1
|
Vaas APJP, Yu RB, Quirino JP. Stacking in electrophoresis by electroosmotic flow-assisted admicelle to solvent microextraction. Anal Bioanal Chem 2024; 416:6789-6798. [PMID: 39358467 DOI: 10.1007/s00216-024-05554-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024]
Abstract
An in-line sample concentration method for capillary electrophoresis called admicelle to solvent microextraction was proposed. In this technique, analytes were trapped in the cetyltrimethylammonium bromide admicelles formed in situ on the negatively charged capillary surface. A solvent plug was then partially injected hydrodynamically to collapse the admicelles, which liberated and focused the analytes at the solvent front. Voltage was applied across the capillary, completing the stacking process. Various solvents, namely, methanol, ethanol, and acetonitrile, were investigated. The optimal solvent for solvent to admicelle microextraction was 30% acetonitrile in 24 mM sodium tetraborate (pH 9.2). Sample injection time and solvent to sample injection ratio were also optimised. For this demonstration, the optimum sample injection time and solvent to sample injection ratio were 320 s and 1:2, respectively. Using the optimum conditions, UV detection sensitivity was enhanced 132-176-fold for the model anions. The LOQ, %intra-/inter-day (n = 6/n = 12, 2 days) repeatability, and linearity (R2) of admicelle to solvent microextraction were 0.08-2 µg/mL, 1.9-3.9%, 2.8-4.9%, and 0.992, respectively. Admicelle to solvent microextraction was applied to the analysis of various fortified water samples, with good repeatability (%RSD = 0.5-3.6%), and no matrix interferences.
Collapse
Affiliation(s)
- Andaravaas Patabadige Jude P Vaas
- Australian Centre for Research On Separation Science (ACROSS), School of Natural Sciences-Chemistry, University of Tasmania, Private Bag 75, Hobart, TAS, 7001, Australia
| | - Raymond B Yu
- Australian Centre for Research On Separation Science (ACROSS), School of Natural Sciences-Chemistry, University of Tasmania, Private Bag 75, Hobart, TAS, 7001, Australia.
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of the Philippines Manila, Manila, Philippines.
| | - Joselito P Quirino
- Australian Centre for Research On Separation Science (ACROSS), School of Natural Sciences-Chemistry, University of Tasmania, Private Bag 75, Hobart, TAS, 7001, Australia
| |
Collapse
|
2
|
Zhao L, Qiao Y, Wu J, Zhu J, Zuo X, Guo X, Peng X, Li F, Zhao L, Wang Z, Wang X, Pu Q. Deciphering the Dynamic Assembling-Disassembling of Small Molecules on Solid/Liquid Interfaces within Microchannels by Pulsed Streaming Potential Measurement. Anal Chem 2024; 96:10256-10263. [PMID: 38865612 DOI: 10.1021/acs.analchem.4c00954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Assembling small molecules at liquid/solid interfaces is relatively common and contributes to many unique properties of the interface. However, such an assembling process can be dynamic depending on the concentration of the molecule and the properties of the solid and liquid themselves, which poses serious challenges on the accurate evaluation of the assembling processes. Herein, we report a convenient way for in situ and real-time monitoring of assembling-disassembling of small-molecule surfactants on the surface of microchannels using pulsed streaming potential (SP) measurement based on the variation of surface charge. With this technique, five distinctive kinetic regimes, each responsible for a characteristic molecular behavior, can be differentiated during a typical assembling-disassembling cycle. Significant difference of the assembling-disassembling process was clearly reflected for surfactants with hydrophobic tails of only a two -CH2- difference (C16TAB/C18TAB and D10DAB/D12DAB). The relative SP (Er) value is positively correlated with the molecular weight at a concentration of 0.1 mM for the same kinds of surfactants. Moreover, the assembling kinetics of D10DAB exhibits an "overshoot effect" at high concentration, which means morphology adjustment. The consequences of such assembling/disassembling of these molecules for electrophoretic separation, protein immobilization, and photocatalysis in a microchannel were investigated through dynamic characterization, which proves its potential as a tool for dynamic solid/liquid interface characterization.
Collapse
Affiliation(s)
- Lei Zhao
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, Department of Chemistry, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center; Engineering Research Center of Key Technology and Industrialization of Cell-based Vaccine, Ministry of Education; Gan-su Tech Innovation Center of Animal; China-Malaysia National Joint Laboratory, Northwest Minzu University, Lanzhou 730030, P. R. China
| | - Yuting Qiao
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| | - Jing Wu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, Department of Chemistry, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| | - Jiarui Zhu
- The Second Hospital of Lanzhou University, Lanzhou, Gansu 730030, P. R. China
| | - Xianwei Zuo
- Key Laboratory of Sensor and Sensing Technology of Gansu Province, Institute of Sensing Technology, Gansu Academy of Sciences, Lanzhou, Gansu 730000, P. R. China
| | - Xinxin Guo
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, Department of Chemistry, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| | - Xianglu Peng
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| | - Fengyun Li
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, Department of Chemistry, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| | - Lizhi Zhao
- Shanxi Institute of Energy, Jinzhong, Shanxi 030600, P. R. China
| | - Zifan Wang
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center; Engineering Research Center of Key Technology and Industrialization of Cell-based Vaccine, Ministry of Education; Gan-su Tech Innovation Center of Animal; China-Malaysia National Joint Laboratory, Northwest Minzu University, Lanzhou 730030, P. R. China
| | - Xiayan Wang
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing 100124, P. R. China
| | - Qiaosheng Pu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, Department of Chemistry, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| |
Collapse
|
3
|
Gu S, Zhang L, de Campo L, O'Dell LA, Wang D, Wang G, Kong L. Lyotropic Liquid Crystal (LLC)-Templated Nanofiltration Membranes by Precisely Administering LLC/Substrate Interfacial Structure. MEMBRANES 2023; 13:549. [PMID: 37367753 DOI: 10.3390/membranes13060549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023]
Abstract
Mesoporous materials based on lyotropic liquid crystal templates with precisely defined and flexible nanostructures offer an alluring solution to the age-old challenge of water scarcity. In contrast, polyamide (PA)-based thin-film composite (TFC) membranes have long been hailed as the state of the art in desalination. They grapple with a common trade-off between permeability and selectivity. However, the tides are turning as these novel materials, with pore sizes ranging from 0.2 to 5 nm, take center stage as highly coveted active layers in TFC membranes. With the ability to regulate water transport and influence the formation of the active layer, the middle porous substrate of TFC membranes becomes an essential player in unlocking their true potential. This review delves deep into the recent advancements in fabricating active layers using lyotropic liquid crystal templates on porous substrates. It meticulously analyzes the retention of the liquid crystal phase structure, explores the membrane fabrication processes, and evaluates the water filtration performance. Additionally, it presents an exhaustive comparison between the effects of substrates on both polyamide and lyotropic liquid crystal template top layer-based TFC membranes, covering crucial aspects such as surface pore structures, hydrophilicity, and heterogeneity. To push the boundaries even further, the review explores a diverse array of promising strategies for surface modification and interlayer introduction, all aimed at achieving an ideal substrate surface design. Moreover, it delves into the realm of cutting-edge techniques for detecting and unraveling the intricate interfacial structures between the lyotropic liquid crystal and the substrate. This review is a passport to unravel the enigmatic world of lyotropic liquid crystal-templated TFC membranes and their transformative role in global water challenges.
