1
|
Rapid Purification and Formulation of Radiopharmaceuticals via Thin-Layer Chromatography. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238178. [PMID: 36500272 PMCID: PMC9738419 DOI: 10.3390/molecules27238178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022]
Abstract
Before formulating radiopharmaceuticals for injection, it is necessary to remove various impurities via purification. Conventional synthesis methods involve relatively large quantities of reagents, requiring high-resolution and high-capacity chromatographic methods (e.g., semi-preparative radio-HPLC) to ensure adequate purity of the radiopharmaceutical. Due to the use of organic solvents during purification, additional processing is needed to reformulate the radiopharmaceutical into an injectable buffer. Recent developments in microscale radiosynthesis have made it possible to synthesize radiopharmaceuticals with vastly reduced reagent masses, minimizing impurities. This enables purification with lower-capacity methods, such as analytical HPLC, with a reduction of purification time and volume (that shortens downstream re-formulation). Still, the need for a bulky and expensive HPLC system undermines many of the advantages of microfluidics. This study demonstrates the feasibility of using radio-TLC for the purification of radiopharmaceuticals. This technique combines high-performance (high-resolution, high-speed separation) with the advantages of a compact and low-cost setup. A further advantage is that no downstream re-formulation step is needed. Production and purification of clinical scale batches of [18F]PBR-06 and [18F]Fallypride are demonstrated with high yield, purity, and specific activity. Automating this radio-TLC method could provide an attractive solution for the purification step in microscale radiochemistry systems.
Collapse
|
2
|
Brito J, Andrianov AK, Sukhishvili SA. Factors Controlling Degradation of Biologically Relevant Synthetic Polymers in Solution and Solid State. ACS APPLIED BIO MATERIALS 2022; 5:5057-5076. [PMID: 36206552 DOI: 10.1021/acsabm.2c00694] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The field of biodegradable synthetic polymers, which is central for regenerative engineering and drug delivery applications, encompasses a multitude of hydrolytically sensitive macromolecular structures and diverse processing approaches. The ideal degradation behavior for a specific life science application must comply with a set of requirements, which include a clinically relevant kinetic profile, adequate biocompatibility, benign degradation products, and controlled structural evolution. Although significant advances have been made in tailoring materials characteristics to satisfy these requirements, the impacts of autocatalytic reactions and microenvironments are often overlooked resulting in uncontrollable and unpredictable outcomes. Therefore, roles of surface versus bulk erosion, in situ microenvironment, and autocatalytic mechanisms should be understood to enable rational design of degradable systems. In an attempt to individually evaluate the physical state and form factors influencing autocatalytic hydrolysis of degradable polymers, this Review follows a hierarchical analysis that starts with hydrolytic degradation of water-soluble polymers before building up to 2D-like materials, such as ultrathin coatings and capsules, and then to solid-state degradation. We argue that chemical reactivity largely governs solution degradation while diffusivity and geometry control the degradation of bulk materials, with thin "2D" materials remaining largely unexplored. Following this classification, this Review explores techniques to analyze degradation in vitro and in vivo and summarizes recent advances toward understanding degradation behavior for traditional and innovative polymer systems. Finally, we highlight challenges encountered in analytical methodology and standardization of results and provide perspective on the future trends in the development of biodegradable polymers.
Collapse
Affiliation(s)
- Jordan Brito
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas77843, United States
| | - Alexander K Andrianov
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland20850, United States
| | - Svetlana A Sukhishvili
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas77843, United States
| |
Collapse
|
3
|
Gao Z, Yang Z, Li Z, Burgess K. Fluorescent PARP Inhibitors Applied To Intracranial Glioblastoma: Accumulation and Persistence In Vivo. ACS Med Chem Lett 2022; 13:911-915. [DOI: 10.1021/acsmedchemlett.1c00712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/26/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Zhe Gao
- Department of Chemistry, Texas A & M University, Box 30012, College Station, Texas 77842, United States
| | - Zhen Yang
- Department of Radiology, Houston Methodist Academic Institute, 6670 Bertner Avenue, Houston, Texas 77030, United States
| | - Zheng Li
- Department of Radiology, Houston Methodist Academic Institute, 6670 Bertner Avenue, Houston, Texas 77030, United States
| | - Kevin Burgess
- Department of Chemistry, Texas A & M University, Box 30012, College Station, Texas 77842, United States
| |
Collapse
|
4
|
Nerella SG, Singh P, Sanam T, Digwal CS. PET Molecular Imaging in Drug Development: The Imaging and Chemistry Perspective. Front Med (Lausanne) 2022; 9:812270. [PMID: 35295604 PMCID: PMC8919964 DOI: 10.3389/fmed.2022.812270] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/18/2022] [Indexed: 11/13/2022] Open
Abstract
Positron emission tomography with selective radioligands advances the drug discovery and development process by revealing information about target engagement, proof of mechanism, pharmacokinetic and pharmacodynamic profiles. Positron emission tomography (PET) is an essential and highly significant tool to study therapeutic drug development, dose regimen, and the drug plasma concentrations of new drug candidates. Selective radioligands bring up target-specific information in several disease states including cancer, cardiovascular, and neurological conditions by quantifying various rates of biological processes with PET, which are associated with its physiological changes in living subjects, thus it reveals disease progression and also advances the clinical investigation. This study explores the major roles, applications, and advances of PET molecular imaging in drug discovery and development process with a wide range of radiochemistry as well as clinical outcomes of positron-emitting carbon-11 and fluorine-18 radiotracers.
Collapse
Affiliation(s)
- Sridhar Goud Nerella
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Priti Singh
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Tulja Sanam
- Department of Microbiology and Applied Sciences, University of Agricultural Sciences, Bangalore, India
| | - Chander Singh Digwal
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Hyderabad, India
| |
Collapse
|
5
|
Wang J, van Dam RM. Economical Production of Radiopharmaceuticals for Preclinical Imaging Using Microdroplet Radiochemistry. Methods Mol Biol 2022; 2393:813-828. [PMID: 34837213 DOI: 10.1007/978-1-0716-1803-5_43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The short-lived radiolabeled "tracers" needed for performing whole body imaging in animals or patients with positron-emission tomography (PET) are generally produced via automated "radiosynthesizers". Most current radiosynthesizers are designed for routine production of relatively large clinical batches and are very wasteful when only a small batch of a tracer is needed, such as is the case for preclinical in vivo PET imaging studies. To overcome the prohibitively high cost of producing small batches of PET tracers, we developed a droplet microreactor system that performs radiochemistry at the 1-10μL scale instead of the milliliter scale of conventional technologies. The overall yield for the droplet-based production of many PET tracers is comparable to conventional approaches, but 10-100× less reagents are consumed, the synthesis can be completed in much less time (<30 min), and only a small laboratory footprint and minimal radiation shielding are needed. By combining these advantages, droplet microreactors enable the economical production of small batches PET tracers on demand. Here, we describe the fabrication method of the droplet microreactor and the droplet-based synthesis of an example radiotracer ([18F]fallypride).
Collapse
Affiliation(s)
- Jia Wang
- Crump Institute for Molecular Imaging, University of California Los Angeles, Los Angeles, CA, USA
- Department of Molecular & Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA
- Bioengineering Department, University of California Los Angeles, Los Angeles, CA, USA
| | - R Michael van Dam
- Crump Institute for Molecular Imaging, University of California Los Angeles, Los Angeles, CA, USA.
- Department of Molecular & Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA.
- Bioengineering Department, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
6
|
Neumaier F, Zlatopolskiy BD, Neumaier B. Nuclear Medicine in Times of COVID-19: How Radiopharmaceuticals Could Help to Fight the Current and Future Pandemics. Pharmaceutics 2020; 12:E1247. [PMID: 33371500 PMCID: PMC7767508 DOI: 10.3390/pharmaceutics12121247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023] Open
Abstract
The emergence and global spread of COVID-19, an infectious disease caused by the novel coronavirus SARS-CoV-2, has resulted in a continuing pandemic threat to global health. Nuclear medicine techniques can be used for functional imaging of (patho)physiological processes at the cellular or molecular level and for treatment approaches based on targeted delivery of therapeutic radionuclides. Ongoing development of radiolabeling methods has significantly improved the accessibility of radiopharmaceuticals for in vivo molecular imaging or targeted radionuclide therapy, but their use for biosafety threats such as SARS-CoV-2 is restricted by the contagious nature of these agents. Here, we highlight several potential uses of nuclear medicine in the context of SARS-CoV-2 and COVID-19, many of which could also be performed in laboratories without dedicated containment measures. In addition, we provide a broad overview of experimental or repurposed SARS-CoV-2-targeting drugs and describe how radiolabeled analogs of these compounds could facilitate antiviral drug development and translation to the clinic, reduce the incidence of late-stage failures and possibly provide the basis for radionuclide-based treatment strategies. Based on the continuing threat by emerging coronaviruses and other pathogens, it is anticipated that these applications of nuclear medicine will become a more important part of future antiviral drug development and treatment.
