1
|
Yeh PY, Chen JY, Shen MY, Che TF, Lim SC, Wang J, Tsai WS, Frank CW, Huang CJ, Chang YC. Liposome-tethered supported lipid bilayer platform for capture and release of heterogeneous populations of circulating tumor cells. J Mater Chem B 2023; 11:8159-8169. [PMID: 37313622 DOI: 10.1039/d3tb00547j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Because of scarcity, vulnerability, and heterogeneity in the population of circulating tumor cells (CTCs), the CTC isolation system relying on immunoaffinity interaction exhibits inconsistent efficiencies for all types of cancers and even CTCs with different phenotypes in individuals. Moreover, releasing viable CTCs from an isolation system is of importance for molecular analysis and drug screening in precision medicine, which remains a challenge for current systems. In this work, a new CTC isolation microfluidic platform was developed and contains a coating of the antibody-conjugated liposome-tethered-supported lipid bilayer in a developed chaotic-mixing microfluidic system, referred to as the "LIPO-SLB" platform. The biocompatible, soft, laterally fluidic, and antifouling properties of the LIPO-SLB platform offer high CTC capture efficiency, viability, and selectivity. We successfully demonstrated the capability of the LIPO-SLB platform to recapitulate different cancer cell lines with different antigen expression levels. In addition, the captured CTCs in the LIPO-SLB platform can be detached by air foam to destabilize the physically assembled bilayer structures due to a large water/air interfacial area and strong surface tension. More importantly, the LIPO-SLB platform was constructed and used for the verification of clinical samples from 161 patients with different primary cancer types. The mean values of both single CTCs and CTC clusters correlated well with the cancer stages. Moreover, a considerable number of CTCs were isolated from patients' blood samples in the early/localized stages. The clinical validation demonstrated the enormous potential of the universal LIPO-SLB platform as a tool for prognostic and predictive purposes in precision medicine.
Collapse
Affiliation(s)
- Po-Ying Yeh
- Genomics Research Center, Academia Sinica, 128, Sec 2, Academic Rd., Nankang, Taipei 115, Taiwan.
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Jia-Yang Chen
- Genomics Research Center, Academia Sinica, 128, Sec 2, Academic Rd., Nankang, Taipei 115, Taiwan.
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Mo-Yuan Shen
- Genomics Research Center, Academia Sinica, 128, Sec 2, Academic Rd., Nankang, Taipei 115, Taiwan.
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Ting-Fang Che
- Genomics Research Center, Academia Sinica, 128, Sec 2, Academic Rd., Nankang, Taipei 115, Taiwan.
| | - Syer Choon Lim
- Genomics Research Center, Academia Sinica, 128, Sec 2, Academic Rd., Nankang, Taipei 115, Taiwan.
| | - Jocelyn Wang
- The College, The University of Chicago, Chicago, IL 60637, USA
| | - Wen-Sy Tsai
- Division of Colon and Rectal Surgery, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
- Graduate Institute of Clinical Medical Science, Chang Gung University, Linkou, Taoyuan, Taiwan
| | - Curtis W Frank
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Chun-Jen Huang
- Department of Chemical & Materials Engineering, and NCU-Covestro Research Center, National Central University, Jhong-Li, Taoyuan 320, Taiwan.
- R&D Center for Membrane Technology, Chung Yuan Christian University, 200 Chung Pei Rd., Chung-Li City 32023, Taiwan
| | - Ying-Chih Chang
- Genomics Research Center, Academia Sinica, 128, Sec 2, Academic Rd., Nankang, Taipei 115, Taiwan.
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
2
|
Guidelli R, Becucci L. Functional activity of peptide ion channels in tethered bilayer lipid membranes: Review. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Rolando Guidelli
- Department of Chemistry University of Florence Sesto Fiorentino Firenze Italy
| | - Lucia Becucci
- Ministero dell'Istruzione Scuola Media “Guglielmo Marconi” San Giovanni Valdarno Arezzo Italy
| |
Collapse
|
3
|
Novikova OD, Naberezhnykh GA, Sergeev AA. Nanostructured Biosensors Based on Components of Bacterial Membranes. Biophysics (Nagoya-shi) 2021. [DOI: 10.1134/s0006350921040187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
4
|
Eto H, Franquelim HG, Heymann M, Schwille P. Membrane-coated 3D architectures for bottom-up synthetic biology. SOFT MATTER 2021; 17:5456-5466. [PMID: 34106121 DOI: 10.1039/d1sm00112d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
One of the great challenges of bottom-up synthetic biology is to recreate the cellular geometry and surface functionality required for biological reactions. Of particular interest are lipid membrane interfaces where many protein functions take place. However, cellular 3D geometries are often complex, and custom-shaping stable lipid membranes on relevant spatial scales in the micrometer range has been hard to accomplish reproducibly. Here, we use two-photon direct laser writing to 3D print microenvironments with length scales relevant to cellular processes and reactions. We formed lipid bilayers on the surfaces of these printed structures, and we evaluated multiple combinatorial scenarios, where physiologically relevant membrane compositions were generated on several different polymer surfaces. Functional dynamic protein systems were reconstituted in vitro and their self-organization was observed in response to the 3D geometry. This method proves very useful to template biological membranes with an additional spatial dimension, and thus allows a better understanding of protein function in relation to the complex morphology of cells and organelles.
Collapse
Affiliation(s)
- Hiromune Eto
- Department for Cellular and Molecular Biophysics, Max Planck Institute for Biochemistry, Am Klopferspitz 18, D-82152, Martinsried, Germany.
| | - Henri G Franquelim
- Department for Cellular and Molecular Biophysics, Max Planck Institute for Biochemistry, Am Klopferspitz 18, D-82152, Martinsried, Germany.
| | - Michael Heymann
- Department for Cellular and Molecular Biophysics, Max Planck Institute for Biochemistry, Am Klopferspitz 18, D-82152, Martinsried, Germany. and Department of Intelligent Biointegrative Systems, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Pfaffenwaldring 57, 70569, Stuttgart, Germany
| | - Petra Schwille
- Department for Cellular and Molecular Biophysics, Max Planck Institute for Biochemistry, Am Klopferspitz 18, D-82152, Martinsried, Germany.
| |
Collapse
|
5
|
Mukhina T, Gerelli Y, Hemmerle A, Koutsioubas A, Kovalev K, Teulon JM, Pellequer JL, Daillant J, Charitat T, Fragneto G. Insertion and activation of functional Bacteriorhodopsin in a floating bilayer. J Colloid Interface Sci 2021; 597:370-382. [PMID: 33894545 DOI: 10.1016/j.jcis.2021.03.155] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 10/21/2022]
Abstract
The proton pump transmembrane protein bacteriorhodopsin was successfully incorporated into planar floating lipid bilayers in gel and fluid phases, by applying a detergent-mediated incorporation method. The method was optimized on single supported bilayers by using quartz crystal microbalance, atomic force and fluorescence microscopy techniques. Neutron and X-ray reflectometry were used on both single and floating bilayers with the aim of determining the structure and composition of this membrane-protein system before and after protein reconstitution at sub-nanometer resolution. Lipid bilayer integrity and protein activity were preserved upon the reconstitution process. Reversible structural modifications of the membrane, induced by the bacteriorhodopsin functional activity triggered by visible light, were observed and characterized at the nanoscale.