Collapse
Affiliation(s)
- Senlin Gu
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia
| | - Liangliang Zhang
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia
| | - Liliana de Campo
- Australian Centre for Neutron Scattering, Australia Nuclear Science and Technology Organization (ANSTO), Sydney, NSW 2234, Australia
| | - Luke A O'Dell
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia
| | - Dong Wang
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China
| | - Guang Wang
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- Spallation Neutron Source Science Centre, Dongguan 523803, China
| | - Lingxue Kong
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia
| |
Collapse
|
4
|
Clark A, Rosenbaum M, Biswas Y, Asatekin A, Cebe P. Heat capacity and index of refraction of polyzwitterions. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
5
|
Yu RB, Quirino JP. Pseudophase-to-solvent microextraction for in-line sample concentration of anionic analytes in capillary zone electrophoresis. J Chromatogr A 2022; 1679:463383. [DOI: 10.1016/j.chroma.2022.463383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/06/2022] [Accepted: 07/27/2022] [Indexed: 10/16/2022]
|
6
|
Jiang Y, Zhou S, Fei J, Qin Z, Yin X, Sun H, Sun Y. Transport of different microplastics in porous media: Effect of the adhesion of surfactants on microplastics. WATER RESEARCH 2022; 215:118262. [PMID: 35287061 DOI: 10.1016/j.watres.2022.118262] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/03/2022] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
The adhesion of surfactant molecules on the microplastics surface is affected by the surface structure of the microplastics. Little is known about the mobility of different microplastics in the medium under surfactants. In order to reveal the migration of different microplastics under the action of surfactants, the study selected five kinds of microplastics (polyethylene (PE), polypropylene (PP), polystyrene (PS), polytetrafluoroethylene (PTFE), polymethyl methacrylate (PMMA)) and two kinds of surfactants (cetyltrimethylammonium bromide, CTAB and sodium dodecyl benzene sulfonate, SDBS) as the research objects. The column experiment was used to explore the transport behavior of microplastics under different concentrations of surfactants and the convection dispersion model was used to simulate. The dynamic contact angle of the surfactant solution on the microplastics was measured and the adhesion work was calculated by the Young-Dupre equation to reveal the underlying mechanism of microplastics retention in the presence of surfactants. The results showed that the transport ability of microplastics followed the order of PTFE <PMMA <PS <PE <PP, and the mobility under high concentrations of surfactants was greater than that at low concentrations, which was mainly attributed to the difference in the adhesion of the surfactant on the surface of the microplastics, which lead to differences in the migration between the microplastics. When the microplastics were close to each other, if the reaction force of the electrostatic force was greater than the adhesion force of the surfactant molecules on the surface, the surfactant molecules would be separated from the microplastics and the stability of the microplastics would decrease. In addition, the migration ability of microplastics in anionic surfactants was weaker than that of cationic surfactants, because the osmotic and elastic repulsion produced by SDBS were weaker than CTAB. The research results were of great significance for understanding the environmental behavior of microplastics affected by surfactants, and objectively evaluating the transport and fate behavior of microplastics-surfactants in the environment.
Collapse
Affiliation(s)
- Yanji Jiang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Shi Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Jiao Fei
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Zhiming Qin
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Xianqiang Yin
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling 712100, China.
| | - Huimin Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling 712100, China
| | - Yuebing Sun
- Ministry of Agriculture and Rural Affairs of the People's Republic of China Tianjin, Agro-Environmental Protection Institute, 300191, China
| |
Collapse
|
7
|
Abdelmonem A, Zhang Y, Braunschweig B, Glikman D, Rumpel A, Peukert W, Begović T, Liu X, Lützenkirchen J. Adsorption of CTAB on Sapphire- c at High pH: Surface and Zeta Potential Measurements Combined with Sum-Frequency and Second-Harmonic Generation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:3380-3391. [PMID: 35271289 DOI: 10.1021/acs.langmuir.1c03069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The adsorption of cetyltrimethylammonium bromide (CTA+Br-) on sapphire-c surfaces was studied at pH 10 below the surfactants' critical micelle concentration. The evolution of interfacial potentials as a function of CTAB concentration was characterized by surface and zeta potential measurements and complemented by molecular dynamic (MD) simulations as well as by second-harmonic (SHG) and vibrational sum-frequency generation (SFG) spectroscopy. The changes in interfacial potentials suggest that the negative interfacial charge due to deprotonated surface aluminols groups is neutralized and can be even overcompensated by the presence of CTA+ cations at the interface. However, SFG intensities from strongly hydrogen-bonded interfacial water molecules as well as SHG intensities decrease with both increasing CTAB concentration and the magnitude of the surface potential. They do not suggest a charge reversal at the interface, while the change in zeta potential is actually consistent with an apparent charge inversion. This can be qualitatively explained by results from MD simulation, which reveal adsorbed CTA+ cations outside a first strongly bound hydration layer of water molecules, where they can locally distort the structural order and replace some of the interfacial water molecules adjacent to the first layer. This is proposed to be the origin for the significant loss in SFG and SHG intensities with increasing CTAB concentration. Moreover, we propose that CTA+ can act as a counterion and enhance the occurrence of deprotonated surface aluminols that is consistent with the decrease in surface potential.
Collapse
Affiliation(s)
- Ahmed Abdelmonem
- Institute of Meteorology and Climate Research - Atmospheric Aerosol Research (IMKAAF), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
| | - Yingchun Zhang
- State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Björn Braunschweig
- Institute of Physical Chemistry, Westfälische Wilhelms University Münster, Corrensstraße 28-30, 48149 Münster, Germany
| | - Dana Glikman
- Institute of Physical Chemistry, Westfälische Wilhelms University Münster, Corrensstraße 28-30, 48149 Münster, Germany
| | - Armin Rumpel
- Institute of Particle Technology (LFG), Friedrich Alexander University Erlangen-Nürnberg, Cauerstraße 4, 91058 Erlangen, Germany
| | - Wolfgang Peukert
- Institute of Particle Technology (LFG), Friedrich Alexander University Erlangen-Nürnberg, Cauerstraße 4, 91058 Erlangen, Germany
| | - Tajana Begović
- Department of Chemistry, University of Zagreb, Faculty of Science, Horvatovac 102a, 10 000 Zagreb, Croatia
| | - Xiandong Liu
- State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Johannes Lützenkirchen
- Institute of Nuclear Waste Disposal (INE), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
8
|
Vaas APJP, Quirino JP. Electroosmotic flow assisted pseudophase to pseudophase microextraction for stacking in capillary zone electrophoresis. J Chromatogr A 2021; 1660:462654. [PMID: 34788671 DOI: 10.1016/j.chroma.2021.462654] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/23/2021] [Accepted: 10/27/2021] [Indexed: 11/29/2022]
Abstract
A stacking technique is proposed to improve the poor detection sensitivity of capillary zone electrophoresis (CZE) with UV detection. A long injection (e.g., 12.4 cm plug) of model anionic analytes prepared in a dilute solution of hexadecyltrimethylammonium bromide (CTAB) was enriched 26-34-x (compared to a typical or 2.1 mm sample injection) via the injection of a micellar solution of sodium dodecyl sulfate (SDS) prior to CZE separation. During sample injection, the CTAB formed a stationary pseudophase coating, which trapped the analytes at the inner walls of a fused silica capillary. The SDS micelles then released the CTAB admicelles via the formation of solution CTAB-SDS catanionic micelles during SDS plug injection and voltage application. As the SDS micelles moved through the sample zone, the formation of the catanionic micelles then released and accumulated the analytes at the front of the injected SDS zone. The stacking technique is called electroosmotic flow (EOF) assisted pseudophase to pseudophase microextraction because the EOF was essential for the formation of CTAB-SDS catanionic micelles for microextraction. Also, the CTAB and SDS aggregates are both pseudophases, which were used to retain and release the analytes from the capillary wall, respectively.
