Impact of the K24N mutation on the transactivation domain of p53 and its binding to murine double-minute clone 2. Proteins 2013; 81:1738-47. [PMID: 23609977 PMCID: PMC4160123 DOI: 10.1002/prot.24310] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 04/02/2013] [Accepted: 04/08/2013] [Indexed: 01/10/2023]
Abstract
The level of the p53 transcription factor is negatively regulated by the E3 ubiquitin ligase murine double-minute clone 2 (MDM2). The interaction between p53 and MDM2 is essential for the maintenance of genomic integrity for most eukaryotes. Previous structural studies revealed that MDM2 binds to p53 transactivation domain (p53TAD) from residues 17 to 29. The K24N mutation of p53TAD changes a lysine at position 24 to an asparagine. This mutation occurs naturally in the bovine family and is also found in a rare form of human gestational cancer called choriocarcinoma. In this study, we have investigated how the K24N mutation affects the affinity, structure, and dynamics of p53TAD binding to MDM2. Nuclear magnetic resonance studies of p53TAD show that the K24N mutant is more flexible and has less transient helical secondary structure than the wild type. Isothermal titration calorimetry measurements demonstrate that these changes in structure and dynamics do not significantly change the binding affinity for p53TAD-MDM2. Finally, free-energy perturbation and standard molecular dynamic simulations suggest the negligible affinity change is due to a compensating interaction energy between the K24N mutant and the MDM2 when it is bound. Overall, the data suggest that the K24N-MDM2 complex is able to, at least partly, compensate for an increase in the conformational entropy in unbound K24N with an increase in the bound-state electrostatic interaction energy.
Collapse
Affiliation(s)
- Yingqian A da Zhan
- Department of Physics, University of Idaho, Moscow, Idaho, United States of America
| | - Hongwei Wu
- Department of Cell Biology, Microbiology, and Molecular Biology and the Center for Drug Discovery and Innovation, University of South Florida, Tampa, Florida, United States of America
| | - Anne T. Powell
- Department of Cell Biology, Microbiology, and Molecular Biology and the Center for Drug Discovery and Innovation, University of South Florida, Tampa, Florida, United States of America
| | - Gary W. Daughdrill
- Department of Cell Biology, Microbiology, and Molecular Biology and the Center for Drug Discovery and Innovation, University of South Florida, Tampa, Florida, United States of America
| | - F. Marty Ytreberg
- Department of Physics, University of Idaho, Moscow, Idaho, United States of America
| |
Collapse
|
16
|
Andresen C, Helander S, Lemak A, Farès C, Csizmok V, Carlsson J, Penn LZ, Forman-Kay JD, Arrowsmith CH, Lundström P, Sunnerhagen M. Transient structure and dynamics in the disordered c-Myc transactivation domain affect Bin1 binding. Nucleic Acids Res 2012; 40:6353-66. [PMID: 22457068 PMCID: PMC3401448 DOI: 10.1093/nar/gks263] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The crucial role of Myc as an oncoprotein and as a key regulator of cell growth makes it essential to understand the molecular basis of Myc function. The N-terminal region of c-Myc coordinates a wealth of protein interactions involved in transformation, differentiation and apoptosis. We have characterized in detail the intrinsically disordered properties of Myc-1–88, where hierarchical phosphorylation of S62 and T58 regulates activation and destruction of the Myc protein. By nuclear magnetic resonance (NMR) chemical shift analysis, relaxation measurements and NOE analysis, we show that although Myc occupies a very heterogeneous conformational space, we find transiently structured regions in residues 22–33 and in the Myc homology box I (MBI; residues 45–65); both these regions are conserved in other members of the Myc family. Binding of Bin1 to Myc-1–88 as assayed by NMR and surface plasmon resonance (SPR) revealed primary binding to the S62 region in a dynamically disordered and multivalent complex, accompanied by population shifts leading to altered intramolecular conformational dynamics. These findings expand the increasingly recognized concept of intrinsically disordered regions mediating transient interactions to Myc, a key transcriptional regulator of major medical importance, and have important implications for further understanding its multifaceted role in gene regulation.
