1
|
Huang WL, Chen CL, Lin ZJ, Hsieh CC, Hua MDS, Cheng CC, Cheng TH, Lai LJ, Chang CR. Soft X-ray tomography analysis of mitochondria dynamics in Saccharomyces cerevisiae. Biol Direct 2024; 19:126. [PMID: 39614383 DOI: 10.1186/s13062-024-00570-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/22/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND Mitochondria are highly dynamic organelles that constantly undergo processes of fission and fusion. The changes in mitochondrial dynamics shape the organellar morphology and influence cellular activity regulation. Soft X-ray tomography (SXT) allows for three-dimensional imaging of cellular structures while they remain in their natural, hydrated state, which omits the need for cell fixation and sectioning. Synchrotron facilities globally primarily use flat grids as sample carriers for SXT analysis, focusing on adherent cells. To investigate mitochondrial morphology and structure in hydrated yeast cells using SXT, it is necessary to establish a method that employs the flat grid system for examining cells in suspension. RESULTS We developed a procedure to adhere suspended yeast cells to a flat grid for SXT analysis. Using this protocol, we obtained images of wild-type yeast cells, strains with mitochondrial dynamics defects, and mutant cells possessing distinctive mitochondria. The SXT images align well with the results from fluorescent microscopy. Optimized organellar visualization was achieved by constructing three-dimensional models of entire yeast cells. CONCLUSIONS In this study, we characterized the mitochondrial network in yeast cells using SXT. The optimized sample preparation procedure was effective for suspended cells like yeast, utilizing a flat grid system to analyze mitochondrial structure through SXT. The findings corresponded with the mitochondrial morphology observed under fluorescence microscopy, both in regular and disrupted dynamic equilibrium. With the acquired image of unique mitochondria in Δhap2 cells, our results revealed that intricate details of organelles, such as mitochondria and vacuoles in yeast cells, can be characterized using SXT. Therefore, this optimized system supports the expanded application of SXT for studying organellar structure and morphology in suspended cells.
Collapse
Affiliation(s)
- Wei-Ling Huang
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Chang-Lin Chen
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
- Experimental Facility Division, National Synchrotron Radiation Research Center, Hsinchu, Taiwan
| | - Zi-Jing Lin
- Experimental Facility Division, National Synchrotron Radiation Research Center, Hsinchu, Taiwan
| | - Chia-Chun Hsieh
- Experimental Facility Division, National Synchrotron Radiation Research Center, Hsinchu, Taiwan
| | - Mo Da-Sang Hua
- Experimental Facility Division, National Synchrotron Radiation Research Center, Hsinchu, Taiwan
| | - Chih-Chan Cheng
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Tzu-Hao Cheng
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Lee-Jene Lai
- Experimental Facility Division, National Synchrotron Radiation Research Center, Hsinchu, Taiwan.