Collapse
Affiliation(s)
- Andaravaas Patabadige Jude P Vaas
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences-Chemistry, University of Tasmania, Hobart, Tasmania, 7001, Australia
| | - Joselito P Quirino
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences-Chemistry, University of Tasmania, Hobart, Tasmania, 7001, Australia.
| |
Collapse
|
9
|
Liu Z, Zhao G, Brewer M, Lv Q, Sudhölter EJR. Comprehensive review on surfactant adsorption on mineral surfaces in chemical enhanced oil recovery. Adv Colloid Interface Sci 2021; 294:102467. [PMID: 34175528 DOI: 10.1016/j.cis.2021.102467] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/23/2021] [Accepted: 06/13/2021] [Indexed: 01/20/2023]
Abstract
With the increasing demand for efficient extraction of residual oil, enhanced oil recovery (EOR) offers prospects for producing more reservoirs' original oil in place. As one of the most promising methods, chemical EOR (cEOR) is the process of injecting chemicals (polymers, alkalis, and surfactants) into reservoirs. However, the main issue that influences the recovery efficiency in surfactant flooding of cEOR is surfactant losses through adsorption to the reservoir rocks. This review focuses on the key issue of surfactant adsorption in cEOR and addresses major concerns regarding surfactant adsorption processes. We first describe the adsorption behavior of surfactants with particular emphasis on adsorption mechanisms, isotherms, kinetics, thermodynamics, and adsorption structures. Factors that affect surfactant adsorption such as surfactant characteristics, solution chemistry, rock mineralogy, and temperature were discussed systematically. To minimize surfactant adsorption, the chemical additives of alkalis, polymers, nanoparticles, co-solvents, and ionic liquids are highlighted as well as implementing with salinity gradient and low salinity water flooding strategies. Finally, current trends and future challenges related to the harsh conditions in surfactant based EOR are outlined. It is expected to provide solid knowledge to understand surfactant adsorption involved in cEOR and contribute to improved flooding strategies with reduced surfactant loss.
Collapse
Affiliation(s)
- Zilong Liu
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Optical Detection Technology for Oil and Gas, College of Science, Unconventional Petroleum Research Institute, China University of Petroleum (Beijing), Beijing 102249, PR China; Organic Materials & Interfaces, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| | - Ge Zhao
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Optical Detection Technology for Oil and Gas, College of Science, Unconventional Petroleum Research Institute, China University of Petroleum (Beijing), Beijing 102249, PR China
| | - Mark Brewer
- Shell Global Solutions International B.V., Shell Technology Centre Amsterdam (STCA), Grasweg 31, 1031 HW Amsterdam, The Netherlands
| | - Qichao Lv
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Optical Detection Technology for Oil and Gas, College of Science, Unconventional Petroleum Research Institute, China University of Petroleum (Beijing), Beijing 102249, PR China.
| | - Ernst J R Sudhölter
- Organic Materials & Interfaces, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| |
Collapse
|
10
|
Jiang Y, Yin X, Xi X, Guan D, Sun H, Wang N. Effect of surfactants on the transport of polyethylene and polypropylene microplastics in porous media. WATER RESEARCH 2021; 196:117016. [PMID: 33735622 DOI: 10.1016/j.watres.2021.117016] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
The transport of microplastics in porous media is attracting increasing attention. However, to date, research is limited to polystyrene microplastics. Meanwhile, surfactants can promote solid dispersion to form a stable suspension, possibly allowing microplastics to migrate when attached to a surfactant, which would increase the scope and degree of microplastic pollution, further endangering human health and the stability of the ecological environment. Therefore, in this study, the transport behavior of microplastics in porous media was explored in the presence of surfactants. Herein, polyethylene (PE) and polypropylene (PP) were evaluated while dispersed by two ionic surfactants: cationic surfactant-cetyltrimethylammonium bromide (CTAB) and anionic surfactant-sodium dodecylbenzenesulfonate (SDBS). The influence of different factors (surfactant concentration, ionic strength, pH, flow rate, and multivalent cations) on the transport of microplastics in porous media was explored via quartz sand packed-column experiments. Our experimental results show that the transport abilities of PE and PP increased with increasing surfactant concentration when the surfactant concentration was less than the critical micelle concentration (CMC). In the presence of CTAB and SDBS, physicochemical factors had different effects on the transport of microplastics mainly by controlling Zeta potential, advection diffusion and CMC. The mobility of PE and PP decreased with increasing ionic strength, cation valence and pH, and decreasing flow rate. However, the mobility of PE and PP under CTAB is much greater than that of PE and PP under SDBS, because quartz sand can absorb more CTAB molecules through electrostatic attraction to weaken the collision between microplastics and quartz sand. Further, the transport ability of PP was greater than that of PE under all conditions considered. Notably, the Extended-Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory formed by adding osmotic, elastic, and hydrophobic force could well described the migration behavior of microplastics in CTAB and SDBS well. This research highlights that surfactant has a significant impact on the transport ability of microplastics, and provides a comprehensive understanding of the migration and fate behaviors of microplastics affected by surfactants, which is necessary to prevent and reduce the environmental hazards of microplastics.
Collapse
Affiliation(s)
- Yanji Jiang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China 712100
| | - Xianqiang Yin
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China 712100; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, China 712100.
| | - Xianglong Xi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China 712100
| | - Duo Guan
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China 712100
| | - Huimin Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China 712100; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, China 712100
| | - Nong Wang
- Agro-Environmental Protection Institute, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs of the People's Republic of China Tianjin, China 300191
| |
Collapse
|
11
|
Das S, Katiyar A, Rohilla N, Nguyen Q, Bonnecaze RT. Universal scaling of adsorption of nonionic surfactants on carbonates using cloud point temperatures. J Colloid Interface Sci 2020; 577:431-440. [PMID: 32505003 DOI: 10.1016/j.jcis.2020.05.063] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/15/2020] [Accepted: 05/16/2020] [Indexed: 12/01/2022]
Abstract
HYPOTHESIS Nonionic surfactants alter the wettability of oil-wet carbonate surfaces to a water-wet state. The degree of surfactant adsorption is expected to determine the extent of the wettability alteration. Furthermore, the structure of the hydrophobic and hydrophilic units of the surfactant should affect the degree of adsorption and correlate with the wettability alteration. EXPERIMENTS The adsorption on Indiana limestone was measured for nonionic surfactants with two different types of hydrophobic units and hydrophilic polyethoxylate units ranging from 15 to 40 mers. Measurements were conducted for several surfactant concentrations and temperatures. FINDINGS Adsorption increased with temperature and for surfactants with fewer hydrophilic groups. The adsorption occurs as micelles rather than individual surfactant molecules. An increase in adsorption is observed for the more hydrophobic surfactants at higher temperature and is attributed to the increase in micelle sizes. Adsorption collapses onto a universal curve as a function of the difference between cloud point of the surfactant and system temperature. At the same time wettability alteration was found to have a direct correlation with surfactant adsorption. These findings are critical for judicious selection of nonionic surfactants for analysis and design of wettability alteration for oil reservoirs.
Collapse
Affiliation(s)
- Soumik Das
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, United States
| | - Amit Katiyar
- The Dow Chemical Company, Lake Jackson, TX 77566, United States
| | - Neeraj Rohilla
- The Dow Chemical Company, Lake Jackson, TX 77566, United States
| | - Quoc Nguyen
- Hildebrand Department of Petroleum and Geosystems Engineering, The University of Texas at Austin, Austin, TX 78712, United States
| | - Roger T Bonnecaze
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, United States.