Collapse
Affiliation(s)
- Felix Neumaier
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Wilhelm-Johnen-Str., 52428 Jülich, Germany; (B.D.Z.); (B.N.)
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Boris D. Zlatopolskiy
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Wilhelm-Johnen-Str., 52428 Jülich, Germany; (B.D.Z.); (B.N.)
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
- Max Planck Institute for Metabolism Research, 50931 Cologne, Germany
| | - Bernd Neumaier
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Wilhelm-Johnen-Str., 52428 Jülich, Germany; (B.D.Z.); (B.N.)
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| |
Collapse
|
7
|
Auvity S, Breuil L, Goislard M, Bottlaender M, Kuhnast B, Tournier N, Caillé F. An original radio-biomimetic approach to synthesize radiometabolites for PET imaging. Nucl Med Biol 2020; 90-91:10-14. [PMID: 32898790 DOI: 10.1016/j.nucmedbio.2020.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/27/2020] [Accepted: 08/13/2020] [Indexed: 02/05/2023]
Abstract
To fully exploit the potential of positron emission tomography (PET) imaging to assess drug distribution and pharmacokinetics in the central nervous system, the contribution of radiometabolites to the PET signal has to be determined for correct interpretation of data. However, radiosynthesis and extensive study of radiometabolites are rarely investigated and very challenging for complex drugs. Therefore, an original radio-biomimetic (RBM) approach was developed to rapidly synthesize radiometabolites and non-invasively investigate their kinetics with PET imaging. This method enabled the challenging radiosynthesis of [11C]nor-buprenorphine ([11C]nor-BUP), the main metabolite of buprenorphine (BUP) which has been identified as a substrate of the P-glycoprotein (P-gp) transport function at the blood-brain barrier (BBB). Biomimetic conditions using cytochromes P450 3A4 to convert BUP into nor-BUP were optimized taking into account the short half-life of carbon-11 (t1/2 = 20.4 min). Those conditions afforded 32% of conversion within 20 min and were applied to the biomimetic radiosynthesis of [11C]nor-BUP from [11C]BUP. Automated radiosynthesis of [11C]BUP according to a procedure described in the literature followed by optimized RBM conditions afforded [11C]nor-BUP in 1.5% decay-corrected radiochemical yield within 90 min and 90 ± 15 GBq/μmol molar activity. HPLC quality control showed chemical and radiochemical purities above 98%. To demonstrate the applicability of the RBM approach to preclinical studies, brain PET images in rats showed a drastic lower uptake of [11C]nor-BUP (0.067 ± 0.023%ID/cm-3) compared to [11C]BUP (0.436 ± 0.054%ID/cm-3). P-gp inhibition using Tariquidar increased the brain uptake of [11C]nor-BUP (0.557 ± 0.077%ID/cm-3).
Collapse
Affiliation(s)
- Sylvain Auvity
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale Paris-Saclay, 91401 Orsay, France; Assistance Publique-Hôpitaux de Paris, Hôpital Necker - Enfants malades, Inserm, UMR-S 1144, Université de Paris, Optimisation thérapeutique en neuropsychopharmacologie, Paris, France
| | - Louise Breuil
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale Paris-Saclay, 91401 Orsay, France
| | - Maud Goislard
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale Paris-Saclay, 91401 Orsay, France
| | - Michel Bottlaender
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale Paris-Saclay, 91401 Orsay, France
| | - Bertrand Kuhnast
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale Paris-Saclay, 91401 Orsay, France
| | - Nicolas Tournier
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale Paris-Saclay, 91401 Orsay, France
| | - Fabien Caillé
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale Paris-Saclay, 91401 Orsay, France.
| |
Collapse
|
8
|
Lisova K, Chen BY, Wang J, Fong KMM, Clark PM, van Dam RM. Rapid, efficient, and economical synthesis of PET tracers in a droplet microreactor: application to O-(2-[ 18F]fluoroethyl)-L-tyrosine ([ 18F]FET). EJNMMI Radiopharm Chem 2019; 5:1. [PMID: 31893318 PMCID: PMC6938530 DOI: 10.1186/s41181-019-0082-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 11/21/2019] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Conventional scale production of small batches of PET tracers (e.g. for preclinical imaging) is an inefficient use of resources. Using O-(2-[18F]fluoroethyl)-L-tyrosine ([18F]FET), we demonstrate that simple microvolume radiosynthesis techniques can improve the efficiency of production by consuming tiny amounts of precursor, and maintaining high molar activity of the tracers even with low starting activity. PROCEDURES The synthesis was carried out in microvolume droplets manipulated on a disposable patterned silicon "chip" affixed to a heater. A droplet of [18F]fluoride containing TBAHCO3 was first deposited onto a chip and dried at 100 °C. Subsequently, a droplet containing 60 nmol of precursor was added to the chip and the fluorination reaction was performed at 90 °C for 5 min. Removal of protecting groups was accomplished with a droplet of HCl heated at 90 °C for 3 min. Finally, the crude product was collected in a methanol-water mixture, purified via analytical-scale radio-HPLC and formulated in saline. As a demonstration, using [18F]FET produced on the chip, we prepared aliquots with different molar activities to explore the impact on preclinical PET imaging of tumor-bearing mice. RESULTS The microdroplet synthesis exhibited an overall decay-corrected radiochemical yield of 55 ± 7% (n = 4) after purification and formulation. When automated, the synthesis could be completed in 35 min. Starting with < 370 MBq of activity, ~ 150 MBq of [18F]FET could be produced, sufficient for multiple in vivo experiments, with high molar activities (48-119 GBq/μmol). The demonstration imaging study revealed the uptake of [18F]FET in subcutaneous tumors, but no significant differences in tumor uptake as a result of molar activity differences (ranging 0.37-48 GBq/μmol) were observed. CONCLUSIONS A microdroplet synthesis of [18F]FET was developed demonstrating low reagent consumption, high yield, and high molar activity. The approach can be expanded to tracers other than [18F]FET, and adapted to produce higher quantities of the tracer sufficient for clinical PET imaging.
Collapse
Affiliation(s)
- Ksenia Lisova
- Physics in Biology and Medicine Interdepartmental Graduate Program, University of California, Los Angeles, Los Angeles, CA, USA
- Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Molecular & Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Bao Ying Chen
- Physics in Biology and Medicine Interdepartmental Graduate Program, University of California, Los Angeles, Los Angeles, CA, USA
- Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Molecular & Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jia Wang
- Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Molecular & Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kelly Mun-Ming Fong
- Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Molecular & Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Peter M Clark
- Physics in Biology and Medicine Interdepartmental Graduate Program, University of California, Los Angeles, Los Angeles, CA, USA
- Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Molecular & Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - R Michael van Dam
- Physics in Biology and Medicine Interdepartmental Graduate Program, University of California, Los Angeles, Los Angeles, CA, USA.
- Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Molecular & Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
9
|
Ordonez AA, Carroll LS, Abhishek S, Mota F, Ruiz-Bedoya CA, Klunk MH, Singh AK, Freundlich JS, Mease RC, Jain SK. Radiosynthesis and PET Bioimaging of 76Br-Bedaquiline in a Murine Model of Tuberculosis. ACS Infect Dis 2019; 5:1996-2002. [PMID: 31345032 PMCID: PMC6911007 DOI: 10.1021/acsinfecdis.9b00207] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Bedaquiline is a promising drug against tuberculosis (TB), but limited data are available on its intralesional pharmacokinetics. Moreover, current techniques rely on invasive tissue resection, which is difficult in humans and generally limited even in animals. In this study, we developed a novel radiosynthesis for 76Br-bedaquiline and performed noninvasive, longitudinal whole-body positron emission tomography (PET) in live, Mycobacterium tuberculosis-infected mice over 48 h. After the intravenous injection, 76Br-bedaquiline distributed to all organs and selectively localized to adipose tissue and liver, with excellent penetration into infected lung lesions (86%) and measurable penetration into the brain parenchyma (15%). Ex vivo high resolution, two-dimensional autoradiography, and same section hematoxylin/eosin and immunofluorescence provided detailed intralesional drug biodistribution. PET bioimaging and high-resolution autoradiography are novel techniques that can provide detailed, multicompartment, and intralesional pharmacokinetics of new and existing TB drugs. These technologies can significantly advance efforts to optimize drug dosing.