Collapse
Affiliation(s)
- Tetiana Mukhina
- Institut Laue-Langevin, 71 av.des Martyrs, BP 156, 38042 Grenoble Cedex, France; Institut Charles Sadron, Université de Strasbourg, CNRS, UPR 22, 67034 Strasbourg, France
| | - Yuri Gerelli
- Institut Laue-Langevin, 71 av.des Martyrs, BP 156, 38042 Grenoble Cedex, France; Marche Polytechnic University, Department of Life and Environmental Sciences, Via Brecce Bianche, 60131 Ancona, Italy
| | - Arnaud Hemmerle
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, F-91192 Gif-sur-Yvette Cedex, France
| | - Alexandros Koutsioubas
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstr. 1, 85748 Garching, Germany
| | - Kirill Kovalev
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), F-38000 Grenoble, France; Institute of Biological Information Processing (IBI-7), Structural Biochemistry, Forschungszentrum Jülich, 52428, Wilhelm-Johnen-Straße, Jülich, Germany; Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstr. 1, 85748 Garching, Germany; Jülich Centre for Structural Biology, Forschungszentrum Jülich, 52428, Wilhelm-Johnen-Straße, Jülich, Germany; Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141071, 9 Institutskiy per., Dolgoprudny, Russia; Institute of Crystallography, RWTH Aachen University, 52066, Jägerstraße 17-19, Aachen, Germany
| | - Jean-Marie Teulon
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), F-38000 Grenoble, France
| | - Jean-Luc Pellequer
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), F-38000 Grenoble, France
| | - Jean Daillant
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, F-91192 Gif-sur-Yvette Cedex, France
| | - Thierry Charitat
- Institut Charles Sadron, Université de Strasbourg, CNRS, UPR 22, 67034 Strasbourg, France
| | - Giovanna Fragneto
- Institut Laue-Langevin, 71 av.des Martyrs, BP 156, 38042 Grenoble Cedex, France
| |
Collapse
|
6
|
Damiati S, Schuster B. Electrochemical Biosensors Based on S-Layer Proteins. SENSORS (BASEL, SWITZERLAND) 2020; 20:E1721. [PMID: 32204503 PMCID: PMC7147708 DOI: 10.3390/s20061721] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/05/2020] [Accepted: 03/17/2020] [Indexed: 01/29/2023]
Abstract
Designing and development of electrochemical biosensors enable molecule sensing and quantification of biochemical compositions with multitudinous benefits such as monitoring, detection, and feedback for medical and biotechnological applications. Integrating bioinspired materials and electrochemical techniques promote specific, rapid, sensitive, and inexpensive biosensing platforms for (e.g., point-of-care testing). The selection of biomaterials to decorate a biosensor surface is a critical issue as it strongly affects selectivity and sensitivity. In this context, smart biomaterials with the intrinsic self-assemble capability like bacterial surface (S-) layer proteins are of paramount importance. Indeed, by forming a crystalline two-dimensional protein lattice on many sensors surfaces and interfaces, the S-layer lattice constitutes an immobilization matrix for small biomolecules and lipid membranes and a patterning structure with unsurpassed spatial distribution for sensing elements and bioreceptors. This review aims to highlight on exploiting S-layer proteins in biosensor technology for various applications ranging from detection of metal ions over small organic compounds to cells. Furthermore, enzymes immobilized on the S-layer proteins allow specific detection of several vital biomolecules. The special features of the S-layer protein lattice as part of the sensor architecture enhances surface functionalization and thus may feature an innovative class of electrochemical biosensors.
Collapse
Affiliation(s)
- Samar Damiati
- Department of Biochemistry, Faculty of Science, King Abdulaziz University (KAU), Jeddah 21589, Saudi Arabia;
- Institute for Synthetic Bioarchitectures, Department of NanoBiotechnology, BOKU - University of Natural Resources and Life Sciences, Vienna, Muthgasse 11, 1190 Vienna, Austria
- Current address: Division of Nanobiotechnology, Department of Protein Science, Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 171 21 Solna, Stockholm, Sweden
| | - Bernhard Schuster
- Institute for Synthetic Bioarchitectures, Department of NanoBiotechnology, BOKU - University of Natural Resources and Life Sciences, Vienna, Muthgasse 11, 1190 Vienna, Austria
| |
Collapse
|
7
|
Czernohlavek C, Schuster B. Formation of planar hybrid lipid/polymer membranes anchored to an S-layer protein lattice by vesicle binding and rupture. SOFT MATERIALS 2020; 18:443-450. [PMID: 33235550 PMCID: PMC7116407 DOI: 10.1080/1539445x.2019.1708753] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 12/20/2019] [Indexed: 06/11/2023]
Abstract
Exploitation of biomolecular and biomimetic components on solid surfaces gain increasing importance for the design of stable functional platforms. The present study performed by quartz crystal microbalance with dissipation monitoring (QCM-D) reports on the formation of planar hybrid lipid/polymer membranes anchored to a crystalline surface (S-) layer protein lattice. In this approach, hybrid lipid/polymer vesicles were chemically bound to the S-layer protein lattice. Subsequently, to form a hybrid planar layer rupture and fusion was triggered either by (1) β- diketone - europium ion complex formation or (2) successive application of calcium ions, lowering the pH from 9 to 4, and the detergent CHAPS. As determined by QCM-D, method 1 resulted for a polymer content of 5% in a planar membrane with some imbedded intact vesicles, whereas method 2 succeeded in planar hybrid membranes with a polymer content of even up to 70%. These results provide evidence for the effective formation of planar lipid/polymer membranes varying in their composition on an S-layer protein lattice.
Collapse
Affiliation(s)
- Christian Czernohlavek
- Department of NanoBiotechnology, Institute for Synthetic Bioarchitectures, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Bernhard Schuster
- Department of NanoBiotechnology, Institute for Synthetic Bioarchitectures, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
8
|
Chung TS, Zhao D, Gao J, Lu K, Wan C, Weber M, Maletzko C. Emerging R&D on membranes and systems for water reuse and desalination. Chin J Chem Eng 2019. [DOI: 10.1016/j.cjche.2019.04.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
9
|
Puiggalí-Jou A, Del Valle LJ, Alemán C. Biomimetic hybrid membranes: incorporation of transport proteins/peptides into polymer supports. SOFT MATTER 2019; 15:2722-2736. [PMID: 30869096 DOI: 10.1039/c8sm02513d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Molecular sensing, water purification and desalination, drug delivery, and DNA sequencing are some striking applications of biomimetic hybrid membranes. These devices take advantage of biomolecules, which have gained excellence in their specificity and efficiency during billions of years, and of artificial materials that load the purified biological molecules and provide technological properties, such as robustness, scalability, and suitable nanofeatures to confine the biomolecules. Recent methodological advances allow more precise control of polymer membranes that support the biomacromolecules, and are expected to improve the design of the next generation of membranes as well as their applicability. In the first section of this review we explain the biological relevance of membranes, membrane proteins, and the classification used for the latter. After this, we critically analyse the different approaches employed for the production of highly selective hybrid membranes, focusing on novel materials made of self-assembled block copolymers and nanostructured polymers. Finally, a summary of the advantages and disadvantages of the different methodologies is presented and the main characteristics of biomimetic hybrid membranes are highlighted.
Collapse
Affiliation(s)
- Anna Puiggalí-Jou
- Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I2, 08019, Barcelona, Spain. and Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. C, 08019, Barcelona, Spain
| | - Luis J Del Valle
- Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I2, 08019, Barcelona, Spain. and Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. C, 08019, Barcelona, Spain
| | - Carlos Alemán
- Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I2, 08019, Barcelona, Spain. and Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. C, 08019, Barcelona, Spain
| |
Collapse
|
10
|
Priske G, Su Z, Abbasi F, Lipkowski J, Auzanneau FI. Synthesis and electrochemical characterization of 4-thio pseudo-glycolipids as candidate tethers for lipid bilayer models. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.12.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
Yorulmaz Avsar S, Kyropoulou M, Di Leone S, Schoenenberger CA, Meier WP, Palivan CG. Biomolecules Turn Self-Assembling Amphiphilic Block Co-polymer Platforms Into Biomimetic Interfaces. Front Chem 2019; 6:645. [PMID: 30671429 PMCID: PMC6331732 DOI: 10.3389/fchem.2018.00645] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 12/11/2018] [Indexed: 12/29/2022] Open
Abstract
Biological membranes constitute an interface between cells and their surroundings and form distinct compartments within the cell. They also host a variety of biomolecules that carry out vital functions including selective transport, signal transduction and cell-cell communication. Due to the vast complexity and versatility of the different membranes, there is a critical need for simplified and specific model membrane platforms to explore the behaviors of individual biomolecules while preserving their intrinsic function. Information obtained from model membrane platforms should make invaluable contributions to current and emerging technologies in biotechnology, nanotechnology and medicine. Amphiphilic block co-polymers are ideal building blocks to create model membrane platforms with enhanced stability and robustness. They form various supramolecular assemblies, ranging from three-dimensional structures (e.g., micelles, nanoparticles, or vesicles) in aqueous solution to planar polymer membranes on solid supports (e.g., polymer cushioned/tethered membranes,) and membrane-like polymer brushes. Furthermore, polymer micelles and polymersomes can also be immobilized on solid supports to take advantage of a wide range of surface sensitive analytical tools. In this review article, we focus on self-assembled amphiphilic block copolymer platforms that are hosting biomolecules. We present different strategies for harnessing polymer platforms with biomolecules either by integrating proteins or peptides into assemblies or by attaching proteins or DNA to their surface. We will discuss how to obtain synthetic structures on solid supports and their characterization using different surface sensitive analytical tools. Finally, we highlight present and future perspectives of polymer micelles and polymersomes for biomedical applications and those of solid-supported polymer membranes for biosensing.