| |
Collapse
|
12
|
Koopal L, Tan W, Avena M. Mixed ad/desorption kinetics unraveled with the equilibrium adsorption isotherm. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.06.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
13
|
Oliveras-González C, Linares M, Amabilino DB, Avarvari N. Large Synthetic Molecule that either Folds or Aggregates through Weak Supramolecular Interactions Determined by Solvent. ACS OMEGA 2019; 4:10108-10120. [PMID: 31460103 PMCID: PMC6648001 DOI: 10.1021/acsomega.9b01050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 05/29/2019] [Indexed: 05/12/2023]
Abstract
Weak noncovalent interactions between large disclike molecules in poorly solvating media generally lead to the formation of fibers where the molecules stack atop one another. Here, we show that a particular chiral spacing group between large aromatic moieties, which usually lead to columnar stacks, in this case gives rise to an intramolecularly folded structure in relatively polar solvents, but in very apolar solvents forms finite aggregates. The molecule that displays this behavior has a C 3 symmetric benzene-1,3,5-tris(3,3'-diamido-2,2'-bipyridine) (BTAB) core with three metalloporphyrin units appended to it through short chiral spacers. Quite well-defined chromophore arrangements are evident by circular dichroism (CD) spectroscopy of this compound in solution, where clear exciton coupled bands of porphyrins are observed. In more polar solvents where the molecules are dispersed, a relatively weak CD signal is observed as a result of intramolecular folding, a feature confirmed by molecular modeling. The intramolecular folding was confirmed by measuring the CD of a C 2 symmetric analogue. The C 3 symmetric BTAB cores that would normally be expected to stack in a chiral arrangement in apolar solvents show no indication of CD, suggesting that there is no transfer of chirality through it (although the expected planar conformation of the 2,2'-bipyridine unit is confirmed by NMR spectroscopy). The incorporation of the porphyrins on the 3,3'-diamino-2,2'-bipyridine moiety spaced by a chiral unit leaves the latter incapable of assembling through supramolecular π-π stacking. Rather, modeling indicates that the three metalloporphyrin units interact, thanks to van der Waals interactions, favoring their close interactions over that of the BTAB units. Atomic force microscopy shows that, in contrast to other examples of molecules with the same core, disclike aggregates (rather than fibrillar one dimensional aggregates) are favored by the C 3 symmetric molecule. The closed structures are formed through nondirectional interlocking of porphyrin rings. The chiral spacer between the rigid core and the porphyrin moieties is undoubtedly important in determining the outcome in polar or less polar solvents, as modeling shows that this joint in the molecule has two favored conformations that render the molecule relatively flat or convex.
Collapse
Affiliation(s)
| | - Mathieu Linares
- Laboratory
of Organic Electronics, ITN, Campus Norrköping, Scientific Visualization
Group, ITN, Campus Norrköping, and Swedish e-Science Research Centre
(SeRC), Linköping University, SE-581 83 Linköping, Sweden
| | - David B. Amabilino
- School
of Chemistry, University of Nottingham, University Park, NG7 2RD Nottingham, U.K.
- GSK Carbon
Neutral Laboratories for Sustainable Chemistry, The University of Nottingham, Jubilee Campus, Triumph Road, NG7 2TU Nottingham, U.K.
| | - Narcis Avarvari
- MOLTECH-Anjou,
UMR 6200, CNRS, Univ. Angers, 2bd Lavoisier, 49045 Angers Cedex, France
| |
Collapse
|
14
|
Lee J, Jo SH, Lim J. Effect of surface modification of CaCO3 nanoparticles by a silane coupling agent methyltrimethoxysilane on the stability of foam and emulsion. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
15
|
Poghosyan AH, Adamyan MP, Shahinyan AA, Koetz J. AOT Bilayer Adsorption on Gold Surfaces: A Molecular Dynamics Study. J Phys Chem B 2019; 123:948-953. [PMID: 30620593 DOI: 10.1021/acs.jpcb.8b11471] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A molecular dynamics study was done to reveal the adsorption properties of sodium dioctyl sulfosuccinate (AOT) bilayers on gold Au(111) surfaces. Examining the rotational mobility of AOT molecules, we track that the correlation time of AOT molecules on the adsorbed layer is much higher. The data estimating the diffusive motion of AOT molecule show a substantially lower rate of diffusion (∼10-10 cm2/s) in the adsorbed layers in comparison to other ones. The results show that an adsorbed layer is more rigid, whereas the outer layers undergo considerable lateral and vertical fluctuations.
Collapse
Affiliation(s)
- Armen H Poghosyan
- International Scientific-Educational Center of National Academy of Sciences , M. Baghramyan Ave. 24d , 0019 Yerevan , Armenia
| | - Maksim P Adamyan
- National Polytechnic University of Armenia , Teryan str. 105 , 0009 Yerevan , Armenia
| | - Aram A Shahinyan
- International Scientific-Educational Center of National Academy of Sciences , M. Baghramyan Ave. 24d , 0019 Yerevan , Armenia
| | - Joachim Koetz
- Institut für Chemie , Universität Potsdam , Karl-Liebknecht-Straße 24-25 , 14476 Potsdam , Germany
| |
Collapse
|
16
|
Maksin V, Kochkodan O, Kovshun L. Adsorption of binary mixtures of sodium hexadecyl sulfate and ethoxylated octylphenols from aqueous solutions at activated carbon. FRENCH-UKRAINIAN JOURNAL OF CHEMISTRY 2019. [DOI: 10.17721/fujcv7i2p88-95] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Adsorption of binary mixtures of sodium hexadecyl sulfate and oxyethylated octylphenols surfactants from aqueous solutions at activated carbon AG-3 was studied. It is found that the process of mixed adsorption depends on total surfactants concentration in the mixture, the ratio of components in the mixture and their surface activity. Adsorption data is confirmed by measurements of the zeta potential values of activated carbon particles in the surfactants mixtures.
Collapse
Affiliation(s)
- Victor Maksin
- National University of Life and Environmental Sciences of Ukraine
| | - Olga Kochkodan
- National University of Life and Environmental Sciences of Ukraine
| | - Lidiya Kovshun
- National University of Life and Environmental Sciences of Ukraine
| |
Collapse
|
17
|
Patra A, Taner HA, Bordes R, Holmberg K, Larsson AC. Selective flotation of calcium minerals using double-headed collectors. J DISPER SCI TECHNOL 2018. [DOI: 10.1080/01932691.2018.1503547] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Anuttam Patra
- Chemistry of Interfaces Group, Luleå University of Technology, Luleå, Sweden
| | - Hasan Ali Taner
- Chemistry of Interfaces Group, Luleå University of Technology, Luleå, Sweden
- Department of Mining Engineering, Selcuk University, Konya, Turkey
| | - Romain Bordes
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, Sweden
| | - Krister Holmberg
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, Sweden
| | - Anna-Carin Larsson
- Chemistry of Interfaces Group, Luleå University of Technology, Luleå, Sweden
| |
Collapse
|
18
|
Wei Z, Piantavigna S, Holt SA, Nelson A, Spicer PT, Prescott SW. Comparing Surfactant Structures at "Soft" and "Hard" Hydrophobic Materials: Not All Interfaces Are Equivalent. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:9141-9152. [PMID: 29999320 DOI: 10.1021/acs.langmuir.8b01686] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The interfacial structures of a range of amphiphilic molecules are studied with both "soft" and "hard" hydrophobic substrates. Neutron reflection and quartz crystal microbalance with dissipation measurements highlight the differences between the adsorbed structures adopted by sodium dodecyl sulfate (SDS), cetyltrimethylammonium bromide (C16TAB), and the "AM1" surface active peptide. At the soft siloxane/water interface, small molecular surfactants form loosely packed layers, with the hydrophobic tails penetrating into the oily layer, and an area per surfactant molecule that is significantly less than previously reported for the air/water interface. Neutron reflection measurements, supported by quartz crystal microbalance studies, indicate that for C16TAB, approximately 30 ± 8% of the alkyl tail penetrates into the poly(dimethylsiloxane) (PDMS) layer, whereas 20 ± 5% of the alkyl tail of SDS is located in the PDMS. For the engineered peptide surfactant AM1 (21 residues), it was found that one face of the α helix penetrated into the PDMS film. In contrast, penetration of the surfactant tails was not observed against hard solidlike hydrophobic surfaces made from octadecyltrichlorosilane (OTS) for any of the molecular species studied. At the OTS/water interface, C16TAB and SDS were seen to adsorb as larger aggregates and not as monolayers. Amphiphilic adsorption (amount, structural conformation) at the PDMS/water interface is shown to be different from that at both the air/water interface and the hard OTS/water interface, illustrating that interfacial structures cannot be predicted by the surfactant packing parameter alone. The bound PDMS layer is shown to be a useful proxy for the oil/water interface in surface and stabilization studies, with hydrophobic components of the molecules able to penetrate into the oily PDMS.