| | - Chuang-Rung Chang
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
2
|
Molecular Responses to High Hydrostatic Pressure in Eukaryotes: Genetic Insights from Studies on Saccharomyces cerevisiae. BIOLOGY 2021; 10:biology10121305. [PMID: 34943220 PMCID: PMC8698847 DOI: 10.3390/biology10121305] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/27/2021] [Accepted: 12/06/2021] [Indexed: 01/19/2023]
Abstract
Simple Summary High hydrostatic pressure generally has an adverse effect on the biological systems of organisms inhabiting lands or shallow sea regions. Deep-sea piezophiles that prefer high hydrostatic pressure for growth have garnered considerable scientific attention. However, the underlying molecular mechanisms of their adaptation to high pressure remains unclear owing to the challenges of culturing and manipulating the genome of piezophiles. Humans also experience high hydrostatic pressure during exercise. A long-term stay in space can cause muscle weakness in astronauts. Thus, the human body indubitably senses mechanical stresses such as hydrostatic pressure and gravity. Nonetheless, the mechanisms underlying biological responses to high pressures are not clearly understood. This review summarizes the occurrence and significance of high-pressure effects in eukaryotic cells and how the cell responds to increasing pressure by particularly focusing on the physiology of S. cerevisiae at the molecular level. Abstract High hydrostatic pressure is common mechanical stress in nature and is also experienced by the human body. Organisms in the Challenger Deep of the Mariana Trench are habitually exposed to pressures up to 110 MPa. Human joints are intermittently exposed to hydrostatic pressures of 3–10 MPa. Pressures less than 50 MPa do not deform or kill the cells. However, high pressure can have various effects on the cell’s biological processes. Although Saccharomyces cerevisiae is not a deep-sea piezophile, it can be used to elucidate the molecular mechanism underlying the cell’s responses to high pressures by applying basic knowledge of the effects of pressure on industrial processes involving microorganisms. We have explored the genes associated with the growth of S. cerevisiae under high pressure by employing functional genomic strategies and transcriptomics analysis and indicated a strong association between high-pressure signaling and the cell’s response to nutrient availability. This review summarizes the occurrence and significance of high-pressure effects on complex metabolic and genetic networks in eukaryotic cells and how the cell responds to increasing pressure by particularly focusing on the physiology of S. cerevisiae at the molecular level. Mechanosensation in humans has also been discussed.
Collapse
|
3
|
Abstract
Libraries of transposon-insertion alleles constitute powerful and versatile tools for large-scale analysis of yeast gene function. Transposon-insertion libraries are constructed most simply through mutagenesis of a plasmid-based genomic DNA library; modification of the mutagenizing transposon by incorporation of yeast selectable markers, recombination sites, and an epitope tag enables the application of insertion alleles for phenotypic screening and protein localization. In particular, yeast genomic DNA libraries have been mutagenized with modified bacterial transposons carrying the URA3 marker, lox recombination sites, and sequence encoding multiple copies of the hemagglutinin (HA) epitope. Mutagenesis with these transposons has yielded a large resource of insertion alleles affecting nearly 4000 yeast genes in total. Through well-established protocols, these insertion libraries can be introduced into the desired strain backgrounds and the resulting insertional mutants can be screened or systematically analyzed. Relative to alternative methods of UV irradiation or chemical mutagenesis, transposon-insertion alleles can be easily identified by PCR-based approaches or high-throughput sequencing. Transposon-insertion libraries also provide a cost-effective alternative to targeted deletion approaches, although, in contrast to start-codon to stop-codon deletions, insertion alleles might not represent true null-mutants. For protein-localization studies, transposon-insertion alleles can provide encoded epitope tags in-frame with internal codons; in many cases, these transposon-encoded epitope tags can provide a more accurate localization for proteins in which terminal sequences are crucial for intracellular targeting. Thus, overall, transposon-insertion libraries can be used quickly and economically and have a particular utility in screening for desired phenotypes and localization patterns in nonstandard genetic backgrounds.
Collapse
Affiliation(s)
- Anuj Kumar
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-1048
| |
Collapse
|
4
|
Genetic networks inducing invasive growth in Saccharomyces cerevisiae identified through systematic genome-wide overexpression. Genetics 2013; 193:1297-310. [PMID: 23410832 DOI: 10.1534/genetics.112.147876] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The budding yeast Saccharomyces cerevisiae can respond to nutritional and environmental stress by implementing a morphogenetic program wherein cells elongate and interconnect, forming pseudohyphal filaments. This growth transition has been studied extensively as a model signaling system with similarity to processes of hyphal development that are linked with virulence in related fungal pathogens. Classic studies have identified core pseudohyphal growth signaling modules in yeast; however, the scope of regulatory networks that control yeast filamentation is broad and incompletely defined. Here, we address the genetic basis of yeast pseudohyphal growth by implementing a systematic analysis of 4909 genes for overexpression phenotypes in a filamentous strain of S. cerevisiae. Our results identify 551 genes conferring exaggerated invasive growth upon overexpression under normal vegetative growth conditions. This cohort includes 79 genes lacking previous phenotypic characterization. Pathway enrichment analysis of the gene set identifies networks mediating mitogen-activated protein kinase (MAPK) signaling and cell cycle progression. In particular, overexpression screening suggests that nuclear export of the osmoresponsive MAPK Hog1p may enhance pseudohyphal growth. The function of nuclear Hog1p is unclear from previous studies, but our analysis using a nuclear-depleted form of Hog1p is consistent with a role for nuclear Hog1p in repressing pseudohyphal growth. Through epistasis and deletion studies, we also identified genetic relationships with the G2 cyclin Clb2p and phenotypes in filamentation induced by S-phase arrest. In sum, this work presents a unique and informative resource toward understanding the breadth of genes and pathways that collectively constitute the molecular basis of filamentation.