Collapse
|
12
|
Maekawa T, Chin H, Nyu T, Sut TN, Ferhan AR, Hayashi T, Cho NJ. Molecular diffusion and nano-mechanical properties of multi-phase supported lipid bilayers. Phys Chem Chem Phys 2019; 21:16686-16693. [DOI: 10.1039/c9cp02085c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Understanding the properties of cell membranes is important in the fields of fundamental and applied biology.
Collapse
Affiliation(s)
- Tatsuhiro Maekawa
- Department of Materials Science and Engineering
- School of Materials Chemical Technology
- Tokyo Institute of Technology
- Yokohama
- Japan
| | - Hokyun Chin
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore
| | - Takashi Nyu
- Department of Materials Science and Engineering
- School of Materials Chemical Technology
- Tokyo Institute of Technology
- Yokohama
- Japan
| | - Tun Naw Sut
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore
| | - Abdul Rahim Ferhan
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore
| | - Tomohiro Hayashi
- Department of Materials Science and Engineering
- School of Materials Chemical Technology
- Tokyo Institute of Technology
- Yokohama
- Japan
| | - Nam-Joon Cho
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
| |
Collapse
|
13
|
Toledo-Fuentes X, Molinaro C, Cecchet F. Interfacial charges drive the organization of supported lipid membranes and their interaction with nanoparticles. Colloids Surf B Biointerfaces 2018; 172:254-261. [DOI: 10.1016/j.colsurfb.2018.08.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 08/10/2018] [Accepted: 08/11/2018] [Indexed: 12/27/2022]
|
14
|
Block S. Brownian Motion at Lipid Membranes: A Comparison of Hydrodynamic Models Describing and Experiments Quantifying Diffusion within Lipid Bilayers. Biomolecules 2018; 8:biom8020030. [PMID: 29789471 PMCID: PMC6023006 DOI: 10.3390/biom8020030] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/07/2018] [Accepted: 05/16/2018] [Indexed: 12/29/2022] Open
Abstract
The capability of lipid bilayers to exhibit fluid-phase behavior is a fascinating property, which enables, for example, membrane-associated components, such as lipids (domains) and transmembrane proteins, to diffuse within the membrane. These diffusion processes are of paramount importance for cells, as they are for example involved in cell signaling processes or the recycling of membrane components, but also for recently developed analytical approaches, which use differences in the mobility for certain analytical purposes, such as in-membrane purification of membrane proteins or the analysis of multivalent interactions. Here, models describing the Brownian motion of membrane inclusions (lipids, peptides, proteins, and complexes thereof) in model bilayers (giant unilamellar vesicles, black lipid membranes, supported lipid bilayers) are summarized and model predictions are compared with the available experimental data, thereby allowing for evaluating the validity of the introduced models. It will be shown that models describing the diffusion in freestanding (Saffman-Delbrück and Hughes-Pailthorpe-White model) and supported bilayers (the Evans-Sackmann model) are well supported by experiments, though only few experimental studies have been published so far for the latter case, calling for additional tests to reach the same level of experimental confirmation that is currently available for the case of freestanding bilayers.
Collapse
Affiliation(s)
- Stephan Block
- Department of Chemistry and Biochemistry, Freie Universität Berlin, D-14195 Berlin, Germany.
| |
Collapse
|
15
|
Schuster B. S-Layer Protein-Based Biosensors. BIOSENSORS 2018; 8:E40. [PMID: 29641511 PMCID: PMC6023001 DOI: 10.3390/bios8020040] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/05/2018] [Accepted: 04/09/2018] [Indexed: 01/14/2023]
Abstract
The present paper highlights the application of bacterial surface (S-) layer proteins as versatile components for the fabrication of biosensors. One technologically relevant feature of S-layer proteins is their ability to self-assemble on many surfaces and interfaces to form a crystalline two-dimensional (2D) protein lattice. The S-layer lattice on the surface of a biosensor becomes part of the interface architecture linking the bioreceptor to the transducer interface, which may cause signal amplification. The S-layer lattice as ultrathin, highly porous structure with functional groups in a well-defined special distribution and orientation and an overall anti-fouling characteristics can significantly raise the limit in terms of variety and the ease of bioreceptor immobilization, compactness of bioreceptor molecule arrangement, sensitivity, specificity, and detection limit for many types of biosensors. The present paper discusses and summarizes examples for the successful implementation of S-layer lattices on biosensor surfaces in order to give a comprehensive overview on the application potential of these bioinspired S-layer protein-based biosensors.
Collapse
Affiliation(s)
- Bernhard Schuster
- Institute for Synthetic Bioarchitectures, Department of NanoBiotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 11, 1190 Vienna, Austria.
| |
Collapse
|
16
|
Skalová Š, Vyskočil V, Barek J, Navrátil T. Model Biological Membranes and Possibilities of Application of Electrochemical Impedance Spectroscopy for their Characterization. ELECTROANAL 2017. [DOI: 10.1002/elan.201700649] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Štěpánka Skalová
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences; Dolejškova 3 182 23 Prague 8 Czech Republic
- Charles University; Faculty of Science, Department of Analytical Chemistry, UNESCO Laboratory of Environmental Electrochemistry; Hlavova 2030/8 128 43 Prague 2 Czech Republic
| | - Vlastimil Vyskočil
- Charles University; Faculty of Science, Department of Analytical Chemistry, UNESCO Laboratory of Environmental Electrochemistry; Hlavova 2030/8 128 43 Prague 2 Czech Republic
| | - Jiří Barek
- Charles University; Faculty of Science, Department of Analytical Chemistry, UNESCO Laboratory of Environmental Electrochemistry; Hlavova 2030/8 128 43 Prague 2 Czech Republic
| | - Tomáš Navrátil
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences; Dolejškova 3 182 23 Prague 8 Czech Republic
| |
Collapse
|
17
|
Xu Y, Kuhlmann J, Brennich M, Komorowski K, Jahn R, Steinem C, Salditt T. Reconstitution of SNARE proteins into solid-supported lipid bilayer stacks and X-ray structure analysis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:566-578. [PMID: 29106973 DOI: 10.1016/j.bbamem.2017.10.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 10/01/2017] [Accepted: 10/24/2017] [Indexed: 11/26/2022]
Abstract
SNAREs are known as an important family of proteins mediating vesicle fusion. For various biophysical studies, they have been reconstituted into supported single bilayers via proteoliposome adsorption and rupture. In this study we extended this method to the reconstitution of SNAREs into supported multilamellar lipid membranes, i.e. oriented multibilayer stacks, as an ideal model system for X-ray structure analysis (X-ray reflectivity and diffraction). The reconstitution was implemented through a pathway of proteomicelle, proteoliposome and multibilayer. To monitor the structural evolution in each step, we used small-angle X-ray scattering for the proteomicelles and proteoliposomes, followed by X-ray reflectivity and grazing-incidence small-angle scattering for the multibilayers. Results show that SNAREs can be successfully reconstituted into supported multibilayers, with high enough orientational alignment for the application of surface sensitive X-ray characterizations. Based on this protocol, we then investigated the effect of SNAREs on the structure and phase diagram of the lipid membranes. Beyond this application, this reconstitution protocol could also be useful for X-ray analysis of many further membrane proteins.