Collapse
Affiliation(s)
- Zengyi Wei
- School of Chemical Engineering , UNSW Sydney , Sydney , NSW 2052 , Australia
| | - Stefania Piantavigna
- Australian Nuclear Science and Technology Organisation , Lucas Heights , NSW 2234 , Australia
| | - Stephen A Holt
- Australian Nuclear Science and Technology Organisation , Lucas Heights , NSW 2234 , Australia
| | - Andrew Nelson
- Australian Nuclear Science and Technology Organisation , Lucas Heights , NSW 2234 , Australia
| | - Patrick T Spicer
- School of Chemical Engineering , UNSW Sydney , Sydney , NSW 2052 , Australia
| | - Stuart W Prescott
- School of Chemical Engineering , UNSW Sydney , Sydney , NSW 2052 , Australia
| |
Collapse
|
19
|
Hamon JJ, Tabor RF, Striolo A, Grady BP. Atomic Force Microscopy Force Mapping Analysis of an Adsorbed Surfactant above and below the Critical Micelle Concentration. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:7223-7239. [PMID: 29807434 DOI: 10.1021/acs.langmuir.8b00574] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Force curves collected using an atomic force microscope (AFM) in the presence of adsorbed surfactants are often used to draw conclusions about adsorbed film packing, rigidity, and thickness. However, some noteworthy features of such force curve characteristics have yet to be thoroughly investigated and explained. In this work, we collected force curves from tetradecyltrimethylammonium bromide films adsorbed on highly oriented pyrolytic graphite (HOPG), silica, and silica that had been hydrophobized by functionalization with dichlorodimethyl silane. Breakthrough events in the force curves from several different trials were compared to show that the breakthrough distance, often reported as the adsorbed film thickness, increased with concentration below the critical micelle concentration (CMC) but was approximately 3.5 nm on all surfaces between 2× and 10× CMC; an unexpected result because of the different surface chemistries for the three surfaces. We employed an AFM probe with a different force constant ( k) value as well as a colloidal probe and the breakthrough distance remained approximately 3.5 nm in all cases. Gradient mapping, a variant of force mapping, was also implemented on the three surfaces and resulted in a new technique for visualizing adsorbed surfactant in situ. The resulting maps showed patches of adsorbed surfactant below the CMC and revealed that with increasing concentration, the size of the patches increased resulting in full coverage near and above the CMC. These results are, to our knowledge, the first time force mapping has been used to spatially track patches of adsorbed surfactant. Finally, layers of surfactants on an AFM tip were investigated by collecting a force map on a single AFM tip using the tip of a separate AFM probe. A breakthrough event was observed between the tips, indicating that a layer of surfactant was present on at least one, if not both tips.
Collapse
Affiliation(s)
- J J Hamon
- School of Chemical, Biological and Materials Engineering and Institute of Applied Surfactant Research , University of Oklahoma , Norman , Oklahoma 73019 , United States
| | - Rico F Tabor
- School of Chemistry , Monash University , Wellington Road , Clayton , Victoria 3800 , Australia
| | - Alberto Striolo
- Department of Chemical Engineering , University College London , London WC1E 7JE , U.K
| | - Brian P Grady
- School of Chemical, Biological and Materials Engineering and Institute of Applied Surfactant Research , University of Oklahoma , Norman , Oklahoma 73019 , United States
| |
Collapse
|
20
|
McCoy TM, de Campo L, Sokolova AV, Grillo I, Izgorodina EI, Tabor RF. Bulk properties of aqueous graphene oxide and reduced graphene oxide with surfactants and polymers: adsorption and stability. Phys Chem Chem Phys 2018; 20:16801-16816. [DOI: 10.1039/c8cp02738b] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Aqueous dispersions of graphene oxide and reduced graphene oxide are combined with carefully chosen surfactants and polymers to investigate adsorption and bulk properties in these systems.
Collapse
Affiliation(s)
| | | | | | | | | | - Rico F. Tabor
- School of Chemistry
- Monash University
- Clayton 3800
- Australia
| |
Collapse
|
21
|
Surface modification of calcium carbonate nanoparticles by fluorosurfactant. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2017.05.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Inhibiting hydrophobization of sandstones via adsorption of alkyl carboxyl betaines in SP flooding by using gentle alkali. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.09.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Suh S, Choi KO, Yang SC, Kim YE, Ko S. Adsorption mechanism of alkyl polyglucoside (APG) on calcite nanoparticles in aqueous medium at varying pH. J SOLID STATE CHEM 2017. [DOI: 10.1016/j.jssc.2017.04.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
24
|
Steer D, Kang M, Leal C. Soft nanostructured films for directing the assembly of functional materials. NANOTECHNOLOGY 2017; 28:142001. [PMID: 28145900 DOI: 10.1088/1361-6528/aa5d77] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Lipids are a class of biological small molecules with hydrophilic and hydrophobic constituents forming the structural membranes in cells. Over the past century an extensive understanding of lipid biology and biophysics has been developed illuminating lipids as an intricate, highly tunable, and hierarchical soft-matter system. In addition to serving as cell membrane models, lipids have been investigated as microphase separated structures in aqueous solutions. In terms of applications lipids have been realized as powerful structural motifs for the encapsulation and cellular delivery of genetic material. More recently, lipids have also revealed promise as thin film materials, exhibiting long-range periodic nano-scale order and tunable orientation. In this review we summarize the pertinent understanding of lipid nanostructure development in bulk aqueous systems followed by the current and potential perturbations to these results induced by introduction of a substrate. These effects are punctuated by a summary of our published results in the field of lipid thin films with added nucleic acids and key results introducing hard materials into lipid nanostructured substrates.
Collapse
Affiliation(s)
- D Steer
- Materials Science and Engineering, University of Illinois at Urbana Champaign, United States of America
| | | | | |
Collapse
|
25
|
Chew NGP, Zhao S, Loh CH, Permogorov N, Wang R. Surfactant effects on water recovery from produced water via direct-contact membrane distillation. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.01.024] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Suttipong M, Grady BP, Striolo A. Surfactants adsorption on crossing stripes and steps. SOFT MATTER 2017; 13:862-874. [PMID: 28074204 DOI: 10.1039/c6sm01854h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Using coarse-grained dissipative particle dynamics (DPD) simulations, we systematically study the effect of surface heterogeneity on surfactant adsorption. Here we investigate the adsorption and aggregation of surfactants on hydrophobic stripes crossing each other perpendicularly (i.e., crossing stripes) and on hydrophobic steps. The results are compared with those obtained for isolated stripes. We find that on crossing stripes of moderate stripe widths (e.g., L = 0.61LS, 1.22LS and 1.83LS, where LS is the length of one surfactant molecule) the crossing region hinders the formation of defect-free adsorbed surfactant structures. By increasing the stripe width and/or by increasing the length of one of the two perpendicularly crossing stripes (i.e., lowering the surface density of defects/intersections), the crossing region is found to have a weaker effect on the features of the adsorbed structures. Regarding surfactant adsorption on steps, our simulation results show that the self-assembled aggregates can be stretched along the step corner, and the resultant elastic deformation can hinder adsorption. This qualitative observation can facilitate a description of surfactant adsorption that takes into consideration also the deformation of the self-assembled film. As suggested by such a general model, increasing the convex angle of the step, increasing the size of the surfactant head groups, and changing other physical parameters can reduce the elastic energy penalty, and yield larger amounts of surfactants adsorbed. The results presented could assist in understanding and sometimes predicting surfactant adsorption on heterogeneous surfaces, suggest methods to formulate surfactant mixtures to control surface coverage on heterogeneous surfaces, and perhaps facilitate new methods for the fabrication of nano-structured surfaces.