Collapse
Affiliation(s)
- Cecilia Andresen
- Division of Molecular Biotechnology, Department of Physics, Chemistry and Biology, Linköping University, SE-58183 Linköping, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Xiong K, Zwier MC, Myshakina NS, Burger VM, Asher SA, Chong LT. Direct observations of conformational distributions of intrinsically disordered p53 peptides using UV Raman and explicit solvent simulations. J Phys Chem A 2011; 115:9520-7. [PMID: 21528875 DOI: 10.1021/jp112235d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We report the first experimental measurements of Ramachandran Ψ-angle distributions for intrinsically disordered peptides: the N-terminal peptide fragment of tumor suppressor p53 and its P27S mutant form. To provide atomically detailed views of the conformational distributions, we performed classical, explicit-solvent molecular dynamics simulations on the microsecond time scale. Upon binding its partner protein, MDM2, wild-type p53 peptide adopts an α-helical conformation. Mutation of Pro27 to serine results in the highest affinity yet observed for MDM2-binding of the p53 peptide. Both UV resonance Raman spectroscopy (UVRR) and simulations reveal that the P27S mutation decreases the extent of PPII helical content and increases the probability for conformations that are similar to the α-helical MDM2-bound conformation. In addition, UVRR measurements were performed on peptides that were isotopically labeled at the Leu26 residue preceding the Pro27 in order to determine the conformational distributions of Leu26 in the wild-type and mutant peptides. The UVRR and simulation results are in quantitative agreement in terms of the change in the population of non-PPII conformations involving Leu26 upon mutation of Pro27 to serine. Finally, our simulations reveal that the MDM2-bound conformation of the peptide is significantly populated in both the wild-type and mutant isolated peptide ensembles in their unbound states, suggesting that MDM2 binding of the p53 peptides may involve conformational selection.
Collapse
Affiliation(s)
- Kan Xiong
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | | | | | | | | | |
Collapse
|
18
|
Lee CW, Martinez-Yamout MA, Dyson HJ, Wright PE. Structure of the p53 transactivation domain in complex with the nuclear receptor coactivator binding domain of CREB binding protein. Biochemistry 2010; 49:9964-71. [PMID: 20961098 DOI: 10.1021/bi1012996] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The activity and stability of the tumor suppressor p53 are regulated by interactions with key cellular proteins such as MDM2 and CBP/p300. The transactivation domain (TAD) of p53 contains two subdomains (AD1 and AD2) and interacts directly with the N-terminal domain of MDM2 and with several domains of CBP/p300. Here we report the NMR structure of the full-length p53 TAD in complex with the nuclear coactivator binding domain (NCBD) of CBP. Both the p53 TAD and NCBD are intrinsically disordered and fold synergistically upon binding, as evidenced by the observed increase in helicity and increased level of dispersion of the amide proton resonances. The p53 TAD folds to form a pair of helices (denoted Pα1 and Pα2), which extend from Phe19 to Leu25 and from Pro47 to Trp53, respectively. In the complex, the NCBD forms a bundle of three helices (Cα1, residues 2066-2075; Cα2, residues 2081-2092; and Cα3, residues 2095-2105) with a hydrophobic groove into which p53 helices Pα1 and Pα2 dock. The polypeptide chain between the p53 helices remains flexible and makes no detectable intermolecular contacts with the NCBD. Complex formation is driven largely by hydrophobic contacts that form a stable intermolecular hydrophobic core. A salt bridge between D49 of p53 and R2105 of NCBD may contribute to the binding specificity. The structure provides the first insights into simultaneous binding of the AD1 and AD2 motifs to a target protein.