Collapse
Affiliation(s)
- Yihui Xu
- Institut für Röntgenphysik, Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Jan Kuhlmann
- Institut für Organische und Biomolekulare Chemie, Universität Göttingen, Tammannstraße 2, Göttingen 37077, Germany
| | - Martha Brennich
- Structural Biology Group, European Synchrotron Radiation Facility, 71 Avenue des Martyrs, CS 90181, Grenoble 38042, France
| | - Karlo Komorowski
- Institut für Röntgenphysik, Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Reinhard Jahn
- Department of Neurobiology, Max-Planck Institute for Biophysical Chemistry, Am Faßberg 11, Göttingen 37077, Germany
| | - Claudia Steinem
- Institut für Organische und Biomolekulare Chemie, Universität Göttingen, Tammannstraße 2, Göttingen 37077, Germany
| | - Tim Salditt
- Institut für Röntgenphysik, Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany.
| |
Collapse
|
18
|
Gramicidin A ion channel formation in model phospholipid bilayers tethered to gold (111) electrode surfaces. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.05.059] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
19
|
John T, Voo ZX, Kubeil C, Abel B, Graham B, Spiccia L, Martin LL. Effects of guanidino modified aminoglycosides on mammalian membranes studied using a quartz crystal microbalance. MEDCHEMCOMM 2017; 8:1112-1120. [PMID: 30108822 PMCID: PMC6072410 DOI: 10.1039/c7md00054e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 03/24/2017] [Indexed: 01/21/2023]
Abstract
The increase in bacterial and viral resistance to current therapeutics has led to intensive research for new antibacterial and antiviral agents. Among these, aminoglycosides and their guanidino derivatives are potent candidates targeting specific RNA sequences. It is necessary that these substances can pass across mammalian membranes in order to reach their intracellular targets. This study investigated the effects of the aminoglycosides kanamycin A and neomycin B and their guanidino derivatives on mammalian mimetic membranes using a quartz crystal microbalance with dissipation monitoring (QCM-D). Lipid bilayers as membrane models were deposited onto gold coated quartz crystals and aminoglycosides added afterwards. Notably, the guanidino derivatives exhibited an initial stiffening of the membrane layer indicating a quick insertion of the planar guanidino groups into the membrane. The guanidino derivatives also reached their maximum binding to the membrane at lower concentrations than the native compounds. Therefore, these modified aminoglycosides are promising agents for the development of new antimicrobial treatments.
Collapse
Affiliation(s)
- Torsten John
- School of Chemistry , Monash University , Wellington Rd , Clayton , VIC 3800 , Australia .
- Leibniz Institute of Surface Modification, and Wilhelm-Ostwald-Institute for Physical and Theoretical Chemistry , Leipzig University , Permoserstrasse 15 , 04318 Leipzig , Germany
| | - Zhi Xiang Voo
- School of Chemistry , Monash University , Wellington Rd , Clayton , VIC 3800 , Australia .
| | - Clemens Kubeil
- School of Chemistry , Monash University , Wellington Rd , Clayton , VIC 3800 , Australia .
| | - Bernd Abel
- Leibniz Institute of Surface Modification, and Wilhelm-Ostwald-Institute for Physical and Theoretical Chemistry , Leipzig University , Permoserstrasse 15 , 04318 Leipzig , Germany
| | - Bim Graham
- Medicinal Chemistry , Monash Institute of Pharmaceutical Sciences , Monash University , 381 Royal Parade , Parkville , VIC 3052 , Australia
| | - Leone Spiccia
- School of Chemistry , Monash University , Wellington Rd , Clayton , VIC 3800 , Australia .
| | - Lisandra L Martin
- School of Chemistry , Monash University , Wellington Rd , Clayton , VIC 3800 , Australia .
| |
Collapse
|
20
|
Bronder AM, Bieker A, Elter S, Etzkorn M, Häussinger D, Oesterhelt F. Oriented Membrane Protein Reconstitution into Tethered Lipid Membranes for AFM Force Spectroscopy. Biophys J 2016; 111:1925-1934. [PMID: 27806274 PMCID: PMC5103026 DOI: 10.1016/j.bpj.2016.08.051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 08/21/2016] [Accepted: 08/22/2016] [Indexed: 12/11/2022] Open
Abstract
Membrane proteins act as a central interface between the extracellular environment and the intracellular response and as such represent one of the most important classes of drug targets. The characterization of the molecular properties of integral membrane proteins, such as topology and interdomain interaction, is key to a fundamental understanding of their function. Atomic force microscopy (AFM) and force spectroscopy have the intrinsic capabilities of investigating these properties in a near-native setting. However, atomic force spectroscopy of membrane proteins is traditionally carried out in a crystalline setup. Alternatively, model membrane systems, such as tethered bilayer membranes, have been developed for surface-dependent techniques. While these setups can provide a more native environment, data analysis may be complicated by the normally found statistical orientation of the reconstituted protein in the model membrane. We have developed a model membrane system that enables the study of membrane proteins in a defined orientation by single-molecule force spectroscopy. Our approach is demonstrated using cell-free expressed bacteriorhodopsin coupled to a quartz glass surface in a defined orientation through a protein anchor and reconstituted inside an artificial membrane system. This approach offers an effective way to study membrane proteins in a planar lipid bilayer. It can be easily transferred to all membrane proteins that possess a suitable tag and can be reconstituted into a lipid bilayer. In this respect, we anticipate that this technique may contribute important information on structure, topology, and intra- and intermolecular interactions of other seven-transmembrane helical receptors.
Collapse
Affiliation(s)
- Anna M Bronder
- Institut für Physikalische Biologie, Heinrich-Heine-Universität, Düsseldorf, Germany.
| | - Adeline Bieker
- Institut für Physikalische Biologie, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Shantha Elter
- Institut für Physikalische Biologie, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Manuel Etzkorn
- Institut für Physikalische Biologie, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Dieter Häussinger
- Clinic for Gastroenterology, Hepatology and Infectiology, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Filipp Oesterhelt
- Institut für Physikalische Biologie, Heinrich-Heine-Universität, Düsseldorf, Germany; Department for Microbial Bioactive Compounds, Interfaculty Institute for Microbiology and Infection Medicine, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
21
|
Garni M, Thamboo S, Schoenenberger CA, Palivan CG. Biopores/membrane proteins in synthetic polymer membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1859:619-638. [PMID: 27984019 DOI: 10.1016/j.bbamem.2016.10.015] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/20/2016] [Accepted: 10/25/2016] [Indexed: 12/14/2022]
Abstract
BACKGROUND Mimicking cell membranes by simple models based on the reconstitution of membrane proteins in lipid bilayers represents a straightforward approach to understand biological function of these proteins. This biomimetic strategy has been extended to synthetic membranes that have advantages in terms of chemical and mechanical stability, thus providing more robust hybrid membranes. SCOPE OF THE REVIEW We present here how membrane proteins and biopores have been inserted both in the membrane of nanosized and microsized compartments, and in planar membranes under various conditions. Such bio-hybrid membranes have new properties (as for example, permeability to ions/molecules), and functionality depending on the specificity of the inserted biomolecules. Interestingly, membrane proteins can be functionally inserted in synthetic membranes provided these have appropriate properties to overcome the high hydrophobic mismatch between the size of the biomolecule and the membrane thickness. MAJOR CONCLUSION Functional insertion of membrane proteins and biopores in synthetic membranes of compartments or in planar membranes is possible by an appropriate selection of the amphiphilic copolymers, and conditions of the self-assembly process. These hybrid membranes have new properties and functionality based on the specificity of the biomolecules and the nature of the synthetic membranes. GENERAL SIGNIFICANCE Bio-hybrid membranes represent new solutions for the development of nanoreactors, artificial organelles or active surfaces/membranes that, by further gaining in complexity and functionality, will promote translational applications. This article is part of a Special Issue entitled: Lipid order/lipid defects and lipid-control of protein activity edited by Dirk Schneider.
Collapse
Affiliation(s)
- Martina Garni
- Chemistry Department, University of Basel, Klingelbergstrasse 80, Switzerland
| | - Sagana Thamboo
- Chemistry Department, University of Basel, Klingelbergstrasse 80, Switzerland
| | | | - Cornelia G Palivan
- Chemistry Department, University of Basel, Klingelbergstrasse 80, Switzerland.
| |
Collapse
|
22
|
Palivan CG, Goers R, Najer A, Zhang X, Car A, Meier W. Bioinspired polymer vesicles and membranes for biological and medical applications. Chem Soc Rev 2016; 45:377-411. [DOI: 10.1039/c5cs00569h] [Citation(s) in RCA: 413] [Impact Index Per Article: 45.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Biological membranes play an essential role in living organisms by providing stable and functional compartments, supporting signalling and selective transport. Combining synthetic polymer membranes with biological molecules promises to be an effective strategy to mimic the functions of cell membranes and apply them in artificial systems.