Collapse
Affiliation(s)
- Alvaro A. Ordonez
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland,
USA
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine,
Baltimore, Maryland, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Laurence S. Carroll
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of
Medicine, Baltimore, Maryland, USA
| | - Sudhanshu Abhishek
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland,
USA
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine,
Baltimore, Maryland, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Filipa Mota
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland,
USA
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine,
Baltimore, Maryland, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Camilo A. Ruiz-Bedoya
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland,
USA
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine,
Baltimore, Maryland, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mariah H. Klunk
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland,
USA
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine,
Baltimore, Maryland, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Alok K. Singh
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland,
USA
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine,
Baltimore, Maryland, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Joel S. Freundlich
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University - New Jersey Medical School,
Newark, NJ, USA
| | - Ronnie C. Mease
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of
Medicine, Baltimore, Maryland, USA
| | - Sanjay K. Jain
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland,
USA
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine,
Baltimore, Maryland, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of
Medicine, Baltimore, Maryland, USA
| |
Collapse
|
10
|
Son H, Jang K, Lee H, Kim SE, Kang KW, Lee H. Use of Molecular Imaging in Clinical Drug Development: a Systematic Review. Nucl Med Mol Imaging 2019; 53:208-215. [PMID: 31231441 DOI: 10.1007/s13139-019-00593-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 03/28/2019] [Accepted: 03/28/2019] [Indexed: 12/18/2022] Open
Abstract
Background Molecular imaging such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT) can provide the crucial pharmacokinetic-pharmacodynamic information of a drug non-invasively at an early stage of clinical drug development. Nevertheless, not much has been known how molecular imaging has been actually used in drug development studies. Methods We searched PubMed using such keywords as molecular imaging, PET, SPECT, drug development, and new drug, or any combination of those to select papers in English, published from January 1, 1990, to December 31, 2015. The information about the publication year, therapeutic area of a drug candidate, drug development phase, and imaging modality and utility of imaging were extracted. Results Of 10,264 papers initially screened, 208 papers met the eligibility criteria. The more recent the publication year, the bigger the number of papers, particularly since 2010. The two major therapeutic areas using molecular imaging to develop drugs were oncology (47.6%) and the central nervous system (CNS, 36.5%), in which efficacy (63.5%) and proof-of-concept through either receptor occupancy (RO) or other than RO (29.7%), respectively, were the primary utility of molecular imaging. PET was used 4.7 times more frequently than SPECT. Molecular imaging was most frequently used in phase I clinical trials (40.8%), whereas it was employed rarely in phase 0 or exploratory IND studies (1.4%). Conclusions The present study confirmed the trend that molecular imaging has been more actively employed in recent clinical drug development studies although its adoption was rather slow and rare in phase 0 studies.
Collapse
Affiliation(s)
- Hyeomin Son
- 1Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, 103 Daehak-ro, Jongno-gu, 110-799 Seoul, Republic of Korea
| | - Kyungho Jang
- 2Center for Clinical Pharmacology, Biomedical Research Institute, Chonbuk National University Hospital, Jeonju, Jeonbuk Republic of Korea
| | - Heechan Lee
- 1Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, 103 Daehak-ro, Jongno-gu, 110-799 Seoul, Republic of Korea
| | - Sang Eun Kim
- 3Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea.,Department of Nuclear Medicine, Seoul National University College of Medicine and Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Keon Wook Kang
- 5Department of Nuclear Medicine & Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Howard Lee
- 1Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, 103 Daehak-ro, Jongno-gu, 110-799 Seoul, Republic of Korea.,3Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
11
|
Abstract
A novel carbon-11 radiolabelling methodology for the synthesis of the dialkylcarbonate functional group has been developed. The method uses cyclotron-produced short-lived [11C]CO2 (half-life 20.4 min) directly from the cyclotron target in a one-pot synthesis. Alcohol in the presence of base trapped [11C]CO2 efficiently forming an [11C]alkylcarbonate intermediate that subsequently reacted with an alkylchloride producing the di-substituted [11C]carbonate (34% radiochemical yield, determined by radio-HPLC) in 5 minutes from the end of [11C]CO2 cyclotron delivery.
Collapse
|
12
|
Heller AA, Lockwood SY, Janes TM, Spence DM. Technologies for Measuring Pharmacokinetic Profiles. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2018; 11:79-100. [PMID: 29324183 DOI: 10.1146/annurev-anchem-061417-125611] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The creation of a pharmacokinetic (PK) curve, which follows the plasma concentration of an administered drug as a function of time, is a critical aspect of the drug development process and includes such information as the drug's bioavailability, clearance, and elimination half-life. Prior to a drug of interest gaining clearance for use in human clinical trials, research is performed during the preclinical stages to establish drug safety and dosing metrics from data obtained from the PK studies. Both in vivo animal models and in vitro platforms have limitations in predicting human reaction to a drug due to differences in species and associated simplifications, respectively. As a result, in silico experiments using computer simulation have been implemented to accurately predict PK parameters in human studies. This review assesses these three approaches (in vitro, in vivo, and in silico) when establishing PK parameters and evaluates the potential for in silico studies to be the future gold standard of PK preclinical studies.
Collapse
Affiliation(s)
- A A Heller
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA;
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, USA
| | - S Y Lockwood
- Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, USA
| | - T M Janes
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA;
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, USA
| | - D M Spence
- Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
13
|
Early Detection of A β Deposition in the 5xFAD Mouse by Amyloid PET. CONTRAST MEDIA & MOLECULAR IMAGING 2018; 2018:5272014. [PMID: 29681782 PMCID: PMC5851318 DOI: 10.1155/2018/5272014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 01/12/2018] [Accepted: 01/29/2018] [Indexed: 11/18/2022]
Abstract
Purpose. 18F-FC119S is a positron emission tomography (PET) tracer for imaging β-amyloid (Aβ) plaques in Alzheimer's disease (AD). The aim of this study is to evaluate the efficacy of 18F-FC119S in quantitating Aβ deposition in a mouse model of early amyloid deposition (5xFAD) by PET. Method. Dynamic 18F-FC119S PET images were obtained in 5xFAD (n = 5) and wild-type (WT) mice (n = 7). The brain PET images were spatially normalized to the M. Mirrione T2-weighted mouse brain MR template, and the volumes of interest were then automatically drawn on the cortex, hippocampus, thalamus, and cerebellum. The specific binding of 18F-FC119S to Aβ was quantified as the distribution volume ratio using Logan graphical analysis with the cerebellum as a reference tissue. The Aβ levels in the brain were also confirmed by immunohistochemical analysis. Result. For the 5xFAD group, radioactivity levels in the cortex, the hippocampus, and the thalamus were higher than those for the WT group. In these regions, specific binding was approximately 1.2-fold higher in 5xFAD mice than in WT. Immunohistochemistry supported these findings; the 5xFAD showed severe Aβ deposition in the cortex and hippocampus in contrast to the WT group. Conclusion. These results demonstrated that 18F-FC119S PET can successfully distinguish Aβ depositions in 5xFAD mice from WT.
Collapse
|
14
|
Chao PH, Collins J, Argus JP, Tseng WY, Lee JT, Michael van Dam R. Automatic concentration and reformulation of PET tracers via microfluidic membrane distillation. LAB ON A CHIP 2017; 17:1802-1816. [PMID: 28443841 PMCID: PMC5497730 DOI: 10.1039/c6lc01569g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Short-lived radiolabeled tracers for positron emission tomography (PET) must be rapidly synthesized, purified, and formulated into injectable solution just prior to imaging. Current radiosynthesizers are generally designed for clinical use, and the HPLC purification and SPE formulation processes often result in a final volume that is too large for preclinical and emerging in vitro applications. Conventional technologies and techniques for reducing this volume tend to be slow, resulting in radioactive decay of the product, and often require manual handling of the radioactive materials. We present a fully-automated microfluidic system based on sweeping gas membrane distillation to rapidly perform the concentration and formulation process. After detailed characterization of the system, we demonstrate fast and efficient concentration and formulation of several PET tracers, evaluate residual solvent content to establish the safety of the formulated tracers for injection, and show that the formulated tracer can be used for in vivo imaging.