Collapse
Affiliation(s)
- Chul Won Lee
- Department of Molecular Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | | | | | | |
Collapse
|
19
|
Mavinahalli JN, Madhumalar A, Beuerman RW, Lane DP, Verma C. Differences in the transactivation domains of p53 family members: a computational study. BMC Genomics 2010; 11 Suppl 1:S5. [PMID: 20158876 PMCID: PMC2822533 DOI: 10.1186/1471-2164-11-s1-s5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The N terminal transactivation domain of p53 is regulated by ligases and coactivator proteins. The functional conformation of this region appears to be an alpha helix which is necessary for its appropriate interactions with several proteins including MDM2 and p300. Folding simulation studies have been carried out to examine the propensity and stability of this region and are used to understand the differences between the family members with the ease of helix formation following the order p53 > p73 > p63. It is clear that hydrophobic clusters control the kinetics of helix formation, while electrostatic interactions control the thermodynamic stability of the helix. Differences in these interactions between the family members may partially account for the differential binding to, and regulation by, MDM2 (and MDMX). Phosphorylations of the peptides further modulate the stability of the helix and control associations with partner proteins.
Collapse
|
20
|
Zondlo SC, Lee AE, Zondlo NJ. Determinants of specificity of MDM2 for the activation domains of p53 and p65: proline27 disrupts the MDM2-binding motif of p53. Biochemistry 2006; 45:11945-57. [PMID: 17002294 DOI: 10.1021/bi060309g] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Transcriptional activation and repression via the transcription factors p53 and p65 are mediated by hydrophobic short linear motifs (FXX phi phi) in their activation domains (ADs). To understand the molecular basis for specificity in binding to disparate biological targets, a series of chimeric peptides was synthesized, with sequences derived from the ADs of p53, which binds both the general transcriptional machinery and the repressor protein MDM2, and p65, which is reported to bind the general transcriptional machinery but not MDM2. The FXX phi phi motifs of p53 and p65 differ by only two residues, whereas the flanking sequences have no sequence identity. The affinities of the chimeric peptides to MDM2(25-117) and hTAF(II)31(1-140) were determined. Specificity for binding MDM2 via FXX phi phi motifs derives almost entirely from Trp23 of p53, with a 3.0 kcal mol(-1) loss of binding energy when Trp23 is changed to p65-derived Leu. The identity of the N-terminal flanking sequence did not significantly affect binding to MDM2. In contrast, replacement of the C-terminal sequence of p53 with that of p65 increased the affinity of the chimera for MDM2 by 1.1 kcal mol(-1), contrary to expectations. Replacement of the highly conserved residue Pro27 of p53 with Ser from p65 resulted in a 2.3 kcal mol(-1) improvement in binding to MDM2, generating a ligand (p53-P27S) (Kd = 4.7 nM) that exhibits the highest MDM2 affinity observed for a genetically encodable ligand. The basis for the increased affinity of p53-P27S over p53 was examined by circular dichroism and nuclear magnetic resonance. Pro27 disrupts the recognition alpha-helix of p53, with p53-P27S significantly more alpha-helical than p53.
Collapse
Affiliation(s)
- Susan Carr Zondlo
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | | | | |
Collapse
|
21
|
Espinoza-Fonseca LM, Trujillo-Ferrara JG. Transient stability of the helical pattern of region F19–L22 of the N-terminal domain of p53: A molecular dynamics simulation study. Biochem Biophys Res Commun 2006; 343:110-6. [PMID: 16530164 DOI: 10.1016/j.bbrc.2006.02.129] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Accepted: 02/22/2006] [Indexed: 12/29/2022]
Abstract
Two molecular dynamics simulations of the region E17-N29 of p53 (p53(17-29)) at different temperatures were performed for a total time of 0.2 micros, to study the conformational landscape of this region. Previous studies have suggested that this region displays different structural motifs, such as helix of a double beta-turn, and that its secondary structure might be transiently stable. Interestingly, in this study it was found that the region F19-L25, and particularly its fragment F19-L22, display a stable, transient helical pattern at sub-microsecond periods. The region F19-L22, which contains one of the most important residues needed for the interaction of p53 with MDM2, seems to be formed and stabilized by the existence of one hydrophobic and one aromatic cluster. The main function of these clusters is to help their surrounding area to desolvate, to allow the hydrogen bond network, therefore favoring the formation of a stable helix. This preliminary study would be useful for a better understanding of the structure and function of the N-terminal domain of p53 and its implications for the control of different types of cancer.