Collapse
Affiliation(s)
- Manaswee Suttipong
- Department of Chemical Engineering, University College London, London WC1E 7JE, UK.
| | - Brian P Grady
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, Oklahoma 73069, USA
| | - Alberto Striolo
- Department of Chemical Engineering, University College London, London WC1E 7JE, UK.
| |
Collapse
|
27
|
Zhang R, Huo JH, Peng ZG, Luo WJ, Feng Q, Wang JX, Zhang J. Study on the interaction of CaCO 3 nanoparticles and surfactant in emulsion phase transition and its molecular dynamics simulation. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.09.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
28
|
Katepalli H, Bose A, Hatton TA, Blankschtein D. Destabilization of Oil-in-Water Emulsions Stabilized by Non-ionic Surfactants: Effect of Particle Hydrophilicity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:10694-10698. [PMID: 27632428 DOI: 10.1021/acs.langmuir.6b03289] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We investigate the use of particle hydrophilicity as a tool for emulsion destabilization in Triton-X-100-stabilized hexadecane-in-water emulsions. The hydrophilicity of the particles added to the aqueous phase was found to have a pronounced effect on the stability of the emulsion. Specifically, the addition of hydrophilic fumed silica particles to the aqueous phase resulted in coarsening of the emulsion droplets, with droplet flocculation observed at higher particle concentrations. On the other hand, when partially hydrophobic fumed silica particles were added to the aqueous phase, coarsening of the emulsion droplets was observed at low particle concentrations and phase separation of oil and water was observed at higher particle concentrations. Surface tension and interfacial tension measurements showed significant depletion of the surfactant from the aqueous phase in the presence of the partially hydrophobic particles. The observed changes in the stability of the emulsion and the depletion of the surfactant can be rationalized in terms of changes in the adsorption behavior of the surfactant molecules, from one dominated by hydrogen bonding on hydrophilic particles to one dominated by hydrophobic interactions on partially hydrophobic particles. Our findings also provide, for the first time, an in-depth understanding of antagonistic (destabilizing) effects in mixtures of partially hydrophobic particles and a non-ionic surfactant (Triton X-100) in water.
Collapse
Affiliation(s)
- Hari Katepalli
- Department of Chemical Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Arijit Bose
- Department of Chemical Engineering, University of Rhode Island , Kingston, Rhode Island 02881, United States
| | - T Alan Hatton
- Department of Chemical Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Daniel Blankschtein
- Department of Chemical Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| |
Collapse
|
29
|
Kwek JW, Kim S. Characterization of Adsorption Behavior of Sucrose Monolaurate on Gold Substrate Using the Quartz Crystal Microbalance (QCM). J SURFACTANTS DETERG 2016. [DOI: 10.1007/s11743-016-1827-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
30
|
Ishiguro M, Koopal LK. Surfactant adsorption to soil components and soils. Adv Colloid Interface Sci 2016; 231:59-102. [PMID: 26969282 DOI: 10.1016/j.cis.2016.01.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 09/18/2015] [Accepted: 01/27/2016] [Indexed: 10/22/2022]
Abstract
Soils are complex and widely varying mixtures of organic matter and inorganic materials; adsorption of surfactants to soils is therefore related to the soil composition. We first discuss the properties of surfactants, including the critical micelle concentration (CMC) and surfactant adsorption on water/air interfaces, the latter gives an impression of surfactant adsorption to a hydrophobic surface and illustrates the importance of the CMC for the adsorption process. Then attention is paid to the most important types of soil particles: humic and fulvic acids, silica, metal oxides and layered aluminosilicates. Information is provided on their structure, surface properties and primary (proton) charge characteristics, which are all important for surfactant binding. Subsequently, the adsorption of different types of surfactants on these individual soil components is discussed in detail, based on mainly experimental results and considering the specific (chemical) and electrostatic interactions, with hydrophobic attraction as an important component of the specific interactions. Adsorption models that can describe the features semi-quantitatively are briefly discussed. In the last part of the paper some trends of surfactant adsorption on soils are briefly discussed together with some complications that may occur and finally the consequences of surfactant adsorption for soil colloidal stability and permeability are considered. When we seek to understand the fate of surfactants in soil and aqueous environments, the hydrophobicity and charge density of the soil or soil particles, must be considered together with the structure, hydrophobicity and charge of the surfactants, because these factors affect the adsorption. The pH and ionic strength are important parameters with respect to the charge density of the particles. As surfactant adsorption influences soil structure and permeability, insight in surfactant adsorption to soil particles is useful for good soil management.
Collapse
|
31
|
Sun X, Chen Y, Zhao J. Highly stable aqueous foams generated by fumed silica particles hydrophobised in situ with a quaternary ammonium gemini surfactant. RSC Adv 2016. [DOI: 10.1039/c6ra02063a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Fumed silica hydrophobisedin situwith a quaternary ammonium gemini surfactant was an excellent stabiliser for aqueous foams.
Collapse
Affiliation(s)
- Xiaoxiang Sun
- Institute of Colloid and Interface Chemistry
- College of Chemistry and Chemical Engineering
- Fuzhou University
- Fuzhou
- PR China
| | - Yu Chen
- Institute of Colloid and Interface Chemistry
- College of Chemistry and Chemical Engineering
- Fuzhou University
- Fuzhou
- PR China
| | - Jianxi Zhao
- Institute of Colloid and Interface Chemistry
- College of Chemistry and Chemical Engineering
- Fuzhou University
- Fuzhou
- PR China
| |
Collapse
|
32
|
Onaizi SA, Nasser MS, Al-Lagtah NMA. Self-assembly of a surfactin nanolayer at solid–liquid and air–liquid interfaces. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2015; 45:331-9. [DOI: 10.1007/s00249-015-1099-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 10/29/2015] [Accepted: 11/08/2015] [Indexed: 11/25/2022]
|
33
|
Fritz C, Ferrer A, Salas C, Jameel H, Rojas OJ. Interactions between Cellulolytic Enzymes with Native, Autohydrolysis, and Technical Lignins and the Effect of a Polysorbate Amphiphile in Reducing Nonproductive Binding. Biomacromolecules 2015; 16:3878-88. [DOI: 10.1021/acs.biomac.5b01203] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Consuelo Fritz
- Department
of Forest Biomaterials, North Carolina State University, Raleigh, North Carolina 27695-8005, United States
| | - Ana Ferrer
- Department
of Forest Biomaterials, North Carolina State University, Raleigh, North Carolina 27695-8005, United States
| | - Carlos Salas
- Department
of Forest Biomaterials, North Carolina State University, Raleigh, North Carolina 27695-8005, United States
| | - Hasan Jameel
- Department
of Forest Biomaterials, North Carolina State University, Raleigh, North Carolina 27695-8005, United States
| | - Orlando J. Rojas
- Department
of Forest Biomaterials, North Carolina State University, Raleigh, North Carolina 27695-8005, United States
- Bio-Based
Colloids and Materials, Department of Forest Products Technology and
Centre of Excellence on “Molecular Engineering of Biosynthetic
Hybrid Materials” (HYBER), Aalto University, FIN-00076 Aalto, Espoo, Finland
| |
Collapse
|
34
|
Jayawardane D, Pan F, Lu JR, Zhao X. Co-adsorption of peptide amphiphile V(6)K and conventional surfactants SDS and C(12)TAB at the solid/water interface. SOFT MATTER 2015; 11:7986-7994. [PMID: 26329315 DOI: 10.1039/c5sm01670c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Recent research has reported many attractive benefits from short peptide amphiphiles. A practical route for them to enter the real world of applications is through formulation with conventional surfactants. This study reports the co-adsorption of the surfactant-like peptide, V6K, with conventional anionic and cationic surfactants at the solid/water interface. The time-dependant adsorption behaviour was examined using spectroscopic ellipsometry whilst adsorbed layer composition and structural distribution of the components were investigated by neutron reflection with the use of hydrogen/deuterium labelling of the surfactant molecules. Both binary (surfactant/peptide mixtures) and sequential (peptide followed by surfactant) adsorption have been studied. It was found that at the hydrophilic SiO2/water interface, the peptide was able to form a stable, flat, defected bilayer structure however both the structure and adsorbed amount were highly dependent on the initial peptide concentration. This consequently affected surfactant adsorption. In the presence of a pre-adsorbed peptide layer anionic sodium dodecyl sulfate (SDS) could readily co-adsorb at the interface; however, cationic dodecyl trimethyl ammonium bromide (C12TAB) could not co-adsorb due to the same charge character. However on a trimethoxy octyl silane (C8) coated hydrophobic surface, V6K formed a monolayer, and subsequent exposure to cationic and anionic surfactants both led to some co-adsorption at the interface. In binary surfactant/peptide mixtures, it was found that adsorption was dependent on the molar ratio of the surfactant and peptide. For SDS mixtures below molar unity and concentrations below CMC for C12TAB, V6K was able to dominate adsorption at the interface. Above molar unity, no adsorption was detected for SDS/V6K mixtures. In contrast, C12TAB gradually replaced the peptide and became dominant at the interface. These results thus elucidate the adsorption behaviour of V6K, which was found to dominate interfacial adsorption but its exact adsorbed amount and distribution were affected by interfacial hydrophobicity and interactions with conventional surfactants.