Collapse
Affiliation(s)
- Philip H Chao
- Department of Bioengineering, Henry Samueli School of Engineering, UCLA, Los Angeles, CA 90095, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Khotavivattana T, Calderwood S, Verhoog S, Pfeifer L, Preshlock S, Vasdev N, Collier TL, Gouverneur V. Synthesis and Reactivity of 18F-Labeled α,α-Difluoro-α-(aryloxy)acetic Acids. Org Lett 2017; 19:568-571. [DOI: 10.1021/acs.orglett.6b03730] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Samuel Calderwood
- Chemistry
Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Stefan Verhoog
- Chemistry
Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Lukas Pfeifer
- Chemistry
Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Sean Preshlock
- Chemistry
Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Neil Vasdev
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, 55 Fruit Street, Boston 02114, United States
- Department
of Radiology, Harvard Medical School, 55 Fruit Street, Boston 02114, United States
| | - Thomas L. Collier
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, 55 Fruit Street, Boston 02114, United States
- Department
of Radiology, Harvard Medical School, 55 Fruit Street, Boston 02114, United States
- Advion BioSystems, 10
Brown Road, Suite 101, Ithaca, New York 14850, United States
| | - Véronique Gouverneur
- Chemistry
Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| |
Collapse
|
16
|
Enright HA, Malfatti MA, Zimmermann M, Ognibene T, Henderson P, Turteltaub KW. Use of Accelerator Mass Spectrometry in Human Health and Molecular Toxicology. Chem Res Toxicol 2016; 29:1976-1986. [PMID: 27726383 PMCID: PMC5203773 DOI: 10.1021/acs.chemrestox.6b00234] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Accelerator mass spectrometry (AMS) has been adopted as a powerful bioanalytical method for human studies in the areas of pharmacology and toxicology. The exquisite sensitivity (10-18 mol) of AMS has facilitated studies of toxins and drugs at environmentally and physiologically relevant concentrations in humans. Such studies include risk assessment of environmental toxicants, drug candidate selection, absolute bioavailability determination, and more recently, assessment of drug-target binding as a biomarker of response to chemotherapy. Combining AMS with complementary capabilities such as high performance liquid chromatography (HPLC) can maximize data within a single experiment and provide additional insight when assessing drugs and toxins, such as metabolic profiling. Recent advances in the AMS technology at Lawrence Livermore National Laboratory have allowed for direct coupling of AMS with complementary capabilities such as HPLC via a liquid sample moving wire interface, offering greater sensitivity compared to that of graphite-based analysis, therefore enabling the use of lower 14C and chemical doses, which are imperative for clinical testing. The aim of this review is to highlight the recent efforts in human studies using AMS, including technological advancements and discussion of the continued promise of AMS for innovative clinical based research.
Collapse
Affiliation(s)
- Heather A. Enright
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA USA
| | - Michael A. Malfatti
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA USA
| | - Maike Zimmermann
- Department of Internal Medicine, Division of Hematology and Oncology, UC Davis Medical Center, Sacramento, CA USA
- Accelerated Medical Diagnostics Incorporated, Berkeley, CA USA
| | - Ted Ognibene
- Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, CA USA
| | - Paul Henderson
- Department of Internal Medicine, Division of Hematology and Oncology, UC Davis Medical Center, Sacramento, CA USA
- Accelerated Medical Diagnostics Incorporated, Berkeley, CA USA
| | - Kenneth W. Turteltaub
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA USA
| |
Collapse
|
17
|
Dubach JM, Kim E, Yang K, Cuccarese M, Giedt RJ, Meimetis LG, Vinegoni C, Weissleder R. Quantitating drug-target engagement in single cells in vitro and in vivo. Nat Chem Biol 2016; 13:168-173. [PMID: 27918558 DOI: 10.1038/nchembio.2248] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 09/22/2016] [Indexed: 12/24/2022]
Abstract
Quantitation of drug target engagement in single cells has proven to be difficult, often leaving unanswered questions in the drug development process. We found that intracellular target engagement of unlabeled new therapeutics can be quantitated using polarized microscopy combined with competitive binding of matched fluorescent companion imaging probes. We quantitated the dynamics of target engagement of covalent BTK inhibitors, as well as reversible PARP inhibitors, in populations of single cells using a single companion imaging probe for each target. We then determined average in vivo tumor concentrations and found marked population heterogeneity following systemic delivery, revealing single cells with low target occupancy at high average target engagement in vivo.
Collapse
Affiliation(s)
- J Matthew Dubach
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Eunha Kim
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Katherine Yang
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael Cuccarese
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Randy J Giedt
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Labros G Meimetis
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Claudio Vinegoni
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
18
|
Ahamed M, Verbeek J, Funke U, Lecina J, Verbruggen A, Bormans G. Recent Progress in Metal Catalyzed Direct Carboxylation of Aryl Halides and Pseudo Halides Employing CO2: Opportunities for11C Radiochemistry. ChemCatChem 2016. [DOI: 10.1002/cctc.201600943] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | | | - Uta Funke
- Laboratory of Radiopharmacy; KU Leuven; Belgium
| | - Joan Lecina
- Laboratory of Radiopharmacy; KU Leuven; Belgium
| | | | - Guy Bormans
- Laboratory of Radiopharmacy; KU Leuven; Belgium
| |
Collapse
|
19
|
Yan G, Yang D, Yu Y, Xue J, Jia Y, Sun X, Wang B, Zhao Z, Wang M. Pharmacokinetics of gene recombined angiogenesis inhibitor Kringle 5 in vivo using 131I specific markers and SPECT/CT. J Pharm Anal 2016; 6:313-317. [PMID: 29403998 PMCID: PMC5762626 DOI: 10.1016/j.jpha.2016.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/31/2016] [Accepted: 09/02/2016] [Indexed: 11/18/2022] Open
Abstract
The previous pharmacokinetic methods can be only limited to drug analysis in vitro, which provide less information on the distribution and metabolismof drugs, and limit the interpretation and assessment of pharmacokinetics, the determination of metabolic principles, and evaluation of treatment effect. The objective of the study was to investigate the pharmacokinetic characteristics of gene recombination angiogenesis inhibitor Kringle 5 in vivo. The SPECT/CT and specific 131I-Kringle 5 marked by Iodogen method were both applied to explore the pharmacokinetic characteristics of 131I-Kringle 5 in vivo, and to investigate the dynamic distributions of 131I-Kringle 5 in target organs. Labeling recombinant angiogenesis inhibitor Kringle 5 using 131I with longer half-life and imaging in vivo using SPECT instead of PET, could overcome the limitations of previous methods. When the doses of 131I-Kringle 5 were 10.0, 7.5 and 5.0 g/kg, respectively, the two-compartment open models can be determined within all the metabolic process in vivo. There were no significant differences in t1/2α, t1/2β, apparent volume of distribution and CL between those three levels. The ratio of AUC(0~∞) among three different groups of 10.0, 7.5 and 5.0 g/kg was 2.56:1.44:1.0, which was close to the ratio (2:1.5:1.0). It could be clear that in the range of 5.0-10.0 g/kg, Kringle 5 was characterized by the first-order pharmacokinetics. Approximately 30 min after 131I-Kringle 5 was injected, 131I-Kringle 5 could be observed to concentrate in the heart, kidneys, liver and other organs by means of planar imaging and tomography. After 1 h of being injected, more radionuclide retained in the bladder, but not in intestinal. It could be concluded that 131I-Kringle 5 is mainly excreted through the kidneys. About 2 h after the injection of 131I-Kringle 5, the radionuclide in the heart, kidneys, liver and other organs was gradually reduced, while more radionuclide was concentrated in the bladder. The radionuclide was completely metabolized within 24 h, and the distribution of radioactivity in rats was similar to normal levels. In our study, the specific marker 131I-Kringle 5 and SPECT/CT were successfully used to explore pharmacokinetic characteristics of Kringle 5 in rats. The study could provide a new evaluation platform of the specific, in vivo and real-time functional imaging and pharmacokinetics for the clinical application of 131I-Kringle 5.
