1
|
Huang B, Yuan Q, Sun J, Wang C, Yang D. Thymidine phosphorylase in nucleotide metabolism: physiological functions and its implications in tumorigenesis and anti-cancer therapy. Front Immunol 2025; 16:1561560. [PMID: 40303404 PMCID: PMC12037492 DOI: 10.3389/fimmu.2025.1561560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 03/28/2025] [Indexed: 05/02/2025] Open
Abstract
Thymidine phosphorylase (TYMP), a protein found in both prokaryotic and eukaryotic cells, is encoded by a gene located in the q13 region of chromosome 22. With a relative molecular mass of 55,000, TYMP exists as a homodimer. Recent research has increasingly illuminated the diverse functions of TYMP. It is known to facilitate platelet activation, osteoclast differentiation, and angiogenesis. Mutations in the TYMP gene are linked to mitochondrial neurogastrointestinal encephalomyopathy. Beyond its physiological roles, TYMP contributes significantly to tumor growth and cancer progression, where it promotes angiogenesis, modulates epigenetic genes, inhibits apoptosis, and acts as a critical enzyme in the nucleoside metabolic rescue pathway. Moreover, TYMP holds substantial implications in cancer treatment and prognosis. Given its involvement in cancer progression, TYMP inhibitors may prove valuable in inhibiting tumor growth and metastasis. Interestingly, while TYMP can drive tumor growth, certain concentrations of TYMP also enhance the cytotoxic effects of chemotherapy drugs such as 5-fluorouracil (5-FU). Although challenges exist-such as the potential disruption of normal physiological functions when inhibiting TYMP-the protein remains a promising target for cancer treatment. Ongoing research on TYMP could deepen our understanding of human physiology and the pathogenesis of cancer and open new avenues for therapeutic interventions. This article provides a comprehensive review of TYMP's structure, physiological functions, and its role in tumorigenesis and anti-tumor therapy.
Collapse
Affiliation(s)
- Bo Huang
- Liaoning Cancer Hospital & Institute, Shenyang, China
- First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qihang Yuan
- First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jiaao Sun
- First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Chao Wang
- Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Dong Yang
- Liaoning Cancer Hospital & Institute, Shenyang, China
| |
Collapse
|
2
|
Ullah H, Liaqat A, Khan QU, Taha M, Khan F, Rahim F, Uddin I, Rehman ZU. Synthesis, in vitro thymidine phosphorylase activity and molecular docking study of thiadiazole bearing isatin analogs. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01842-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
3
|
Sun J, Wang X, Zhang Z, Zeng Z, Ouyang S, Kang W. The Sensitivity Prediction of Neoadjuvant Chemotherapy for Gastric Cancer. Front Oncol 2021; 11:641304. [PMID: 33937042 PMCID: PMC8085495 DOI: 10.3389/fonc.2021.641304] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/22/2021] [Indexed: 12/24/2022] Open
Abstract
The overall efficacy of neoadjuvant chemoradiotherapy (NACT) for locally advanced gastric cancer (LAGC) has been recognized. However, the response rate of NACT is limited due to tumor heterogeneity. For patients who are resistant to NACT, not only the operation timing will be postponed, patients will also suffer from the side effects of it. Thus, it is important to develop a comprehensive strategy and screen out patients who may be sensitive to NACT. This article summarizes the related research progress on the sensitivity prediction of NACT for GC in the following aspects: microRNAs, metabolic enzymes, exosomes, other biomarkers; inflammatory indicators, and imageological assessments. The results showed that there were many studies on biomarkers, but no unified conclusion has been drawn. The inflammatory indicators are related to the survival and prognosis of patients under NACT. For imageological assessments such as CT, MRI, and PET, with careful integration and optimization, they will have unique advantages in early screening for patients who are sensitive to NACT.