Collapse
Affiliation(s)
| | - Roland Goers
- Department of Chemistry
- University of Basel
- CH-4056 Basel
- Switzerland
- Department of Biosystems Science and Engineering
| | - Adrian Najer
- Department of Chemistry
- University of Basel
- CH-4056 Basel
- Switzerland
| | - Xiaoyan Zhang
- Department of Chemistry
- University of Basel
- CH-4056 Basel
- Switzerland
| | - Anja Car
- Department of Chemistry
- University of Basel
- CH-4056 Basel
- Switzerland
| | - Wolfgang Meier
- Department of Chemistry
- University of Basel
- CH-4056 Basel
- Switzerland
| |
Collapse
|
23
|
Lagny TJ, Bassereau P. Bioinspired membrane-based systems for a physical approach of cell organization and dynamics: usefulness and limitations. Interface Focus 2015; 5:20150038. [PMID: 26464792 PMCID: PMC4590427 DOI: 10.1098/rsfs.2015.0038] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Being at the periphery of each cell compartment and enclosing the entire cell while interacting with a large part of cell components, cell membranes participate in most of the cell's vital functions. Biologists have worked for a long time on deciphering how membranes are organized, how they contribute to trafficking, motility, cytokinesis, cell-cell communication, information transport, etc., using top-down approaches and always more advanced techniques. In contrast, physicists have developed bottom-up approaches and minimal model membrane systems of growing complexity in order to build up general models that explain how cell membranes work and how they interact with proteins, e.g. the cytoskeleton. We review the different model membrane systems that are currently available, and how they can help deciphering cell functioning, but also list their limitations. Model membrane systems are also used in synthetic biology and can have potential applications beyond basic research. We discuss the possible synergy between the development of complex in vitro membrane systems in a biological context and for technological applications. Questions that could also be discussed are: what can we still do with synthetic systems, where do we stop building up and which are the alternative solutions?
Collapse
Affiliation(s)
- Thibaut J Lagny
- Institut Curie, PSL Research University , Laboratory PhysicoChimie Curie , 75248 Paris, Cedex 05 , France ; CNRS , UMR168, 75248 Paris, Cedex 05 , France ; Université Pierre et Marie Curie , 75252 Paris, Cedex 05 , France
| | - Patricia Bassereau
- Institut Curie, PSL Research University , Laboratory PhysicoChimie Curie , 75248 Paris, Cedex 05 , France ; CNRS , UMR168, 75248 Paris, Cedex 05 , France ; Université Pierre et Marie Curie , 75252 Paris, Cedex 05 , France
| |
Collapse
|
24
|
Das A, Theato P. Activated Ester Containing Polymers: Opportunities and Challenges for the Design of Functional Macromolecules. Chem Rev 2015; 116:1434-95. [DOI: 10.1021/acs.chemrev.5b00291] [Citation(s) in RCA: 300] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Anindita Das
- Institute
for Technical and
Macromolecular Chemistry, University of Hamburg, D-20146 Hamburg, Germany
| | - Patrick Theato
- Institute
for Technical and
Macromolecular Chemistry, University of Hamburg, D-20146 Hamburg, Germany
| |
Collapse
|
25
|
Blakeston AC, Alswieleh AM, Heath GR, Roth JS, Bao P, Cheng N, Armes SP, Leggett GJ, Bushby RJ, Evans SD. New poly(amino acid methacrylate) brush supports the formation of well-defined lipid membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015. [PMID: 25746444 DOI: 10.1021/la504163s.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel poly(amino acid methacrylate) brush comprising zwitterionic cysteine groups (PCysMA) was utilized as a support for lipid bilayers. The polymer brush provides a 12-nm-thick cushion between the underlying hard support and the aqueous phase. At neutral pH, the zeta potential of the PCysMA brush was ∼-10 mV. Cationic vesicles containing >25% DOTAP were found to form a homogeneous lipid bilayer, as determined by a combination of surface analytical techniques. The lipid mobility as measured by FRAP (fluorescence recovery after photobleaching) gave diffusion coefficients of ∼1.5 μm(2) s(-1), which are comparable to those observed for lipid bilayers on glass substrates.
Collapse
Affiliation(s)
- Anita C Blakeston
- †Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Abdullah M Alswieleh
- ‡Department of Chemistry, University of Sheffield, Sheffield S3 7HF, United Kingdom
| | - George R Heath
- †Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Johannes S Roth
- †Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Peng Bao
- †Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Nan Cheng
- ‡Department of Chemistry, University of Sheffield, Sheffield S3 7HF, United Kingdom
| | - Steven P Armes
- ‡Department of Chemistry, University of Sheffield, Sheffield S3 7HF, United Kingdom
| | - Graham J Leggett
- ‡Department of Chemistry, University of Sheffield, Sheffield S3 7HF, United Kingdom
| | - Richard J Bushby
- †Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Stephen D Evans
- †Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
26
|
Blakeston A, Alswieleh AM, Heath GR, Roth JS, Bao P, Cheng N, Armes SP, Leggett GJ, Bushby RJ, Evans SD. New poly(amino acid methacrylate) brush supports the formation of well-defined lipid membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:3668-77. [PMID: 25746444 PMCID: PMC4444997 DOI: 10.1021/la504163s] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 01/29/2015] [Indexed: 05/19/2023]
Abstract
A novel poly(amino acid methacrylate) brush comprising zwitterionic cysteine groups (PCysMA) was utilized as a support for lipid bilayers. The polymer brush provides a 12-nm-thick cushion between the underlying hard support and the aqueous phase. At neutral pH, the zeta potential of the PCysMA brush was ∼-10 mV. Cationic vesicles containing >25% DOTAP were found to form a homogeneous lipid bilayer, as determined by a combination of surface analytical techniques. The lipid mobility as measured by FRAP (fluorescence recovery after photobleaching) gave diffusion coefficients of ∼1.5 μm(2) s(-1), which are comparable to those observed for lipid bilayers on glass substrates.
Collapse
Affiliation(s)
- Anita
C. Blakeston
- Molecular
and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United
Kingdom
| | | | - George R. Heath
- Molecular
and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United
Kingdom
| | - Johannes S. Roth
- Molecular
and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United
Kingdom
| | - Peng Bao
- Molecular
and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United
Kingdom
| | - Nan Cheng
- Department
of Chemistry, University of Sheffield, Sheffield S3 7HF, United Kingdom
| | - Steven P. Armes
- Department
of Chemistry, University of Sheffield, Sheffield S3 7HF, United Kingdom
| | - Graham J. Leggett
- Department
of Chemistry, University of Sheffield, Sheffield S3 7HF, United Kingdom
| | - Richard J. Bushby
- Molecular
and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United
Kingdom
| | - Stephen D. Evans
- Molecular
and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United
Kingdom
| |
Collapse
|
27
|
Reimhult E, Höök F. Design of surface modifications for nanoscale sensor applications. SENSORS (BASEL, SWITZERLAND) 2015; 15:1635-75. [PMID: 25594599 PMCID: PMC4327096 DOI: 10.3390/s150101635] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 01/07/2015] [Indexed: 02/07/2023]
Abstract
Nanoscale biosensors provide the possibility to miniaturize optic, acoustic and electric sensors to the dimensions of biomolecules. This enables approaching single-molecule detection and new sensing modalities that probe molecular conformation. Nanoscale sensors are predominantly surface-based and label-free to exploit inherent advantages of physical phenomena allowing high sensitivity without distortive labeling. There are three main criteria to be optimized in the design of surface-based and label-free biosensors: (i) the biomolecules of interest must bind with high affinity and selectively to the sensitive area; (ii) the biomolecules must be efficiently transported from the bulk solution to the sensor; and (iii) the transducer concept must be sufficiently sensitive to detect low coverage of captured biomolecules within reasonable time scales. The majority of literature on nanoscale biosensors deals with the third criterion while implicitly assuming that solutions developed for macroscale biosensors to the first two, equally important, criteria are applicable also to nanoscale sensors. We focus on providing an introduction to and perspectives on the advanced concepts for surface functionalization of biosensors with nanosized sensor elements that have been developed over the past decades (criterion (iii)). We review in detail how patterning of molecular films designed to control interactions of biomolecules with nanoscale biosensor surfaces creates new possibilities as well as new challenges.