Collapse
Affiliation(s)
- Ge Yan
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Danrong Yang
- Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Yan Yu
- Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Jianjun Xue
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yifan Jia
- Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Xuanzi Sun
- Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Boyu Wang
- Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Zewei Zhao
- Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Maode Wang
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
- Corresponding author.
| |
Collapse
|
20
|
Karakatsanis NA, Casey ME, Lodge MA, Rahmim A, Zaidi H. Whole-body direct 4D parametric PET imaging employing nested generalized Patlak expectation-maximization reconstruction. Phys Med Biol 2016; 61:5456-85. [PMID: 27383991 DOI: 10.1088/0031-9155/61/15/5456] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Whole-body (WB) dynamic PET has recently demonstrated its potential in translating the quantitative benefits of parametric imaging to the clinic. Post-reconstruction standard Patlak (sPatlak) WB graphical analysis utilizes multi-bed multi-pass PET acquisition to produce quantitative WB images of the tracer influx rate K i as a complimentary metric to the semi-quantitative standardized uptake value (SUV). The resulting K i images may suffer from high noise due to the need for short acquisition frames. Meanwhile, a generalized Patlak (gPatlak) WB post-reconstruction method had been suggested to limit K i bias of sPatlak analysis at regions with non-negligible (18)F-FDG uptake reversibility; however, gPatlak analysis is non-linear and thus can further amplify noise. In the present study, we implemented, within the open-source software for tomographic image reconstruction platform, a clinically adoptable 4D WB reconstruction framework enabling efficient estimation of sPatlak and gPatlak images directly from dynamic multi-bed PET raw data with substantial noise reduction. Furthermore, we employed the optimization transfer methodology to accelerate 4D expectation-maximization (EM) convergence by nesting the fast image-based estimation of Patlak parameters within each iteration cycle of the slower projection-based estimation of dynamic PET images. The novel gPatlak 4D method was initialized from an optimized set of sPatlak ML-EM iterations to facilitate EM convergence. Initially, realistic simulations were conducted utilizing published (18)F-FDG kinetic parameters coupled with the XCAT phantom. Quantitative analyses illustrated enhanced K i target-to-background ratio (TBR) and especially contrast-to-noise ratio (CNR) performance for the 4D versus the indirect methods and static SUV. Furthermore, considerable convergence acceleration was observed for the nested algorithms involving 10-20 sub-iterations. Moreover, systematic reduction in K i % bias and improved TBR were observed for gPatlak versus sPatlak. Finally, validation on clinical WB dynamic data demonstrated the clinical feasibility and superior K i CNR performance for the proposed 4D framework compared to indirect Patlak and SUV imaging.
Collapse
Affiliation(s)
- Nicolas A Karakatsanis
- Division of Nuclear Medicine and Molecular Imaging, School of Medicine, University of Geneva, Geneva, CH-1211, Switzerland
| | | | | | | | | |
Collapse
|
21
|
Stehouwer JS, Goodman MM. Fluorine-18 Radiolabeled PET Tracers for Imaging Monoamine Transporters: Dopamine, Serotonin, and Norepinephrine. PET Clin 2016; 4:101-28. [PMID: 20216936 DOI: 10.1016/j.cpet.2009.05.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This review focuses on the development of fluorine-18 radiolabeled PET tracers for imaging the dopamine transporter (DAT), serotonin transporter (SERT), and norepinephrine transporter (NET). All successful DAT PET tracers reported to date are members of the 3β-phenyl tropane class and are synthesized from cocaine. Currently available carbon-11 SERT PET tracers come from both the diphenylsulfide and 3β-phenyl nortropane class, but so far only the nortropanes have found success with fluorine-18 derivatives. NET imaging has so far employed carbon-11 and fluorine-18 derivatives of reboxetine but due to defluorination of the fluorine-18 derivatives further research is still necessary.
Collapse
|
22
|
Sumsakul W, Karbwang J, Na-Bangchang K. Application of SPECT/CT imaging system and radiochemical analysis for investigation of blood kinetics and tissue distribution of radiolabeled plumbagin in healthy and Plasmodium berghei-infected mice. Exp Parasitol 2016; 161:54-61. [DOI: 10.1016/j.exppara.2015.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 09/13/2015] [Accepted: 12/06/2015] [Indexed: 12/20/2022]
|
23
|
Preshlock S, Tredwell M, Gouverneur V. (18)F-Labeling of Arenes and Heteroarenes for Applications in Positron Emission Tomography. Chem Rev 2016; 116:719-66. [PMID: 26751274 DOI: 10.1021/acs.chemrev.5b00493] [Citation(s) in RCA: 502] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Diverse radiochemistry is an essential component of nuclear medicine; this includes imaging techniques such as positron emission tomography (PET). As such, PET can track diseases at an early stage of development, help patient care planning through personalized medicine and support drug discovery programs. Fluorine-18 is the most frequently used radioisotope in PET radiopharmaceuticals for both clinical and preclinical research. Its physical and nuclear characteristics (97% β(+) decay, 109.8 min half-life, 635 keV positron energy) and high specific activity make it an attractive nuclide for labeling and molecular imaging. Arenes and heteroarenes are privileged candidates for (18)F-incorporation as they are metabolically robust and therefore widely used by medicinal chemists and radiochemists alike. For many years, the range of (hetero)arenes amenable to (18)F-fluorination was limited by the lack of chemically diverse precursors, and of radiochemical methods allowing (18)F-incorporation in high selectivity and efficiency (radiochemical yield and purity, specific activity, and radio-scalability). The appearance of late-stage fluorination reactions catalyzed by transition metal or small organic molecules (organocatalysis) has encouraged much research on the use of these activation manifolds for (18)F-fluorination. In this piece, we review all of the reactions known to date to install the (18)F substituent and other key (18)F-motifs (e.g., CF3, CHF2, OCF3, SCF3, OCHF2) of medicinal relevance onto (hetero)arenes. The field has changed significantly in the past five years, and the current trend suggests that the radiochemical space available for PET applications will expand rapidly in the near future.
Collapse
Affiliation(s)
- Sean Preshlock
- Chemistry Research Laboratory, University of Oxford , Oxford OX1 3TA, United Kingdom
| | - Matthew Tredwell
- Chemistry Research Laboratory, University of Oxford , Oxford OX1 3TA, United Kingdom
| | - Véronique Gouverneur
- Chemistry Research Laboratory, University of Oxford , Oxford OX1 3TA, United Kingdom
| |
Collapse
|
24
|
Stehouwer JS, Birnbaum MS, Voll RJ, Owens MJ, Plott SJ, Bourke CH, Wassef MA, Kilts CD, Goodman MM. Synthesis, F-18 radiolabeling, and microPET evaluation of 3-(2,4-dichlorophenyl)-N-alkyl-N-fluoroalkyl-2,5-dimethylpyrazolo[1,5-a]pyrimidin-7-amines as ligands of the corticotropin-releasing factor type-1 (CRF1) receptor. Bioorg Med Chem 2015; 23:4286-4302. [PMID: 26145817 DOI: 10.1016/j.bmc.2015.06.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 06/04/2015] [Accepted: 06/12/2015] [Indexed: 12/28/2022]
Abstract
A series of 3-(2,4-dichlorophenyl)-N-alkyl-N-fluoroalkyl-2,5-dimethylpyrazolo[1,5-a]pyrimidin-7-amines were synthesized and evaluated as potential positron emission tomography (PET) tracers for the corticotropin-releasing factor type-1 (CRF1) receptor. Compounds 27, 28, 29, and 30 all displayed high binding affinity (⩽1.2 nM) to the CRF1 receptor when assessed by in vitro competition binding assays at 23 °C, whereas a decrease in affinity (⩾10-fold) was observed with compound 26. The logP7.4 values of [(18)F]26-[(18)F]29 were in the range of ∼2.2-2.8 and microPET evaluation of [(18)F]26-[(18)F]29 in an anesthetized male cynomolgus monkey demonstrated brain penetrance, but specific binding was not sufficient enough to differentiate regions of high CRF1 receptor density from regions of low CRF1 receptor density. Radioactivity uptake in the skull, and sphenoid bone and/or sphenoid sinus during studies with [(18)F]28, [(18)F]28-d8, and [(18)F]29 was attributed to a combination of [(18)F]fluoride generated by metabolic defluorination of the radiotracer and binding of intact radiotracer to CRF1 receptors expressed on mast cells in the bone marrow. Uptake of [(18)F]26 and [(18)F]27 in the skull and sphenoid region was rapid but then steadily washed out which suggests that this behavior was the result of binding to CRF1 receptors expressed on mast cells in the bone marrow with no contribution from [(18)F]fluoride.