Collapse
Affiliation(s)
- Juan Sun
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Peking Union Medical College Hospital (CAMS), Beijing, China
| | - Xianze Wang
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Peking Union Medical College Hospital (CAMS), Beijing, China
| | - Zimu Zhang
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Peking Union Medical College Hospital (CAMS), Beijing, China
| | - Ziyang Zeng
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Peking Union Medical College Hospital (CAMS), Beijing, China
| | - Siwen Ouyang
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Peking Union Medical College Hospital (CAMS), Beijing, China
| | - Weiming Kang
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of General Surgery, Peking Union Medical College Hospital (CAMS), Beijing, China
| |
Collapse
|
4
|
Bera H, Chigurupati S. Recent discovery of non-nucleobase thymidine phosphorylase inhibitors targeting cancer. Eur J Med Chem 2016; 124:992-1003. [PMID: 27783978 DOI: 10.1016/j.ejmech.2016.10.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 10/14/2016] [Accepted: 10/15/2016] [Indexed: 01/19/2023]
Abstract
Thymidine phosphorylase (TP, EC 2.4.2.4), an enzyme involved in pyrimidine salvage pathway, is identical to platelet-derived endothelial cell growth factor (PD-ECGF) and gliostatin. It is extremely upregulated in a variety of solid tumours. The TP amplification is associated with concomitant overexpression of many angiogenic factors such as matrix metalloproteases (MMPs), interleukins (ILs), vascular endothelial growth factor (VEGF) etc., resulting in promotion of angiogenesis and cancer metastasis. In addition, overshooting TP level protects tumour cells from apoptosis and helps cell survival. Thus, TP is identified as a prime target for developing novel anticancer therapies. Pioneering research activities investigated a large number of TP inhibitors, most of which are pyrimidine or purine analogues. Recently, an array of structurally diverse non-nucleobase derivatives was designed, synthesized and established as promising TP inhibitors. This review, following an outline on the TP structure and functions, gives an overview of the recent advancement of various non-nucleobase TP inhibitors as novel anti-cancer agents.
Collapse
Affiliation(s)
- Hriday Bera
- Faculty of Pharmacy, AIMST University, Semeling, Kedah, 08100, Malaysia.
| | | |
Collapse
|
5
|
Elamin YY, Rafee S, Osman N, O Byrne KJ, Gately K. Thymidine Phosphorylase in Cancer; Enemy or Friend? CANCER MICROENVIRONMENT 2015; 9:33-43. [PMID: 26298314 DOI: 10.1007/s12307-015-0173-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 08/12/2015] [Indexed: 12/27/2022]
Abstract
Thymidine phosphorylase (TP) is a nucleoside metabolism enzyme that plays an important role in the pyrimidine pathway.TP catalyzes the conversion of thymidine to thymine and 2-deoxy-α-D-ribose-1-phosphate (dRib-1-P). Although this reaction is reversible, the main metabolic function of TP is catabolic. TP is identical to the angiogenic factor platelet-derived endothelial-cell growth factor (PD-ECGF). TP is overexpressed in several human cancers in response to cellular stressful conditions like hypoxia, acidosis, chemotherapy and radiotherapy. TP has been shown to promote tumor angiogenesis, invasion, metastasis, evasion of the immune-response and resistance to apoptosis. Some of the biological effects of TP are dependent on its enzymatic activity, while others are mediated through cytokines like interleukin 10 (IL-10), basic fibroblast growth factor (bFGF) and tumour necrosis factor α (TNFα). Interestingly, TP also plays a role in cancer treatment through its role in the conversion of the oral fluoropyrimidine capecitabine into its active form 5-FU. TP is a predictive marker for fluoropyrimidine response. Given its various biological functions in cancer progression, TP is a promising target in cancer treatment. Further translational research is required in this area.
Collapse
Affiliation(s)
- Yasir Y Elamin
- Department of Medical Oncology, St James's Hospital, Dublin, Ireland.
| | - Shereen Rafee
- Department of Medical Oncology, St James's Hospital, Dublin, Ireland
| | - Nemer Osman
- Department of Medical Oncology, St James's Hospital, Dublin, Ireland
| | - Kenneth J O Byrne
- Department of Medical Oncology, St James's Hospital, Dublin, Ireland
| | - Kathy Gately
- Thoracic Oncology Research Group, St James's Hospital, Dublin, Ireland
| |
Collapse
|
6
|
Ko JC, Tsai MS, Chiu YF, Weng SH, Kuo YH, Lin YW. Up-regulation of extracellular signal-regulated kinase 1/2-dependent thymidylate synthase and thymidine phosphorylase contributes to cisplatin resistance in human non-small-cell lung cancer cells. J Pharmacol Exp Ther 2011; 338:184-94. [PMID: 21444628 DOI: 10.1124/jpet.111.179663] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Chemotherapy for advanced human non-small-cell lung cancer (NSCLC) includes platinum-containing compound such as cisplatin in combination with a second- or third-generation cytotoxic agent. 5-Fluorouracil (5-FU) belongs to antimetabolite chemotherapeutics, and its mechanism of cytotoxicity is involved in the inhibition of thymidylate synthase (TS). TS and thymidine phosphorylase (TP) are key enzymes of the pyrimidine salvage pathway. In this study, we have examined the molecular mechanism of TS and TP in regulating drug sensitivity to cisplatin in NSCLC cell lines. Cisplatin could increase the phosphorylation of mitogen-activated protein kinase kinase 1/2 (MKK1/2)-extracellular signal-regulated kinase 1/2 (ERK1/2) and the protein levels of TS and TP through enhancing the protein stability in A549 and H1975 cells. Blocking ERK1/2 activation by MKK1/2 inhibitor [U0126; 1,4-diamino-2,3-dicyano-1,4-bis(2-aminophenylthio)butadiene)] decreased TS and TP protein levels in both cell lines treated with cisplatin. Depletion of endogenous TS or TP expression by specific small interfering RNA transfection significantly increased cisplatin-induced cell death and growth inhibition. Combined treatment with 5-FU could decrease cisplatin-induced ERK1/2 activation and the induction of TS and TP, which subsequently resulted in synergistic cytotoxic effects. Enforced expression of constitutive active MKK1/2 vectors rescued the protein levels of phospho-ERK1/2, TS, and TP, and the cell viability that were decreased by cisplatin and 5-FU combination. In contrast, U0126 enhanced drug sensitivity to cisplatin and/or 5-FU in lung cancer cells. In conclusion, the up-regulation of ERK1/2-dependent TS and TP can protect human lung cancer cells from cisplatin-induced cytotoxicity.