Collapse
Affiliation(s)
- Erik Reimhult
- Institute for Biologically Inspired Materials, Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 11, A-1190 Vienna, Austria.
| | - Fredrik Höök
- Biological Physics, Department of Applied Physics, Chalmers University of Technology, Fysikgränd 3, SE-411 33 Göteborg, Sweden.
| |
Collapse
|
28
|
Möller I, Seeger S. Solid supported lipid bilayers from artificial and natural lipid mixtures – long-term stable, homogeneous and reproducible. J Mater Chem B 2015; 3:6046-6056. [DOI: 10.1039/c5tb00437c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We show the assembly of reproducible, long-term stable, homogeneous solid supported lipid bilayers under flow conditions by the vesicle deposition method from various artificial and natural lipid mixtures.
Collapse
Affiliation(s)
- Isabelle Möller
- Department of Chemistry
- University of Zurich
- 8057 Zurich
- Switzerland
| | - Stefan Seeger
- Department of Chemistry
- University of Zurich
- 8057 Zurich
- Switzerland
| |
Collapse
|
29
|
Schuster B, Sleytr UB. Biomimetic interfaces based on S-layer proteins, lipid membranes and functional biomolecules. J R Soc Interface 2014; 11:20140232. [PMID: 24812051 PMCID: PMC4032536 DOI: 10.1098/rsif.2014.0232] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 04/15/2014] [Indexed: 12/20/2022] Open
Abstract
Designing and utilization of biomimetic membrane systems generated by bottom-up processes is a rapidly growing scientific and engineering field. Elucidation of the supramolecular construction principle of archaeal cell envelopes composed of S-layer stabilized lipid membranes led to new strategies for generating highly stable functional lipid membranes at meso- and macroscopic scale. In this review, we provide a state-of-the-art survey of how S-layer proteins, lipids and polymers may be used as basic building blocks for the assembly of S-layer-supported lipid membranes. These biomimetic membrane systems are distinguished by a nanopatterned fluidity, enhanced stability and longevity and, thus, provide a dedicated reconstitution matrix for membrane-active peptides and transmembrane proteins. Exciting areas in the (lab-on-a-) biochip technology are combining composite S-layer membrane systems involving specific membrane functions with the silicon world. Thus, it might become possible to create artificial noses or tongues, where many receptor proteins have to be exposed and read out simultaneously. Moreover, S-layer-coated liposomes and emulsomes copying virus envelopes constitute promising nanoformulations for the production of novel targeting, delivery, encapsulation and imaging systems.
Collapse
Affiliation(s)
- Bernhard Schuster
- Department of NanoBiotechnology, University of Natural Resources and Life Sciences, Institute for Synthetic Bioarchitectures, Muthgasse 11, 1190 Vienna, Austria
| | - Uwe B. Sleytr
- Department of NanoBiotechnology, University of Natural Resources and Life Sciences, Institute for Biophysics, Muthgasse 11, 1190 Vienna, Austria
| |
Collapse
|
30
|
|
31
|
Kowal J, Zhang X, Dinu IA, Palivan CG, Meier W. Planar Biomimetic Membranes Based on Amphiphilic Block Copolymers. ACS Macro Lett 2013. [DOI: 10.1021/mz400590c] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Justyna Kowal
- Chemistry Department, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Xiaoyan Zhang
- Chemistry Department, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Ionel Adrian Dinu
- Chemistry Department, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Cornelia G. Palivan
- Chemistry Department, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Wolfgang Meier
- Chemistry Department, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| |
Collapse
|
32
|
Waichman S, Roder F, Richter CP, Birkholz O, Piehler J. Diffusion and interaction dynamics of individual membrane protein complexes confined in micropatterned polymer-supported membranes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:570-577. [PMID: 23109503 DOI: 10.1002/smll.201201530] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 09/12/2012] [Indexed: 06/01/2023]
Abstract
Micropatterned polymer-supported membranes (PSM) are established as a tool for confining the diffusion of transmembrane proteins for single molecule studies. To this end, a photochemical surface modification with hydrophobic tethers on a PEG polymer brush is implemented for capturing of lipid vesicles and subsequent fusion. Formation of contiguous membranes within micropatterns is confirmed by scanning force microscopy, fluorescence recovery after photobleaching (FRAP), and super-resolved single-molecule tracking and localization microscopy. Free diffusion of transmembrane proteins reconstituted into micropatterned PSM is demonstrated by FRAP and by single-molecule tracking. By exploiting the confinement of diffusion within micropatterned PSM, the diffusion and interaction dynamics of individual transmembrane receptors are quantitatively resolved.
Collapse
Affiliation(s)
- Sharon Waichman
- Department of Biology, University of Osnabrück, Osnabrück, Germany
| | | | | | | | | |
Collapse
|
33
|
Roder F, Birkholz O, Beutel O, Paterok D, Piehler J. Spatial organization of lipid phases in micropatterned polymer-supported membranes. J Am Chem Soc 2013; 135:1189-92. [PMID: 23289715 DOI: 10.1021/ja310186g] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We have established an approach for the spatial control of lipid phase separation in tethered polymer-supported membranes (PSMs), which were obtained by vesicle fusion on a poly(ethylene glycol) polymer brush functionalized with fatty acid moieties. Phase separation of ternary lipid mixtures (1,2-dioleoyl-sn-glycero-3-phosphocholine/sphingomyelin/cholesterol) into liquid-disordered (l(d)) and liquid-ordered (l(o)) phases within both leaflets was obtained with palmitic acid as the anchoring group. In contrast, tethering of the PSM with oleic acid interfered with the phase separation in the surface-proximal leaflet. We exploited this feature for the assembly of l(o) domains within PSMs into defined structures by binary micropatterning of palmitic and oleic acid into complementary areas. Ternary lipid mixtures spontaneously separated into l(o) and l(d) phases controlled by the geometry of the underlying tethers. Transmembrane proteins reconstituted in these phase-separated PSMs strictly partitioned into the l(d) phase. Hence, the l(o) phase could be used for confining transmembrane proteins into microscopic and submicroscopic domains.
Collapse
Affiliation(s)
- Friedrich Roder
- Division of Biophysics, Department of Biology, University of Osnabrück, 49069 Osnabrück, Germany
| | | | | | | | | |
Collapse
|
34
|
Jadhav SR, Rao KS, Zheng Y, Garavito RM, Worden RM. Voltage dependent closure of PorB class II porin from Neisseria meningitidis investigated using impedance spectroscopy in a tethered bilayer lipid membrane interface. J Colloid Interface Sci 2013; 390:211-6. [PMID: 23083768 DOI: 10.1016/j.jcis.2012.09.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 09/13/2012] [Accepted: 09/14/2012] [Indexed: 01/16/2023]
Abstract
Electrochemical impedance spectroscopy (EIS) was used to characterize voltage-dependent closure of PorB class II (PorBII) porin from Neisseria meningitidis incorporated in a tethered bilayer lipid membrane (tBLM). The tBLM's lower leaflet was fabricated by depositing a self assembled monolayer (SAM) of 1,2-dipalmitoyl-sn-glycero-3-phosphothioethanol (DPPTE) on a gold electrode, and the upper leaflet was formed by depositing1,2-dioleoyl-sn-glycero-3-phoshocholine (DOPC) liposomes. At 0mV bias DC potential, incorporation of PorBII decreased the membrane resistance (R(m)) from 2.5 MΩc m(2) to 0.6 MΩ cm(2), giving a ΔR(m) of 1.9 MΩ cm(2) and a normalized ΔR(m) (ΔR(m) divided by the R(m) of the tBLM without PorBII) of 76%. When the bias DC potential was increased to 200 mV, the normalized ΔR(m) value decreased to 20%. The effect of applied voltage on ΔR(m) was completely reversible, suggesting voltage-dependent closure of PorBII. The voltage dependence of PorBII was further studied in a planar bilayer lipid membrane made from 1,2-diphytanoyl-sn-glycero-3-phosphocholine (DPhytPC). Following a single insertion event, PorBII exhibited multiple conductance states, with reversible, voltage-dependent closure of PorBII porin occurring at high transmembrane potentials. The trimetric porin closed in three discrete steps, each step corresponding to closure of one conducting monomer unit. The most probable single channel conductance was 4.2 nS. The agreement between results obtained with the tBLM and pBLM platforms demonstrates the utility of EIS to screen channel proteins immobilized in tBLM for voltage-gated behavior.