Collapse
Affiliation(s)
- Jeffrey S Stehouwer
- Center for Systems Imaging, Department of Radiology and Imaging Sciences, Emory University, WWHC 209, 1841 Clifton Rd NE, Atlanta, GA 30329, USA.
| | - Matthew S Birnbaum
- Center for Systems Imaging, Department of Radiology and Imaging Sciences, Emory University, WWHC 209, 1841 Clifton Rd NE, Atlanta, GA 30329, USA
| | - Ronald J Voll
- Center for Systems Imaging, Department of Radiology and Imaging Sciences, Emory University, WWHC 209, 1841 Clifton Rd NE, Atlanta, GA 30329, USA
| | - Michael J Owens
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Susan J Plott
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Chase H Bourke
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Michael A Wassef
- Center for Systems Imaging, Department of Radiology and Imaging Sciences, Emory University, WWHC 209, 1841 Clifton Rd NE, Atlanta, GA 30329, USA
| | - Clinton D Kilts
- Department of Psychiatry and Behavioral Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Mark M Goodman
- Center for Systems Imaging, Department of Radiology and Imaging Sciences, Emory University, WWHC 209, 1841 Clifton Rd NE, Atlanta, GA 30329, USA; Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| |
Collapse
|
25
|
Forbes B, Bäckman P, Christopher D, Dolovich M, Li BV, Morgan B. In Vitro Testing for Orally Inhaled Products: Developments in Science-Based Regulatory Approaches. AAPS JOURNAL 2015; 17:837-52. [PMID: 25940082 DOI: 10.1208/s12248-015-9763-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 03/30/2015] [Indexed: 11/30/2022]
Abstract
This article is part of a series of reports from the "Orlando Inhalation Conference-Approaches in International Regulation" which was held in March 2014, and coorganized by the University of Florida and the International Pharmaceutical Aerosol Consortium on Regulation and Science (IPAC-RS). The goal of the conference was to foster the exchange of ideas and knowledge across the global scientific and regulatory community in order to identify and help move towards strategies for internationally harmonized, science-based regulatory approaches for the development and marketing approval of inhalation medicines, including innovator and second entry products. This article provides an integrated perspective of case studies and discussion related to in vitro testing of orally inhaled products, including in vitro-in vivo correlations and requirements for in vitro data and statistical analysis that support quality or bioequivalence for regulatory applications.
Collapse
Affiliation(s)
- Ben Forbes
- Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, London, SE1 9NH, UK,
| | | | | | | | | | | |
Collapse
|
26
|
Abou-Gharbia M, Childers WE. Discovery of Innovative Therapeutics: Today’s Realities and Tomorrow’s Vision. 2. Pharma’s Challenges and Their Commitment to Innovation. J Med Chem 2014; 57:5525-53. [DOI: 10.1021/jm401564r] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Magid Abou-Gharbia
- Moulder
Center for Drug Discovery
Research, Temple University School of Pharmacy, 3307 North Broad Street, Philadelphia, Pennsylvania 19140, United States
| | - Wayne E. Childers
- Moulder
Center for Drug Discovery
Research, Temple University School of Pharmacy, 3307 North Broad Street, Philadelphia, Pennsylvania 19140, United States
| |
Collapse
|
27
|
Berges A, Cunningham VJ, Gunn RN, Zamuner S. Non linear mixed effects analysis in PET PK-receptor occupancy studies. Neuroimage 2013; 76:155-66. [PMID: 23518008 DOI: 10.1016/j.neuroimage.2013.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2012] [Revised: 02/22/2013] [Accepted: 03/06/2013] [Indexed: 11/25/2022] Open
Abstract
The characterisation of a pharmacokinetic-receptor occupancy (PK-RO) relationship derived from a PET study is typically modelled in a conventional non-linear least squares (NLLS) framework. In the present work, we explore the application of a non-linear mixed effects approach (NLME) and compare this with NLLS estimation (using both naive pooled data and two-stage approaches) in the context of a direct PK-RO relationship described by an Emax model, using simulated data sets. Target and reference tissue time-activity curves were simulated using a two-tissue compartmental model and an arterial plasma input function for a typical PET study (12 subjects in 3 dose groups with 3 scans each). A range of different PET scenarios was considered to evaluate the impact of between-subject variability and reference region availability. The PET outcome measures derived from the simulations were then used to estimate the parameters of the PK-RO model. The performance of the two approaches was compared in terms of parameters estimates (square mean error SME, root mean square error RMSE) and prediction of the exposure-occupancy relationship. In general, both NLME and NLLS estimation methods provided unbiassed and precise population estimates for the Emax model parameters, although a slight bias was observed for the individual-NLLS method due to a few outliers. The increased value of NLME over NLLS was most notable in the estimation of the between-subject variability (BSV), especially in the case of a more complex PK-RO model when no reference region was available (maximum SME and RMSE values related to BSV of EC₅₀ of 27.6% and 86.5% from NLME versus 264.6% and 689.5% from NLLS). Overall, the NLME approach provided a more robust estimation and produced less-biassed estimates of the population means and variances than either the NLLS approach for the simulations considered.
Collapse
Affiliation(s)
- Alienor Berges
- GlaxoSmithKline, Clinical Pharmacology Modelling & Simulation, Stockley Park, UK.
| | | | | | | |
Collapse
|
28
|
Ieiri I, Doi Y, Maeda K, Sasaki T, Kimura M, Hirota T, Chiyoda T, Miyagawa M, Irie S, Iwasaki K, Sugiyama Y. Microdosing Clinical Study: Pharmacokinetic, Pharmacogenomic (SLCO2B1), and Interaction (Grapefruit Juice) Profiles of Celiprolol Following the Oral Microdose and Therapeutic Dose. J Clin Pharmacol 2013; 52:1078-89. [DOI: 10.1177/0091270011408612] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
29
|
Miranda DMD, Mamede M, Souza BRD, Almeida Barros AGD, Magno LA, Alvim-Soares A, Rosa DV, Castro CJD, Malloy-Diniz L, Gomez MV, Marco LAD, Correa H, Romano-Silva MA. Molecular medicine: a path towards a personalized medicine. BRAZILIAN JOURNAL OF PSYCHIATRY 2012; 34:82-91. [PMID: 22392394 DOI: 10.1016/s1516-4446(12)70015-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2011] [Accepted: 08/21/2011] [Indexed: 10/27/2022]
Abstract
Psychiatric disorders are among the most common human illnesses; still, the molecular and cellular mechanisms underlying their complex pathophysiology remain to be fully elucidated. Over the past 10 years, our group has been investigating the molecular abnormalities in major signaling pathways involved in psychiatric disorders. Recent evidences obtained by the Instituto Nacional de Ciência e Tecnologia de Medicina Molecular (National Institute of Science and Technology - Molecular Medicine, INCT-MM) and others using behavioral analysis of animal models provided valuable insights into the underlying molecular alterations responsible for many complex neuropsychiatric disorders, suggesting that "defects" in critical intracellular signaling pathways have an important role in regulating neurodevelopment, as well as in pathophysiology and treatment efficacy. Resources from the INCT have allowed us to start doing research in the field of molecular imaging. Molecular imaging is a research discipline that visualizes, characterizes, and quantifies the biologic processes taking place at cellular and molecular levels in humans and other living systems through the results of image within the reality of the physiological environment. In order to recognize targets, molecular imaging applies specific instruments (e.g., PET) that enable visualization and quantification in space and in real-time of signals from molecular imaging agents. The objective of molecular medicine is to individualize treatment and improve patient care. Thus, molecular imaging is an additional tool to achieve our ultimate goal.
Collapse
Affiliation(s)
- Debora Marques de Miranda
- Instituto Nacional de Ciência e Tecnologia de Medicina Molecular, Faculdade de Medicina, Universidade Federal de Minas Gerais, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Petersen AL, Hansen AE, Gabizon A, Andresen TL. Liposome imaging agents in personalized medicine. Adv Drug Deliv Rev 2012; 64:1417-35. [PMID: 22982406 DOI: 10.1016/j.addr.2012.09.003] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 09/02/2012] [Accepted: 09/03/2012] [Indexed: 12/20/2022]
Abstract
In recent years the importance of molecular and diagnostic imaging has increased dramatically in the treatment planning of many diseases and in particular in cancer therapy. Within nanomedicine there are particularly interesting possibilities for combining imaging and therapy. Engineered liposomes that selectively localize in tumor tissue can transport both drugs and imaging agents, which allows for a theranostic approach with great potential in personalized medicine. Radiolabeling of liposomes have for many years been used in preclinical studies for evaluating liposome in vivo performance and has been an important tool in the development of liposomal drugs. However, advanced imaging systems now provide new possibilities for non-invasive monitoring of liposome biodistribution in humans. Thus, advances in imaging and developments in liposome radiolabeling techniques allow us to enter a new arena where we start to consider how to use imaging for patient selection and treatment monitoring in connection to nanocarrier based medicines. Nanocarrier imaging agents could furthermore have interesting properties for disease diagnostics and staging. Here, we review the major advances in the development of radiolabeled liposomes for imaging as a tool in personalized medicine.