Collapse
Affiliation(s)
- Dharana Jayawardane
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, S1 3JD, UK.
| | | | | | | |
Collapse
|
35
|
Zheng D, Liu X, Zhu S, Cao H, Chen Y, Hu S. Sensing nitric oxide with a carbon nanofiber paste electrode modified with a CTAB and nafion composite. Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1561-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
36
|
Song EM, Kim DW, Lim JC. Effect of adsorption of laureth sulfonic acid type anionic surfactant on the wetting property of CaCO3 substrate. J IND ENG CHEM 2015. [DOI: 10.1016/j.jiec.2015.03.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
37
|
Alfredsson V, Wennerström H. The dynamic association processes leading from a silica precursor to a mesoporous SBA-15 material. Acc Chem Res 2015; 48:1891-900. [PMID: 26107533 DOI: 10.1021/acs.accounts.5b00165] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
During the last two decades, the synthesis of silica with an ordered mesoporous structure has been thoroughly explored. The basis of the synthesis is to let silica monomers polymerize in the presence of an amphiphilic template component. In the first studies, cationic surfactants were used as structure inducer. Later it was shown that pluronic copolymers also could have the role. One advantage with the pluronics copolymers is that they allow for a wider variation in the radius of pores in the resulting silica material. Another advantage lies in the higher stability resulting from the thicker walls between the pores. Mesoporous silica has a very high area to volume ratio, and the ordered structure ensures surface homogeneity. There are a number of applications of this type of material. It can be used as support for catalysts, as templates to produces other mesoporous inorganic materials, or in controlled release applications. The synthesis of mesoporous silica is, from a practical point of view, simple, but there are significant possibilities to vary synthesis conditions with a concomitant effect on the properties of the resulting material. It is clear that the structural properties on the nanometer scale are determined by the self-assembly properties of the amphiphile, and this knowledge has been used to optimize pore geometry and pore size. To have a practical functional material it is desirable to also control the structure on a micrometer scale and larger. In practice, one has largely taken an empirical approach in optimizing reaction conditions, paying less attention to underlying chemical and physicochemical mechanisms that lead from starting conditions to the final product. In this Account, we present our systematic studies of the processes involved not only in the formation of the mesoporous structure as such, but also of the formation of structures on the micrometer scale. The main point is to show how the ongoing silica polymerization triggers a sequence of structural changes through the action of colloidal interactions. Our approach is to use a multitude of experimental methods to characterize the time evolution of the same highly reproducible synthesis process. It is the silica polymerization reactions that set the time scale, and the block copolymer self-assembly responds to the progress of the polymerization through a basically hydrophobic interaction between silica and ethylene oxide units. The progression of the silica polymerization leads to an increased hydrophobicity triggering an aggregation process resulting in the formation of silica-copolymer composite particles of increasing size. The particle growth occurs in a stepwise way caused by intricate shifts between colloidal stability and instability. By tuning reaction conditions one can have an end product of hexagonal prism composite particles with single crystal 2D hexagonal order.
Collapse
Affiliation(s)
- Viveka Alfredsson
- Division of Physical Chemistry,
Department of Chemistry, Lund University P.O.Box 124, SE 22100 Lund, Sweden
| | - Håkan Wennerström
- Division of Physical Chemistry,
Department of Chemistry, Lund University P.O.Box 124, SE 22100 Lund, Sweden
| |
Collapse
|
38
|
Emulsion phase inversion from oil-in-water (1) to water-in-oil to oil-in-water (2) induced by in situ surface activation of CaCO3 nanoparticles via adsorption of sodium stearate. Colloids Surf A Physicochem Eng Asp 2015. [DOI: 10.1016/j.colsurfa.2015.03.043] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Chaduc I, Parvole J, Doussineau T, Antoine R, Désert A, Dugas PY, Ravaine S, Duguet E, Bourgeat-Lami E, Lansalot M. Towards a one-step method for preparing silica/polymer heterodimers and dimpled polymer particles. POLYMER 2015. [DOI: 10.1016/j.polymer.2015.06.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
40
|
Rapp MV, Donaldson SH, Gebbie MA, Das S, Kaufman Y, Gizaw Y, Koenig P, Roiter Y, Israelachvili JN. Hydrophobic, electrostatic, and dynamic polymer forces at silicone surfaces modified with long-chain bolaform surfactants. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:2058-2068. [PMID: 25504803 DOI: 10.1002/smll.201402229] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 10/07/2014] [Indexed: 06/04/2023]
Abstract
Surfactant self-assembly on surfaces is an effective way to tailor the complex forces at and between hydrophobic-water interfaces. Here, the range of structures and forces that are possible at surfactant-adsorbed hydrophobic surfaces are demonstrated: certain long-chain bolaform surfactants-containing a polydimethylsiloxane (PDMS) mid-block domain and two cationic α, ω-quarternary ammonium end-groups-readily adsorb onto thin PDMS films and form dynamically fluctuating nanostructures. Through measurements with the surface forces apparatus (SFA), it is found that these soft protruding nanostructures display polymer-like exploration behavior at the PDMS surface and give rise to a long-ranged, temperature- and rate-dependent attractive bridging force (not due to viscous forces) on approach to a hydrophilic bare mica surface. Coulombic interactions between the cationic surfactant end-groups and negatively-charged mica result in a rate-dependent polymer bridging force during separation as the hydrophobic surfactant mid-blocks are pulled out from the PDMS interface, yielding strong adhesion energies. Thus, (i) the versatile array of surfactant structures that may form at hydrophobic surfaces is highlighted, (ii) the need to consider the interaction dynamics of such self-assembled polymer layers is emphasized, and (iii) it is shown that long-chain surfactants can promote robust adhesion in aqueous solutions.
Collapse
Affiliation(s)
- Michael V Rapp
- Department of Chemical Engineering, University of California, Santa Barbara (UCSB), CA, 93106-5080, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Debon AP, Wootton RCR, Elvira KS. Droplet confinement and leakage: Causes, underlying effects, and amelioration strategies. BIOMICROFLUIDICS 2015; 9:024119. [PMID: 26015831 PMCID: PMC4409622 DOI: 10.1063/1.4917343] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 03/31/2015] [Indexed: 05/04/2023]
Abstract
The applicability of droplet-based microfluidic systems to many research fields stems from the fact that droplets are generally considered individual and self-contained reaction vessels. This study demonstrates that, more often than not, the integrity of droplets is not complete, and depends on a range of factors including surfactant type and concentration, the micro-channel surface, droplet storage conditions, and the flow rates used to form and process droplets. Herein, a model microfluidic device is used for droplet generation and storage to allow the comparative study of forty-four different oil/surfactant conditions. Assessment of droplet stability under these conditions suggests a diversity of different droplet failure modes. These failure modes have been classified into families depending on the underlying effect, with both numerical and qualitative models being used to describe the causative effect and to provide practical solutions for droplet failure amelioration in microfluidic systems.