Collapse
Affiliation(s)
- L Michel Espinoza-Fonseca
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.
| | | |
Collapse
|
22
|
Uhrinova S, Uhrin D, Powers H, Watt K, Zheleva D, Fischer P, McInnes C, Barlow PN. Structure of free MDM2 N-terminal domain reveals conformational adjustments that accompany p53-binding. J Mol Biol 2005; 350:587-98. [PMID: 15953616 DOI: 10.1016/j.jmb.2005.05.010] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2005] [Revised: 05/04/2005] [Accepted: 05/05/2005] [Indexed: 01/10/2023]
Abstract
Critical to the inhibitory action of the oncogene product, MDM2, on the tumour suppressor, p53, is association of the N-terminal domain of MDM2 (MDM2N) with the transactivation domain of p53. The structure of MDM2N was previously solved with a p53-derived peptide, or small-molecule ligands, occupying its binding cleft, but no structure of the non-liganded MDM2N (i.e. the apo-form) has been reported. Here, we describe the solution structure and dynamics of apo-MDM2N and thus reveal the nature of the conformational changes in MDM2N that accompany binding of p53. The new structure suggests that p53 effects displacement of an N-terminal segment of apo-MDM2N that occludes access to the shallow end of the p53-binding cleft. MDM2N must also undergo an expansion upon binding, achieved through a rearrangement of its two pseudosymetrically related sub-domains resulting in outward displacements of the secondary structural elements that comprise the walls and floor of the p53-binding cleft. MDM2N becomes more rigid and stable upon binding p53. Conformational plasticity of the binding cleft of apo-MDM2N could allow the parent protein to bind specifically to several different partners, although, to date, all the known liganded structures of MDM2N are highly similar to one another. The results indicate that the more open conformation of the binding cleft of MDM2N observed in structures of complexes with small molecules and peptides is a more suitable one for ligand discovery and optimisation.
Collapse
Affiliation(s)
- Stanislava Uhrinova
- Schools of Chemistry and Biological Sciences, University of Edinburgh, King's Buildings, West Mains Road, Edinburgh EH9 3JR, UK
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
An N-terminal helical region of the tumor suppressor p53 binds in a hydrophobic cleft of the oncoprotein MDM2. A retroinverso isomer of the natural N-terminal helical peptide was found to interact with MDM2 using the same hydrophobic residues, Phe, Trp, and Leu. We propose that the retroinverso d-peptide adopts a right-handed helical conformation to achieve functional mimicry of the p53 peptide.