Collapse
Affiliation(s)
- Jen-Chung Ko
- Department of Internal Medicine, Hsinchu Hospital, Chiayi, Taiwan
| | | | | | | | | | | |
Collapse
|
7
|
Bronckaers A, Gago F, Balzarini J, Liekens S. The dual role of thymidine phosphorylase in cancer development and chemotherapy. Med Res Rev 2009; 29:903-53. [PMID: 19434693 PMCID: PMC7168469 DOI: 10.1002/med.20159] [Citation(s) in RCA: 152] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Thymidine phosphorylase (TP), also known as "platelet-derived endothelial cell growth factor" (PD-ECGF), is an enzyme, which is upregulated in a wide variety of solid tumors including breast and colorectal cancers. TP promotes tumor growth and metastasis by preventing apoptosis and inducing angiogenesis. Elevated levels of TP are associated with tumor aggressiveness and poor prognosis. Therefore, TP inhibitors are synthesized in an attempt to prevent tumor angiogenesis and metastasis. TP is also indispensable for the activation of the extensively used 5-fluorouracil prodrug capecitabine, which is clinically used for the treatment of colon and breast cancer. Clinical trials that combine capecitabine with TP-inducing therapies (such as taxanes or radiotherapy) suggest that increasing TP expression is an adequate strategy to enhance the antitumoral efficacy of capecitabine. Thus, TP plays a dual role in cancer development and therapy: on the one hand, TP inhibitors can abrogate the tumorigenic and metastatic properties of TP; on the other, TP activity is necessary for the activation of several chemotherapeutic drugs. This duality illustrates the complexity of the role of TP in tumor progression and in the clinical response to fluoropyrimidine-based chemotherapy.
Collapse
Affiliation(s)
| | - Federico Gago
- Departamento de Farmacología, Universidad de Alcalá, 28871 Alcalá de Henares, Spain
| | - Jan Balzarini
- Rega Institute for Medical Research, K.U.Leuven, B‐3000 Leuven, Belgium
| | - Sandra Liekens
- Rega Institute for Medical Research, K.U.Leuven, B‐3000 Leuven, Belgium
| |
Collapse
|
8
|
Chi LM, Lee CW, Chang KP, Hao SP, Lee HM, Liang Y, Hsueh C, Yu CJ, Lee IN, Chang YJ, Lee SY, Yeh YM, Chang YS, Chien KY, Yu JS. Enhanced interferon signaling pathway in oral cancer revealed by quantitative proteome analysis of microdissected specimens using 16O/18O labeling and integrated two-dimensional LC-ESI-MALDI tandem MS. Mol Cell Proteomics 2009; 8:1453-74. [PMID: 19297561 PMCID: PMC2709179 DOI: 10.1074/mcp.m800460-mcp200] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Accepted: 03/09/2009] [Indexed: 11/06/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) remains one of the most common cancers worldwide, and the mortality rate of this disease has increased in recent years. No molecular markers are available to assist with the early detection and therapeutic evaluation of OSCC; thus, identification of differentially expressed proteins may assist with the detection of potential disease markers and shed light on the molecular mechanisms of OSCC pathogenesis. We performed a multidimensional (16)O/(18)O proteomics analysis using an integrated ESI-ion trap and MALDI-TOF/TOF MS system and a computational data analysis pipeline to identify proteins that are differentially expressed in microdissected OSCC tumor cells relative to adjacent non-tumor epithelia. We identified 1233 unique proteins in microdissected oral squamous epithelia obtained from three pairs of OSCC specimens with a false discovery rate of <3%. Among these, 977 proteins were quantified between tumor and non-tumor cells. Our data revealed 80 dysregulated proteins (53 up-regulated and 27 down-regulated) when a 2.5-fold change was used as the threshold. Immunohistochemical staining and Western blot analyses were performed to confirm the overexpression of 12 up-regulated proteins in OSCC tissues. When the biological roles of 80 differentially expressed proteins were assessed via MetaCore analysis, the interferon (IFN) signaling pathway emerged as one of the most significantly altered pathways in OSCC. As many as 20% (10 of 53) of the up-regulated proteins belonged to the IFN-stimulated gene (ISG) family, including ubiquitin cross-reactive protein (UCRP)/ISG15. Using head-and-neck cancer tissue microarrays, we determined that UCRP is overexpressed in the majority of cheek and tongue cancers and in several cases of larynx cancer. In addition, we found that IFN-beta stimulates UCRP expression in oral cancer cells and enhances their motility in vitro. Our findings shed new light on OSCC pathogenesis and provide a basis for the future development of novel biomarkers.