Collapse
Affiliation(s)
- Sachin R Jadhav
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | | | |
Collapse
|
35
|
Orozco-Alcaraz R, Kuhl TL. Interaction forces between DPPC bilayers on glass. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:337-43. [PMID: 23199333 PMCID: PMC3576029 DOI: 10.1021/la3039329] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The surface force apparatus (SFA) was utilized to obtain force-distance profiles between silica-supported membranes formed by Langmuir-Blodgett deposition of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC). In the absence of a membrane, a long-range electrostatic repulsion and short-range steric repulsion are measured as a result of the deprotonation of silica in water and the roughness of the silica film. The electrostatic repulsion is partially screened by the lipid membrane, and a van der Waals adhesion comparable to that measured with well-packed DPPC membranes on mica is measured. This finding suggest that electrostatic interactions due to the underlying negatively charged silica are likely present in other systems of glass-supported membranes. In contrast, the charge of an underlying mica substrate is almost completely screened when a lipid membrane is deposited on the mica. The difference in the two systems is attributed to the stronger physisorption of zwitterionic lipids to molecularly smooth mica compared to physisorption to rougher silica.
Collapse
Affiliation(s)
- Raquel Orozco-Alcaraz
- University of California Davis. Department of Chemical Engineering and Materials Science, One Shields Avenue, Davis CA 95616
| | - Tonya L. Kuhl
- University of California Davis. Department of Chemical Engineering and Materials Science, One Shields Avenue, Davis CA 95616
| |
Collapse
|
36
|
Zhang X, Fu W, Palivan CG, Meier W. Natural channel protein inserts and functions in a completely artificial, solid-supported bilayer membrane. Sci Rep 2013; 3:2196. [PMID: 23846807 PMCID: PMC3709162 DOI: 10.1038/srep02196] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 06/27/2013] [Indexed: 11/09/2022] Open
Abstract
Reconstitution of membrane proteins in artificial membrane systems creates a platform for exploring their potential for pharmacological or biotechnological applications. Previously, we demonstrated amphiphilic block copolymers as promising building blocks for artificial membranes with long-term stability and tailorable structural parameters. However, the insertion of membrane proteins has not previously been realized in a large-area, stable, and solid-supported artificial membrane. Here, we show the first, preliminary model of a channel membrane protein that is functionally incorporated in a completely artificial polymer, tethered, solid-supported bilayer membrane (TSSBM). Unprecedented ionic transport characteristics that differ from previous results on protein insertion into planar, free-standing membranes, are identified. Our findings mark a change in understanding protein insertion and ion flow within natural channel proteins when inserted in an artificial TSSBM, thus holding great potential for numerous applications such as drug screening, trace analyzing, and biosensing.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, Basel 4056, Switzerland
| | - Wangyang Fu
- Department of Physics, University of Basel, Klingelbergstrasse 82, Basel 4056, Switzerland
| | - Cornelia G. Palivan
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, Basel 4056, Switzerland
| | - Wolfgang Meier
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, Basel 4056, Switzerland
| |
Collapse
|
37
|
Biomimetic membrane platform: fabrication, characterization and applications. Colloids Surf B Biointerfaces 2012; 103:510-6. [PMID: 23261574 DOI: 10.1016/j.colsurfb.2012.10.066] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2012] [Revised: 10/20/2012] [Accepted: 10/24/2012] [Indexed: 11/24/2022]
Abstract
A facile method for assembly of biomimetic membranes serving as a platform for expression and insertion of membrane proteins is described. The membrane architecture was constructed in three steps: (i) assembly/printing of α-laminin peptide (P19) spacer on gold to separate solid support from the membrane architecture; (ii) covalent coupling of different lipid anchors to the P19 layer to serve as stabilizers of the inner leaflet during bilayer formation; (iii) lipid vesicle spreading to form a complete bilayer. Two different lipid membrane systems were examined and two different P19 architectures prepared by either self-assembly or μ-contact printing were tested and characterized using contact angle (CA) goniometry, surface plasmon resonance (SPR) spectroscopy and imaging surface plasmon resonance (iSPR). It is shown that surface coverage of cushion layer is significantly improved by μ-contact printing thereby facilitating bilayer formation as compared to self-assembly. To validate applicability of proposed methodology, incorporation of Cytochrome bo(3) ubiquinol oxidase (Cyt-bo(3)) into biomimetic membrane was performed by in vitro expression technique which was further monitored by surface plasmon enhanced fluorescence spectroscopy (SPFS). The results showed that solid supported planar membranes, tethered by α-laminin peptide cushion layer, provide an attractive environment for membrane protein insertion and characterization.
Collapse
|
38
|
Abstract
Lipid bilayers are natural barriers of biological cells and cellular compartments. Membrane proteins integrated in biological membranes enable vital cell functions such as signal transduction and the transport of ions or small molecules. In order to determine the activity of a protein of interest at defined conditions, the membrane protein has to be integrated into artificial lipid bilayers immobilized on a surface. For the fabrication of such biosensors expertise is required in material science, surface and analytical chemistry, molecular biology and biotechnology. Specifically, techniques are needed for structuring surfaces in the micro- and nanometer scale, chemical modification and analysis, lipid bilayer formation, protein expression, purification and solubilization, and most importantly, protein integration into engineered lipid bilayers. Electrochemical and optical methods are suitable to detect membrane activity-related signals. The importance of structural knowledge to understand membrane protein function is obvious. Presently only a few structures of membrane proteins are solved at atomic resolution. Functional assays together with known structures of individual membrane proteins will contribute to a better understanding of vital biological processes occurring at biological membranes. Such assays will be utilized in the discovery of drugs, since membrane proteins are major drug targets.
Collapse
|
39
|
Nanopore sensors: From hybrid to abiotic systems. Biosens Bioelectron 2012; 38:1-10. [DOI: 10.1016/j.bios.2012.05.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 05/02/2012] [Accepted: 05/12/2012] [Indexed: 11/22/2022]
|
40
|
Afanasenkau D, Offenhäusser A. Positively charged supported lipid bilayers as a biomimetic platform for neuronal cell culture. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:13387-13394. [PMID: 22920161 DOI: 10.1021/la302500r] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The supported lipid bilayer (SLB) is a well-known system for studying the cell membrane and membrane proteins. It is also promising as a platform for studying cell processes: the cell adhesion, the cell membrane receptors, and the intercellular signaling processes. SLBs made of natural lipids appeared to be protein and cell repellent. Thus, to use the SLB as a substrate for cells, one should functionalize them to provide adhesion. In the present paper, we describe a simple approach to promote adhesion of neuronal cells to the SLB without using proteins or peptides, by introducing positively charged lipids 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) into the SLB made of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). We show that neurons adhere to these bilayers and grow for at least 10 days. The SLBs themselves were found to degrade with time in cell culture conditions, but maintained fluidity (as revealed by fluorescence recovery after photobleaching), demonstrating the possibility of using SLBs for studying neuronal cells in culture.
Collapse
Affiliation(s)
- Dzmitry Afanasenkau
- Peter Grünberg Institute/Institute of Complex Systems Bioelectronics (PGI-8/ICS-8), Research Center Juelich, D-52425 Juelich, Germany
| | | |
Collapse
|
41
|
Proteopolymersomes: in vitro production of a membrane protein in polymersome membranes. Biointerphases 2012; 6:153-7. [PMID: 22239807 DOI: 10.1116/1.3644384] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Polymersomes are stable self-assembled architectures which mimic cell membranes. For characterization, membrane proteins can be incorporated into such bio-mimetic membranes by reconstitution methods, leading to so-called proteopolymersomes. In this work, we demonstrate the direct incorporation of a membrane protein into polymersome membranes by a cell-free expression system. Firstly, we demonstrate pore formation in the preformed polymersome membrane using α-hemolysin. Secondly, we use claudin-2, a protein involved in cell-cell interactions, to demonstrate the in vitro expression of a membrane protein into these polymersomes. Surface plasmon resonance (Biacore) binding studies with the claudin-2 proteopolymersomes and claudin-2 specific antibodies are performed to show the presence of the in vitro expressed protein in polymersome membranes.