Collapse
Affiliation(s)
- Kaori Sakurai
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | |
Collapse
|
24
|
Dart DA, Mansoor MS, Loadman PM, Picksley SM. Current advances in the inhibition of the auto-regulatory interaction between the p53 tumour suppressor protein and MDM2 protein. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.11.12.1825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
25
|
Porrello A, Soddu S, Zbilut JP, Crescenzi M, Giuliani A. Discrimination of single amino acid mutations of the p53 protein by means of deterministic singularities of recurrence quantification analysis. Proteins 2004; 55:743-55. [PMID: 15103636 DOI: 10.1002/prot.20075] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
p53 is mutated in roughly 50% of all human tumors, predominantly in the DNA-binding domain codons. Structural, biochemical, and functional studies have reported that the different p53 mutants possess a broad range of behaviors that include the elimination of the tumor-suppression function of wild-type protein, the acquisition of dominant-negative function over the wild-type form, and the establishment of gain-of-function activities. The contribution of each of these types of mutations to tumor progression, grade of malignancy, and response to anticancer treatments has been so far analyzed only for a few "hot-spots." In an attempt to identify new approaches to systematically characterize the complete spectrum of p53 mutations, we applied recurrence quantification analysis (RQA), a non-linear signal analysis technique, to p53 primary structure. Moving from the study of the p53 hydrophobicity pattern, which revealed important similarities with the singular deterministic structuring of prions, we could statistically discriminate, on a pure amino acid sequence basis, between experimentally characterized DNA-contact defective and conformational p53 mutants with a very high percentage of success. This result indicates that RQA is a mathematical tool particularly advantageous for the development of a database of p53 mutations that integrates epidemiological data with structural and functional categorizations.
Collapse
Affiliation(s)
- Alessandro Porrello
- Department of Experimental Oncology, Regina Elena Cancer Institute, Via delle Messi d'Oro, Rome, Italy.
| | | | | | | | | |
Collapse
|
26
|
Abstract
Abstract
MDM2 inhibits p53 transcriptional activity, favors its nuclear export, and stimulates its degradation. Inhibition of the p53-MDM2 interaction with synthetic molecules should therefore lead to both the nuclear accumulation and the activation of p53 followed by the death of the tumor cells from apoptosis. Inhibitors of the p53-MDM2 interaction might be attractive new anticancer agents that could be used to activate wild-type p53 in tumors. This review describes our current knowledge on the properties of the existing p53-MDM2 antagonists. Because the discovery of modulators of protein-protein interactions is an emerging field in drug discovery, the strategy used for designing inhibitors of the p53-MDM2 interaction could serve as an example for other protein interfaces.
Collapse
|
27
|
Dawson R, Müller L, Dehner A, Klein C, Kessler H, Buchner J. The N-terminal domain of p53 is natively unfolded. J Mol Biol 2003; 332:1131-41. [PMID: 14499615 DOI: 10.1016/j.jmb.2003.08.008] [Citation(s) in RCA: 194] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
p53 is one of the key molecules regulating cell proliferation, apoptosis and tumor suppression by integrating a wide variety of signals. The structural basis for this function is still poorly understood. p53 appears to exercise its function as a modular protein in which different functions are associated with distinct domains. Presumably, p53 contains both folded and partially structured parts. Here, we have investigated the structure of the isolated N-terminal part of p53 (amino acid residues 1-93) using biophysical techniques. We demonstrate that this domain is devoid of tertiary structure and largely missing secondary structure elements. It exhibits a large hydrodynamic radius, typical for unfolded proteins. These findings suggest strongly that the entire N-terminal part of p53 is natively unfolded under physiological conditions. Furthermore, the binding affinity to its functional antagonist Mdm2 was investigated. A comparison of the binding of human Mdm2 to the N-terminal part of p53 and full-length p53 suggests that unfolded and folded parts of p53 function synergistically.
Collapse
Affiliation(s)
- Roger Dawson
- Institut für Organische Chemie und Biochemie, Technische Universität München, Garching D-85747, Germany
| | | | | | | | | | | |
Collapse
|
28
|
Boehden GS, Akyüz N, Roemer K, Wiesmüller L. p53 mutated in the transactivation domain retains regulatory functions in homology-directed double-strand break repair. Oncogene 2003; 22:4111-7. [PMID: 12821945 DOI: 10.1038/sj.onc.1206632] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The tumor suppressor p53 transcriptionally transactivates cellular target genes that are implicated in growth control, apoptosis, and DNA repair. However, several studies involving p53 core domain mutants suggested that regulatory functions in recombinative repair do not require transcriptional transactivation and are separable from growth-regulation and apoptosis. Leu22 and Trp23 within the transactivation domain of human p53 play a critical role in binding basal components of the transcription machinery and, therefore, in the transactivation activity of p53. To further delineate whether p53 target genes are involved in recombination regulation, we ectopically expressed p53(22Q,23S) in p53-negative cell lines, which carry reporter systems for different homology-directed double-strand break (DSB) repair events. Like wild-type p53, p53(22Q,23S) efficiently downregulated homologous recombination on two chromosomally integrated substrates without affecting exchange on a substrate for the compound pathway of gene conversion and nonhomologous end joining. Only upon lowering the p53 protein to DNA substrate ratio by several orders of magnitude, we noticed a weak defect of a p53 transactivation domain mutant in DSB repair assays. In conclusion, molecular interactions of p53 within the N-terminal domain are not required to restrain DNA recombination, but might contribute to this genome stabilizing function.