Collapse
Affiliation(s)
- Anncatrine L Petersen
- Department of Micro- and Nanotechnology, Center for Nanomedicine and Theranostics, Technical University of Denmark, Produktionstorvet 423, 2800 Lyngby, Denmark
| | | | | | | |
Collapse
|
31
|
Johnström P, Fryer TD, Bird JL, Richards HK, Davenport AP. Dynamic in vivo imaging of receptors in small animals using positron emission tomography. Methods Mol Biol 2012; 897:221-37. [PMID: 22674168 DOI: 10.1007/978-1-61779-909-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Positron emission tomography (PET) is a functional imaging technique with the potential to image and quantify receptors in vivo with high sensitivity. PET has been used extensively to study major neurotransmitters such as dopamine, serotonin, and benzodiazepine in humans as well as proving to be a very powerful tool to accelerate development and assessment of existing and novel drugs. With the recent development of dedicated PET scanners for small animals, such as the microPET, it is now possible to perform functional imaging in small animals such as rodents at high resolution. This will allow the study of animal models of disease and longitudinal studies in these models to monitor disease progression or effect of treatment in the same animal. Furthermore, the complete pharmacokinetics of a drug as well as pharmacodynamic information can be obtained in a single animal. Thus, small animal imaging will significantly reduce the number of animals needed for this type of experiment as well as reducing the effect of inter-animal variation. Experimental protocols in small animal imaging potentially can be very labor intensive. In this chapter, we discuss methods and practical aspects related to this type of experiment using the microPET system.
Collapse
|
32
|
de Miranda DM, Mamede M, de Souza BR, de Almeida Barros AG, Magno LA, Alvim-Soares A, Rosa DV, de Castro CJ, Malloy-Diniz L, Gomez MV, De Marco LA, Correa H, Romano-Silva MA. Molecular medicine: a path towards a personalized medicine. BRAZILIAN JOURNAL OF PSYCHIATRY 2012. [DOI: 10.1590/s1516-44462012000100015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
33
|
Jones T, Price P, Tavitian B. Realizing the full potential of PET for measuring the biodistribution of novel anticancer agents. J Nucl Med 2011; 52:1500. [PMID: 21824989 DOI: 10.2967/jnumed.111.094920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
34
|
Rani PU, Naidu MUR. Phase 0 - Microdosing strategy in clinical trials. Indian J Pharmacol 2011; 40:240-2. [PMID: 21279177 PMCID: PMC3025138 DOI: 10.4103/0253-7613.45147] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Accepted: 11/21/2008] [Indexed: 12/04/2022] Open
Abstract
Drug development is an activity that is long, complex and expensive. In 2004, attrition in the drug development paradigm prompted the US Food and Drug Administration (FDA) to introduce its ‘Critical Path’ document, which highlighted the serious discordance between major scientific advances and limited drug development process. One issue addressed was that of microdosing. The concept of microdosing involves the use of extremely low, nonpharmacologically active doses of a drug to define the pharmacokinetic profile of the medication in human subjects. Microdosing, thus, appears as a new viable concept in the ‘toolbox’ of the drug development activity. It appears that microdosing strategy could complement standard animal-to-human scaling, redefining the existing concept of phase I clinical research. In future, when research methods and technology involved in Phase 0 studies become more sophisticated, human microdosing may be applied to a number of drugs developed subsequently.
Collapse
Affiliation(s)
- P Usha Rani
- Department of Clinical Pharmacology and Therapeutics, Nizam's Institute of Medical Sciences, Hyderabad, India
| | | |
Collapse
|
35
|
Newman S, Fleming J. Challenges in assessing regional distribution of inhaled drug in the human lungs. Expert Opin Drug Deliv 2011; 8:841-55. [PMID: 21554149 DOI: 10.1517/17425247.2011.577063] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Both the total amount of drug deposited in the lungs (whole lung deposition) and the amount deposited in different lung regions (regional lung deposition) are potentially important factors that determine the safety and efficacy of inhaled drugs. Radionuclide imaging is well established for quantifying the whole lung deposition of inhaled drugs, but the assessment of regional lung deposition is less straightforward, because of the complex nature of the lung anatomy. AREAS COVERED This review describes the challenges and problems associated with quantifying regional lung deposition by the two-dimensional (2D) radionuclide imaging method of gamma scintigraphy, and by the three-dimensional (3D) radionuclide imaging methods of single-photon-emission computed tomography (SPECT) and positron-emission tomography (PET). The advantages and disadvantages of each method for assessing regional lung deposition are discussed. EXPERT OPINION Owing to its 2D nature, gamma scintigraphy provides limited information about regional lung deposition. SPECT provides regional lung deposition data in three dimensions, but usually involves a (99m)Tc radiolabel. PET enables the regional lung deposition of radiolabeled drug molecules to be quantified in three dimensions, but poses the greatest logistical and technical difficulties. Despite their more challenging nature, 3D imaging methods should be considered as an alternative to gamma scintigraphy whenever the determination of regional lung deposition of pharmaceutical aerosols is a major study objective.
Collapse
|
36
|
Greenhalgh AD, Ogungbenro K, Rothwell NJ, Galea JP. Translational pharmacokinetics: challenges of an emerging approach to drug development in stroke. Expert Opin Drug Metab Toxicol 2011; 7:681-95. [PMID: 21521135 DOI: 10.1517/17425255.2011.570259] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
INTRODUCTION There is increasing recognition of the importance of translational pharmacokinetics in stroke research, lack of which has been cited as one of the main contributing factors to failure of Phase III trials. AREAS COVERED The article reviews the translational issues in administration, distribution and sampling in the pharmacokinetics of putative therapeutic drugs in stroke. In addition, the role of translational pharmacometrics in drug development is discussed. The review uses the anti-inflammatory agent, IL-1 receptor antagonist, as an example. The reader will gain an insight into the pitfalls that are commonplace in translating pharmacokinetics from the preclinical to the clinical scenario. The reader will also gain an understanding of the complexities of blood-central nervous system (CNS) barriers in relation to brain pharmacokinetics and the increasing use of translational pharmacometrics in stroke research. EXPERT OPINION The translation of preclinical to clinical pharmacokinetics is a discipline that is traditionally overlooked and is likely to be a key factor responsible for failure of clinical trials. With a clear comprehensive insight into the benefits and limitations of translational pharmacokinetics in stroke, translational pharmacokinetics can be safely used to enhance the efficacy of clinical trials in stroke and their likelihood of success.
Collapse
Affiliation(s)
- Andrew D Greenhalgh
- Manchester Academic Health Sciences Centre (MAHSC), Faculty of Life Sciences, AV Hill Building, Oxford Road, Manchester M13 9PT, UK
| | | | | | | |
Collapse
|
37
|
Mahajan R, Gupta K. Food and drug administration's critical path initiative and innovations in drug development paradigm: Challenges, progress, and controversies. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2010; 2:307-13. [PMID: 21180462 PMCID: PMC2996064 DOI: 10.4103/0975-7406.72130] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Revised: 06/11/2010] [Accepted: 06/26/2010] [Indexed: 11/05/2022] Open
Abstract
During the last decade, despite increased investment in drug research and development related activity, stagnation in new drug discovery has been documented. Despite a 70% increase in investment in research and development-related activities, a 40% fall in launch of new chemical entities was seen during 1994-2004. A steep rise in the attrition rate of drug development has complicated the matter. Rising cost and increased attrition rates proved major barriers to investment in higher risk drugs or in therapies for uncommon diseases or diseases that predominantly afflict the poor. This prompted Food and Drug Administration (FDA) to highlight this problem in a 2004 white paper classified as "Critical Path Initiative" (CPI) and to initiate steps to target stagnation and rise in attrition rates. Many new drug development projects have started worldwide taking cue from CPI; adopting microdosing, adaptive designs and taking advantage of newly developed biomarkers under the CPI. This review discusses the various strategies adopted under CPI to decrease attrition rate and stagnation of new drug development, and the challenges and controversies associated with CPI.