Collapse
Affiliation(s)
- Aaron P Debon
- Institute for Chemical and Bioengineering , Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Robert C R Wootton
- Institute for Chemical and Bioengineering , Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Katherine S Elvira
- Institute for Chemical and Bioengineering , Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
42
|
Darkins R, Sushko ML, Liu J, Duffy DM. The effect of surface topography on the micellisation of hexadecyltrimethylammonium chloride at the silicon-aqueous interface. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015; 27:054008. [PMID: 25530446 DOI: 10.1088/0953-8984/27/5/054008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Amphiphilic aggregation at solid-liquid interfaces can generate mesostructured micelles that can serve as soft templates. In this study we have simulated the self-assembly of hexadecyltrimethylammonium chloride (C16TAC) surfactants at the Si(1 0 0)- and Si(1 1 1)-aqueous interfaces. The surfactants are found to form semicylindrical micelles on Si(1 0 0) but hemispherical micelles on Si(1 1 1). This difference in micelle structure is shown to be a consequence of the starkly different surface topographies that result from the reconstruction of the two silicon surfaces, and reveals that micelle structure can be governed by epitaxial matching even with non-polar substrates.
Collapse
Affiliation(s)
- R Darkins
- Department of Physics and Astronomy, University College London, Gower Street, London, WC1E 6BT, UK
| | | | | | | |
Collapse
|
43
|
Song E, Kim D, Kim BJ, Lim J. Surface modification of CaCO3 nanoparticles by alkylbenzene sulfonic acid surfactant. Colloids Surf A Physicochem Eng Asp 2014. [DOI: 10.1016/j.colsurfa.2014.07.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
44
|
Evaluating the stability of colloidal gas aphrons in the presence of montmorillonite nanoparticles. Colloids Surf A Physicochem Eng Asp 2014. [DOI: 10.1016/j.colsurfa.2014.05.076] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
45
|
Penfold J, Thomas RK. Neutron reflectivity and small angle neutron scattering: An introduction and perspective on recent progress. Curr Opin Colloid Interface Sci 2014. [DOI: 10.1016/j.cocis.2014.01.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
46
|
Gong Y, Zhao X, Cai Z, O'Reilly SE, Hao X, Zhao D. A review of oil, dispersed oil and sediment interactions in the aquatic environment: influence on the fate, transport and remediation of oil spills. MARINE POLLUTION BULLETIN 2014; 79:16-33. [PMID: 24388567 DOI: 10.1016/j.marpolbul.2013.12.024] [Citation(s) in RCA: 178] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 12/01/2013] [Accepted: 12/08/2013] [Indexed: 05/15/2023]
Abstract
The 2010 Deepwater Horizon oil spill has spurred significant amounts of researches on fate, transport, and environmental impacts of oil and oil dispersants. This review critically summarizes what is understood to date about the interactions between oil, oil dispersants and sediments, their roles in developing oil spill countermeasures, and how these interactions may change in deepwater environments. Effects of controlling parameters, such as sediment particle size and concentration, organic matter content, oil properties, and salinity on oil-sediment interactions are described in detail. Special attention is placed to the application and effects of oil dispersants on the rate and extent of the interactions between oil and sediment or suspended particulate materials. Various analytical methods are discussed for characterization of oil-sediment interactions. Current knowledge gaps are identified and further research needs are proposed to facilitate sounder assessment of fate and impacts of oil spills in the marine environment.
Collapse
Affiliation(s)
- Yanyan Gong
- Environmental Engineering Program, Department of Civil Engineering, Auburn University, Auburn, AL 36849, USA
| | - Xiao Zhao
- Environmental Engineering Program, Department of Civil Engineering, Auburn University, Auburn, AL 36849, USA
| | - Zhengqing Cai
- Environmental Engineering Program, Department of Civil Engineering, Auburn University, Auburn, AL 36849, USA
| | - S E O'Reilly
- Bureau of Ocean Energy Management, GOM Region, Office of Environment, New Orleans, LA 70123-2394, USA
| | - Xiaodi Hao
- Environmental Engineering Program, Department of Civil Engineering, Auburn University, Auburn, AL 36849, USA; Beijing Climate Change Research and Education Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Dongye Zhao
- Environmental Engineering Program, Department of Civil Engineering, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
47
|
Liu J, Chen J, Jiang L, Wang X. Adsorption of fluoranthene in surfactant solution on activated carbon: equilibrium, thermodynamic, kinetic studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:1809-1818. [PMID: 23979852 DOI: 10.1007/s11356-013-2075-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 08/15/2013] [Indexed: 06/02/2023]
Abstract
Adsorption of fluoranthene (FLA) in surfactant solution on activated carbon (AC) was investigated. Isotherm, thermodynamic, and kinetic attributes of FLA adsorption in the presence of the surfactant on AC were studied. Effects of AC dosage, initial concentration of TX100, initial concentration of FLA, and addition of fulvic acid on adsorption were studied. The experimental data of both TX100 and FLA fitted the Langmuir isotherm model and the pseudo-second-order kinetic model well. Positive enthalpy showed that adsorption of FLA on AC was endothermic. The efficiency of selective FLA removal generally increased with increasing initial surfactant concentration and decreasing fulvic acid concentration. The surface chemistry of AC may determine the removal of polycyclic aromatic hydrocarbons. The adsorption process may be controlled by the hydrophobic interaction between AC and the adsorbate. The microwave irradiation of AC may be a feasible method to reduce the cost of AC through its regeneration.
Collapse
Affiliation(s)
- Jianfei Liu
- State Key Laboratory for Water and Sediment Sciences of Ministry of Education, School of Environment, Beijing Normal University, Beijing, 100875, People's Republic of China
- School of Civil Engineering, Henan Polytechnic University, Jiaozuo, 454003, People's Republic of China
| | - Jiajun Chen
- State Key Laboratory for Water and Sediment Sciences of Ministry of Education, School of Environment, Beijing Normal University, Beijing, 100875, People's Republic of China.
| | - Lin Jiang
- Beijing Municipal Research Institute of Environmental Protection, Beijing, 100037, People's Republic of China
| | - Xingwei Wang
- State Key Laboratory for Water and Sediment Sciences of Ministry of Education, School of Environment, Beijing Normal University, Beijing, 100875, People's Republic of China
| |
Collapse
|
48
|
Electrochemical oxidation mechanism of ambroxol and its voltammetric determination in the presence of dodecyl sulfate. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2013.10.145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
Skoglund S, Lowe TA, Hedberg J, Blomberg E, Wallinder IO, Wold S, Lundin M. Effect of laundry surfactants on surface charge and colloidal stability of silver nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:8882-8891. [PMID: 23758058 DOI: 10.1021/la4012873] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The stability of silver nanoparticles (Ag NPs) potentially released from clothing during a laundry cycle and their interactions with laundry-relevant surfactants [anionic (LAS), cationic (DTAC), and nonionic (Berol)] have been investigated. Surface interactions between Ag NPs and surfactants influence their speciation and stability. In the absence of surfactants as well as in the presence of LAS, the negatively charged Ag NPs were stable in solution for more than 1 day. At low DTAC concentrations (≤1 mM), DTAC-Ag NP interactions resulted in charge neutralization and formation of agglomerates. The surface charge of the particles became positive at higher concentrations due to a bilayer type formation of DTAC that prevents from agglomeration due to repulsive electrostatic forces between the positively charged colloids. The adsorption of Berol was enhanced when above its critical micelle concentration (cmc). This resulted in a surface charge close to zero and subsequent agglomeration. Extended DLVO theory calculations were in compliance with observed findings. The stability of the Ag NPs was shown to depend on the charge and concentration of the adsorbed surfactants. Such knowledge is important as it may influence the subsequent transport of Ag NPs through different chemical transients and thus their potential bioavailability and toxicity.
Collapse
Affiliation(s)
- Sara Skoglund
- KTH Royal Institute of Technology, School of Chemical Science and Engineering, Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
50
|
Bratov A, Abramova N, Ipatov A, Merlos A. An impedimetric chemical sensor for determination of detergents residues. Talanta 2013; 106:286-92. [DOI: 10.1016/j.talanta.2012.10.083] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 10/22/2012] [Accepted: 10/29/2012] [Indexed: 11/30/2022]
|