Collapse
Affiliation(s)
- Gisa S Boehden
- Gynaecological Oncology, Universitätsfrauenklinik, D-89075 Ulm, Germany
| | | | | | | |
Collapse
|
29
|
Abstract
p53 is an attractive therapeutic target in oncology because its tumour-suppressor activity can be stimulated to eradicate tumour cells. Inhibiting the p53-MDM2 interaction is a promising approach for activating p53, because this association is well characterized at the structural and biological levels. MDM2 inhibits p53 transcriptional activity, favours its nuclear export and stimulates its degradation, so inhibiting the p53-MDM2 interaction with synthetic molecules should lead to p53-mediated cell-cycle arrest or apoptosis in p53-positive stressed cells.
Collapse
|
30
|
Schon O, Friedler A, Bycroft M, Freund SMV, Fersht AR. Molecular mechanism of the interaction between MDM2 and p53. J Mol Biol 2002; 323:491-501. [PMID: 12381304 DOI: 10.1016/s0022-2836(02)00852-5] [Citation(s) in RCA: 256] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We have investigated the kinetic and thermodynamic basis of the p53-MDM2 interaction using a set of peptides based on residues 15-29 of p53. Wild-type p53 peptide bound MDM2 with a dissociation constant of 580nM. Phosphorylation of S15 and S20 did not affect binding, but T18 phosphorylation weakened binding tenfold, indicating that phosphorylation of only T18 is responsible for abrogating p53-MDM2 binding. Truncation to residues 17-26 increased affinity 13-fold, but further truncation to 19-26 abolished binding. NMR studies of the binding of the p53-derived peptides revealed global conformational changes of the overall structure of MDM2, stretching far beyond the binding cleft, indicating significant changes in the domain dynamics of MDM2 upon ligand binding.
Collapse
Affiliation(s)
- Oliver Schon
- Chemical Laboratory and Cambridge Centre for Protein Engineering, Cambridge University, MRC Centre, UK
| | | | | | | | | |
Collapse
|
31
|
Abstract
The product of the proto-oncogene c-myc influences many cellular processes through the regulation of specific target genes. Through its transactivation domain (TAD), c-Myc protein interacts with several transcription factors, including TATA-binding protein (TBP). We present data that suggest that in contrast to some other transcriptional activators, an extended length of the c-Myc TAD is required for its binding to TBP. Our data also show that this interaction is a multistep process, in which a rapidly forming low affinity complex slowly converts to a more stable form. The initial complex formation results from ionic or polar interactions, whereas the slow conversion to a more stable form is hydrophobic in nature. Based on our results, we suggest two alternative models for activation domain/target protein interactions, which together provide a single universal paradigm for understanding activator-target factor interactions.