Collapse
MESH Headings
- Biomarkers, Tumor/metabolism
- Carcinoma, Squamous Cell/chemistry
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Cell Line, Tumor
- Chromatography, Liquid/methods
- Databases, Protein
- Gene Expression Regulation, Neoplastic
- Humans
- Immunohistochemistry
- Interferons/metabolism
- Male
- Microdissection
- Molecular Sequence Data
- Mouth Neoplasms/chemistry
- Mouth Neoplasms/metabolism
- Mouth Neoplasms/pathology
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Oxygen Isotopes/metabolism
- Proteome/analysis
- Signal Transduction/physiology
- Spectrometry, Mass, Electrospray Ionization/methods
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
- Tandem Mass Spectrometry/methods
- Tissue Array Analysis
Collapse
Affiliation(s)
- Lang-Ming Chi
- From the ‡Molecular Medicine Research Center
- Departments of §Medical Research and Development
| | | | | | | | | | - Ying Liang
- From the ‡Molecular Medicine Research Center
| | - Chuen Hsueh
- From the ‡Molecular Medicine Research Center
- ‖Pathology, Chang Gung Memorial Hospital, Tao-Yuan 333, Taiwan
| | - Chia-Jung Yu
- From the ‡Molecular Medicine Research Center
- **Department of Biochemistry and Molecular Biology, and
| | - I-Neng Lee
- From the ‡Molecular Medicine Research Center
| | | | | | - Yuan-Ming Yeh
- ‡‡Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University and
| | - Yu-Sun Chang
- From the ‡Molecular Medicine Research Center
- ‡‡Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University and
| | - Kun-Yi Chien
- From the ‡Molecular Medicine Research Center
- **Department of Biochemistry and Molecular Biology, and
| | - Jau-Song Yu
- From the ‡Molecular Medicine Research Center
- **Department of Biochemistry and Molecular Biology, and
| |
Collapse
|
9
|
Milano G, Etienne-Grimaldi MC, Mari M, Lassalle S, Formento JL, Francoual M, Lacour JP, Hofman P. Candidate mechanisms for capecitabine-related hand-foot syndrome. Br J Clin Pharmacol 2008; 66:88-95. [PMID: 18341672 DOI: 10.1111/j.1365-2125.2008.03159.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
AIMS The oral fluoropyrimidine prodrug capecitabine is widely used in oncology. Capecitabine was designed to generate 5FU via the thymidine phosphorylase (TP) enzyme, preferentially expressed in tumoral tissues. Hand-foot syndrome (HFS) is a limiting toxicity of capecitabine. A pilot study on healthy volunteers was conducted in order to test the hypothesis that the occurrence of HFS could be related to tissue-specific expression of drug-metabolizing enzymes in the skin of the palm and sole. To this end, the expression of TP (activating pathway), dihydropyrimidine dehydrogenase (DPD, catabolic pathway) and cell proliferation (Ki67) were measured in the skin of the palm (target tissue for HFS) and of the lower back (control area). METHODS Two paired 4-mm diameter punch biopsy specimens (palm and back) were taken in 12 healthy volunteers. Immunohistochemical analyses were performed on frozen tissues. RESULTS Proliferation rate (Ki67 staining) was significantly higher in epidermal basal cells of the palm compared with the back (P = 0.008). Also, TP and DPD expression were significantly greater in the palm relative to the back (P = 0.039 and 0.012, respectively). TP and Ki67 expression were positively and significantly correlated in the palm. CONCLUSIONS The high proliferation rate of epidermal basal cells in the palm could make them more sensitive to the local action of cytotoxic drugs. TP-facilitated local production of 5FU in the palm during capecitabine treatment could explain the occurrence of HFS. This observation may support future strategies to limit the occurrence of HFS during capecitabine therapy.
Collapse
Affiliation(s)
- Gérard Milano
- INSERM ERI-21, Faculté de Médecine, CHU de Nice, Nice, France.
| | | | | | | | | | | | | | | |
Collapse
|