Collapse
Affiliation(s)
- Rajiv Mahajan
- Department of Pharmacology, Adesh Institute of Medical Sciences and Research, Bathinda - 151 109, India
| | - Kapil Gupta
- Department of Biochemistry, Adesh Institute of Medical Sciences and Research, Bathinda - 151 109, India
| |
Collapse
|
38
|
Janowitz T, Menon DK. Exploring new routes for neuroprotective drug development in traumatic brain injury. Sci Transl Med 2010; 2:27rv1. [PMID: 20393189 DOI: 10.1126/scitranslmed.3000330] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Worldwide, traumatic brain injury (TBI) is a major cause of mortality and morbidity with a substantial predicted increase in incidence. Despite an obvious need, there are no pharmacological treatment options for TBI because translation of neuroprotection from preclinical studies to clinical practice has so far failed. Here, we identify potential causes for this failure. We suggest that the monitoring and investigation tools that are commonly used in patients with TBI may provide an experimental medicine route to facilitate a more rational approach to translational research. This suggestion is underpinned by existing research data on disease biology, drug delivery, and treatment response obtained with these methods.
Collapse
Affiliation(s)
- T Janowitz
- Department of Medicine, Translational Medicine and Therapeutics, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 2QQ, UK
| | | |
Collapse
|
39
|
Yamazaki A, Kumagai Y, Yamane N, Tozuka Z, Sugiyama Y, Fujita T, Yokota S, Maeda M. Microdose study of a P-glycoprotein substrate, fexofenadine, using a non-radioisotope-labelled drug and LC/MS/MS. J Clin Pharm Ther 2010; 35:169-75. [DOI: 10.1111/j.1365-2710.2009.01159.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
40
|
|
41
|
|
42
|
Radiopharmaceuticals: Drug Development and Regulatory Issues. Mol Imaging 2009. [DOI: 10.1007/978-3-540-76735-0_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
43
|
Stehouwer JS, Jarkas N, Zeng F, Voll RJ, Williams L, Camp VM, Malveaux EJ, Votaw JR, Howell L, J.Owens M, Goodman MM. Synthesis, radiosynthesis, and biological evaluation of fluorine-18-labeled 2beta-carbo(fluoroalkoxy)-3beta-(3'-((Z)-2-haloethenyl)phenyl)nortropanes: candidate radioligands for in vivo imaging of the serotonin transporter with positron emission tomography. J Med Chem 2008; 51:7788-99. [PMID: 19053782 PMCID: PMC2668213 DOI: 10.1021/jm800781a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The meta-vinylhalide fluoroalkyl ester nortropanes 1-4 were synthesized as ligands of the serotonin transporter (SERT) for use as positron emission tomography (PET) imaging agents. In vitro competition binding assays demonstrated that 1-4 have a high affinity for the SERT (K(i) values = 0.3-0.4 nM) and are selective for the SERT over the dopamine and norepinephrine transporters (DAT and NET). MicroPET imaging in anesthetized cynomolgus monkeys with [(18)F]1-[(18)F]4 demonstrated that all four tracers behave similarly with peak uptake in the SERT-rich brain regions achieved after 45-55 min, followed by a steady washout. An awake monkey study was performed with [(18)F]1, which demonstrated that the uptake of [(18)F]1 was not influenced by anesthesia. Chase studies with the SERT ligand 15 displaced [(18)F]1-[(18)F]4, but chase studies with the DAT ligand 16 did not displace [(18)F]1-[(18)F]4 thus indicating that the tracers were binding specifically to the SERT.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Mark M. Goodman
- To whom correspondence should be addressed. Department of Radiology, Emory University, 1364 Clifton Road NE, Atlanta, GA 30322 Phone: (404) 727-9366. Fax: (404) 727-3488. E-mail:
| |
Collapse
|
44
|
Miller P, Long N, Vilar R, Gee A. Synthese von11C-,18F-,15O- und13N-Radiotracern für die Positronenemissionstomographie. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200800222] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
45
|
Miller P, Long N, Vilar R, Gee A. Synthesis of11C,18F,15O, and13N Radiolabels for Positron Emission Tomography. Angew Chem Int Ed Engl 2008; 47:8998-9033. [DOI: 10.1002/anie.200800222] [Citation(s) in RCA: 726] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
46
|
Yorimitsu H, Murakami Y, Takamatsu H, Nishimura S, Nakamura E. Synthesis and Bioimaging of Positron-Emitting15O-Labeled 2-Deoxy-D-glucose of Two-Minute Half-Life. Chem Asian J 2007; 2:57-65. [PMID: 17441139 DOI: 10.1002/asia.200600271] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In positron emission tomography (PET), which exploits the affinity of a radiopharmaceutical for the target organ, a systematic repertoire of oxygen-15-labeled PET tracers is expected to be useful for bioimaging owing to the ubiquity of oxygen atoms in organic compounds. However, because of the 2-min half-life of 15O, the synthesis of complex biologically active 15O-labeled organic molecules has not yet been achieved. A state-of-the-art synthesis now makes available an 15O-labeled complex organic molecule, 6-[15O]-2-deoxy-D-glucose. Ultrarapid radical hydroxylation of 2,6-dideoxy-6-iodo-D-glucose with molecular oxygen labeled with 15O of two-minute half-life provided the target 15O-labeled molecule. The labeling reaction with 15O was complete in 1.3 min, and the entire operation time starting from the generation of 15O-containing dioxygen by a cyclotron to the purification of the labeled sugar was 7 min. The labeled sugar accumulated in the metabolically active organs as well as in the bladder of mice and rats. 15O-labeling offers the possibility of repetitive scanning and the use of multiple PET tracers in the same body within a short time, and hence should significantly expand the scope of PET studies of small animals.
Collapse
Affiliation(s)
- Hideki Yorimitsu
- Department of Chemistry, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | |
Collapse
|
47
|
|
48
|
Yau K, Price P, Pillai RG, Aboagye E. Elevation of radiolabelled thymidine uptake in RIF-1 fibrosarcoma and HT29 colon adenocarcinoma cells after treatment with thymidylate synthase inhibitors. Eur J Nucl Med Mol Imaging 2006; 33:981-7. [PMID: 16568206 DOI: 10.1007/s00259-005-0060-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2005] [Accepted: 12/12/2005] [Indexed: 11/24/2022]
Abstract
PURPOSE We recently showed an increase in tumour uptake of 2-[(11)C]thymidine in patients with gastrointestinal malignancies after thymidylate synthase (TS) inhibition. To understand the phenomenon in more detail, we investigated whether TS inhibition by different TS inhibitors leads to a dose- and time-dependent change in the uptake of radiolabelled thymidine, and whether radiotracer uptake is related to changes in cell viability resulting from treatment. METHODS RIF-1 and HT29 cells were treated with the TS inhibitors 5-fluorouracil (5-FU) and AG337 (nolatrexed dihydrochloride), as well as cisplatin as control. The cell viability and net accumulation of [(3)H]thymidine after a 1-h pulse was determined at different times after drug treatment. RESULTS In both cell lines, [(3)H]thymidine uptake increased after a 2-h treatment with 5-FU, in a dose- and time-dependent manner. [(3)H]thymidine uptake decreased at 24 and 48 h post treatment. AG337 also produced a similar effect. In contrast to the TS inhibitors, cisplatin decreased [(3)H]thymidine uptake in RIF-1 and HT29 cells at all time points. Cell viability was compromised only after 24 h. CONCLUSION Using two types of TS inhibitor, we have shown an increase in [(3)H]thymidine uptake, in a dose-dependent manner, a few hours after TS inhibition when the cell viability was not compromised. This effect was not seen with a non-TS inhibitor. These findings suggest that 2-[(11)C]thymidine positron emission tomography can be used to study TS inhibition in vivo at early time points when cell viability is not compromised and may therefore be helpful in the development of new TS inhibitors and in differentiating between patients with tumours sensitive to TS inhibitors and those unlikely to respond.
Collapse
Affiliation(s)
- Kawai Yau
- Imaging Sciences, Imperial College, 242 Cycltron Building, DuCane Road, London, W12 0NN, UK
| | | | | | | |
Collapse
|
49
|
Song P, Meibohm B, Yates CR. LC/MS/MS in drug development: targeting the brain. Biotechniques 2006; Suppl:19-23. [PMID: 16528912 DOI: 10.2144/05386su03] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Pengfei Song
- The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | | |
Collapse
|
50
|
Bergström M, Långström B. Pharmacokinetic studies with PET. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2006; 62:279-317. [PMID: 16329260 DOI: 10.1007/3-7643-7426-8_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Affiliation(s)
- Mats Bergström
- Uppsala Imanet, GE Health Care, Box 967, SE-751 09 Uppsala, Sweden.
| | | |
Collapse
|