Collapse
Affiliation(s)
- S Hermann
- Department of Natural Sciences, Södertörns högskola, Box 4101, S-14104 Huddinge, Sweden.
| | | | | |
Collapse
|
32
|
Lee H, Mok KH, Muhandiram R, Park KH, Suk JE, Kim DH, Chang J, Sung YC, Choi KY, Han KH. Local structural elements in the mostly unstructured transcriptional activation domain of human p53. J Biol Chem 2000; 275:29426-32. [PMID: 10884388 DOI: 10.1074/jbc.m003107200] [Citation(s) in RCA: 274] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA transcription is initiated by a small regulatory region of transactivators known as the transactivation domain. In contrast to the rapid progress made on the functional aspect of this promiscuous domain, its structural feature is still poorly characterized. Here, our multidimensional NMR study reveals that an unbound full-length p53 transactivation domain, although similar to the recently discovered group of loosely folded proteins in that it does not have tertiary structure, is nevertheless populated by an amphipathic helix and two nascent turns. The helix is formed by residues Thr(18)-Leu(26) (Thr-Phe-Ser-Asp-Leu-Trp-Lys-Leu-Leu), whereas the two turns are formed by residues Met(40)-Met(44) and Asp(48)-Trp(53), respectively. It is remarkable that these local secondary structures are selectively formed by functionally critical and positionally conserved hydrophobic residues present in several acidic transactivation domains. This observation suggests that such local structures are general features of acidic transactivation domains and may represent "specificity determinants" (Ptashne, M., and Gann, A. A. F. (1997), Nature 386, 569-577) that are important for transcriptional activity.
Collapse
Affiliation(s)
- H Lee
- Protein Engineering Laboratory, Korea Research Institute of Bioscience and Biotechnology, Yusong, P. O. Box 115, Taejon 305-600, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
MDM2 is an oncogene that mainly functions to modulate p53 tumor suppressor activity. In normal cells the MDM2 protein binds to the p53 protein and maintains p53 at low levels by increasing its susceptibility to proteolysis by the 26S proteosome. Immediately after the application of cellular stress, the ability of MDM2 to bind to p53 is blocked or altered in a fashion that prevents MDM2-mediated degradation. As a result, p53 levels rise, causing cell cycle arrest or apoptosis. In this review, we present evidence for the existence of three highly conserved regions (CRs) shared by MDM2 proteins and MDMX proteins of different species. These highly conserved regions encompass residues 42-94 (CR1), 301-329 (CR2), and 444-483 (CR3) on human MDM2. These three domains are respectively important for binding p53, for binding the retinoblastoma protein, and for transferring ubiquitin to p53. This review discusses the major milestones uncovered in MDM2 research during the past 12 years and potential uses of this knowledge in the fight against cancer.
Collapse
Affiliation(s)
- J Momand
- California State University at Los Angeles, Department of Chemistry and Biochemistry, 90032, USA.
| | | | | |
Collapse
|
34
|
Uesugi M, Verdine GL. The alpha-helical FXXPhiPhi motif in p53: TAF interaction and discrimination by MDM2. Proc Natl Acad Sci U S A 1999; 96:14801-6. [PMID: 10611293 PMCID: PMC24728 DOI: 10.1073/pnas.96.26.14801] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transcriptional activation domains share little sequence homology and generally lack folded structures in the absence of their targets, aspects that have rendered activation domains difficult to characterize. Here, a combination of biochemical and nuclear magnetic resonance experiments demonstrates that the activation domain of the tumor suppressor p53 has an FXXPhiPhi motif (F, Phe; X, any amino acids; Phi, hydrophobic residues) that folds into an alpha-helix upon binding to one of its targets, hTAF(II)31 (a human TFIID TATA box-binding protein-associated factor). MDM2, the cellular attenuator of p53, discriminates the FXXPhiPhi motif of p53 from those of NF-kappaB p65 and VP16 and specifically inhibits p53 activity. Our studies support the notion that the FXXPhiPhi sequence is a general alpha-helical recognition motif for hTAF(II)31 and provide insights into the mechanistic basis for regulation of p53 function.
Collapse
Affiliation(s)
- M Uesugi
- Department of Chemistry, Harvard University, Cambridge, MA 02138, USA
| | | |
Collapse
|