Collapse
|
42
|
Tan DCW, Wijaya IPM, Andreasson-Ochsner M, Vasina EN, Nallani M, Hunziker W, Sinner EK. A novel microfluidics-based method for probing weak protein-protein interactions. LAB ON A CHIP 2012; 12:2726-2735. [PMID: 22641189 DOI: 10.1039/c2lc40228a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We report the use of a novel microfluidics-based method to detect weak protein-protein interactions between membrane proteins. The tight junction protein, claudin-2, synthesised in vitro using a cell-free expression system in the presence of polymer vesicles as membrane scaffolds, was used as a model membrane protein. Individual claudin-2 molecules interact weakly, although the cumulative effect of these interactions is significant. This effect results in a transient decrease of average vesicle dispersivity and reduction in transport speed of claudin-2-functionalised vesicles. Polymer vesicles functionalised with claudin-2 were perfused through a microfluidic channel and the time taken to traverse a defined distance within the channel was measured. Functionalised vesicles took 1.19 to 1.69 times longer to traverse this distance than unfunctionalised ones. Coating the channel walls with protein A and incubating the vesicles with anti-claudin-2 antibodies prior to perfusion resulted in the functionalised vesicles taking 1.75 to 2.5 times longer to traverse this distance compared to the controls. The data show that our system is able to detect weak as well as strong protein-protein interactions. This system offers researchers a portable, easily operated and customizable platform for the study of weak protein-protein interactions, particularly between membrane proteins.
Collapse
|
43
|
Malinova V, Nallani M, Meier W, Sinner E. Synthetic biology, inspired by synthetic chemistry. FEBS Lett 2012; 586:2146-56. [DOI: 10.1016/j.febslet.2012.05.033] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 05/14/2012] [Accepted: 05/16/2012] [Indexed: 12/12/2022]
|
44
|
Cell-free synthesis of cytochrome bo3 ubiquinol oxidase in artificial membranes. Anal Biochem 2012; 423:39-45. [DOI: 10.1016/j.ab.2012.01.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 01/10/2012] [Accepted: 01/11/2012] [Indexed: 11/22/2022]
|
45
|
Zhong J, He D. Recent Progress in the Application of Atomic Force Microscopy for Supported Lipid Bilayers. Chemistry 2012; 18:4148-55. [DOI: 10.1002/chem.201102831] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
46
|
Fabre RM, Okeyo GO, Talham DR. Supported lipid bilayers at skeletonized surfaces for the study of transmembrane proteins. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:2835-2841. [PMID: 22229749 DOI: 10.1021/la204485n] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Skeletonized zirconium phosphonate surfaces are used to support planar lipid bilayers and are shown to be viable substrates for studying transmembrane proteins. The skeletonized surfaces provide space between the bilayer and the solid support to enable protein insertion and avoid denaturation. The skeletonized zirconium octadecylphosphonate surfaces were prepared using Langmuir-Blodgett techniques by mixing octadecanol with octadecylphosphonic acid. After zirconation of the transferred monolayer, rinsing the coating with organic solvent removes the octadecanol, leaving holes in the film ranging from ∼50 to ∼500 nm in diameter, depending on the octadecanol content. Upon subsequent deposition of a lipid bilayer, either by vesicle fusion or by Langmuir-Blodgett/Langmuir-Schaefer techniques, the lipid assemblies span the holes providing reservoirs beneath the bilayer. The viability of the supported bilayers as model membranes for transmembrane proteins was demonstrated by examining two approaches for incorporating the proteins. The BK channel protein inserts directly into a preformed bilayer on the skeletonized surface, in contrast to a bilayer on a nonskeletonized film, for which the protein associates only weakly. As a second approach, the integrin α(5)β(1) was reconstituted in lipid vesicles, and its inclusion in supported bilayers on the skeletonized surface was achieved by vesicle fusion. The integrin retains its ability to recognize the extracellular matrix protein fibronectin when supported on the skeletonized film, again in contrast to the response if the bilayer is supported on a nonskeletonized film.
Collapse
Affiliation(s)
- Roxane M Fabre
- Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, United States
| | | | | |
Collapse
|
47
|
|
48
|
Ma Z, Janmey PA, Sharp KA, Finkel TH. Improved method of preparation of supported planar lipid bilayers as artificial membranes for antigen presentation. Microsc Res Tech 2011; 74:1174-85. [DOI: 10.1002/jemt.21012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2010] [Accepted: 03/06/2011] [Indexed: 11/07/2022]
|
49
|
Eid M, Rippa S, Castano S, Desbat B, Chopineau J, Rossi C, Béven L. Exploring the membrane mechanism of the bioactive peptaibol ampullosporin a using lipid monolayers and supported biomimetic membranes. JOURNAL OF BIOPHYSICS (HINDAWI PUBLISHING CORPORATION : ONLINE) 2011; 2010:179641. [PMID: 21403824 PMCID: PMC3042626 DOI: 10.1155/2010/179641] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 12/09/2010] [Accepted: 12/20/2010] [Indexed: 05/12/2023]
Abstract
Ampullosporin A is an antimicrobial, neuroleptic peptaibol, the behavior of which was investigated in different membrane mimetic environments made of egg yolk L-α-phosphatidylcholine. In monolayers, the peptaibol adopted a mixed α/3(10)-helical structure with an in-plane orientation. The binding step was followed by the peptide insertion into the lipid monolayer core. The relevance of the inner lipid leaflet nature was studied by comparing ampullosporin binding on a hybrid bilayer, in which this leaflet was a rigid alkane layer, and on supported fluid lipid bilayers. The membrane binding was examined by surface plasmon resonance spectroscopy and the effect on lipid dynamics was explored using fluorescence recovery after photobleaching. In the absence of voltage and at low concentration, ampullosporin A substantially adsorbed onto lipid surfaces and its interaction with biomimetic models was strongly modified depending on the inner leaflet structure. At high concentration, ampullosporin A addition led to the lipid bilayers disruption.
Collapse
Affiliation(s)
- Marguerita Eid
- UMR 6022 CNRS Génie Enzymatique et Cellulaire, Université de Technologie de Compiègne, BP 20529, 60205 Compiègne Cedex, France
| | - Sonia Rippa
- UMR 6022 CNRS Génie Enzymatique et Cellulaire, Université de Technologie de Compiègne, BP 20529, 60205 Compiègne Cedex, France
| | - Sabine Castano
- CBMN, Chimie et Biologie des Membranes et des Nanoobjets CNRS, UMR 5248, Université de Bordeaux I, ENITAB, 33607 Pessac, France
| | - Bernard Desbat
- CBMN, Chimie et Biologie des Membranes et des Nanoobjets CNRS, UMR 5248, Université de Bordeaux I, ENITAB, 33607 Pessac, France
| | - Joël Chopineau
- CNRS, UMR 5253 Institut Charles Gerhardt, Université Montpellier 2, Ecole Nationale Supérieure de Chimie de Montpellier, Université Montpellier 1, 34093 Montpellier Cedex, France
- Université de Nîmes, 30000 Nîmes, France
| | - Claire Rossi
- UMR 6022 CNRS Génie Enzymatique et Cellulaire, Université de Technologie de Compiègne, BP 20529, 60205 Compiègne Cedex, France
| | - Laure Béven
- UMR 6022 CNRS Génie Enzymatique et Cellulaire, Université de Technologie de Compiègne, BP 20529, 60205 Compiègne Cedex, France
- INRA, UMR 1090 Génomique Diversité et Pouvoir Pathogène, 33883 Villenave d'Ornon, France
- Université de Bordeaux 2, UMR 1090 Génomique Diversité Pouvoir Pathogène, 33883 Villenave d'Ornon Cedex, France
| |
Collapse
|
50
|
Dynamic Nanoplatforms in Biosensor and Membrane Constitutional Systems. CONSTITUTIONAL DYNAMIC CHEMISTRY 2011; 322:139-63. [DOI: 10.1007/128_2011_199] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|