Collapse
|
5
|
Judeh T, Johnson C, Kumar A, Zhu D. TEAK: topology enrichment analysis framework for detecting activated biological subpathways. Nucleic Acids Res 2012; 41:1425-37. [PMID: 23268448 PMCID: PMC3561980 DOI: 10.1093/nar/gks1299] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
To mine gene expression data sets effectively, analysis frameworks need to incorporate methods that identify intergenic relationships within enriched biologically relevant subpathways. For this purpose, we developed the Topology Enrichment Analysis frameworK (TEAK). TEAK employs a novel in-house algorithm and a tailor-made Clique Percolation Method to extract linear and nonlinear KEGG subpathways, respectively. TEAK scores subpathways using the Bayesian Information Criterion for context specific data and the Kullback-Leibler divergence for case–control data. In this article, we utilized TEAK with experimental studies to analyze microarray data sets profiling stress responses in the model eukaryote Saccharomyces cerevisiae. Using a public microarray data set, we identified via TEAK linear sphingolipid metabolic subpathways activated during the yeast response to nitrogen stress, and phenotypic analyses of the corresponding deletion strains indicated previously unreported fitness defects for the dpl1Δ and lag1Δ mutants under conditions of nitrogen limitation. In addition, we studied the yeast filamentous response to nitrogen stress by profiling changes in transcript levels upon deletion of two key filamentous growth transcription factors, FLO8 and MSS11. Via TEAK we identified a nonlinear glycerophospholipid metabolism subpathway involving the SLC1 gene, which we found via mutational analysis to be required for yeast filamentous growth.
Collapse
Affiliation(s)
- Thair Judeh
- Department of Computer Science, Wayne State University, 5057 Woodward Avenue, Detroit, MI 48202, USA
| | | | | | | |
Collapse
|
6
|
Cusson M. The Molecular Biology Toolbox and Its Use in Basic and Applied Insect Science. Bioscience 2008. [DOI: 10.1641/b580806] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
7
|
Nagalakshmi U, Wang Z, Waern K, Shou C, Raha D, Gerstein M, Snyder M. The transcriptional landscape of the yeast genome defined by RNA sequencing. Science 2008; 320:1344-9. [PMID: 18451266 PMCID: PMC2951732 DOI: 10.1126/science.1158441] [Citation(s) in RCA: 1785] [Impact Index Per Article: 105.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The identification of untranslated regions, introns, and coding regions within an organism remains challenging. We developed a quantitative sequencing-based method called RNA-Seq for mapping transcribed regions, in which complementary DNA fragments are subjected to high-throughput sequencing and mapped to the genome. We applied RNA-Seq to generate a high-resolution transcriptome map of the yeast genome and demonstrated that most (74.5%) of the nonrepetitive sequence of the yeast genome is transcribed. We confirmed many known and predicted introns and demonstrated that others are not actively used. Alternative initiation codons and upstream open reading frames also were identified for many yeast genes. We also found unexpected 3'-end heterogeneity and the presence of many overlapping genes. These results indicate that the yeast transcriptome is more complex than previously appreciated.
Collapse
Affiliation(s)
- Ugrappa Nagalakshmi
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Wu JQ, Du J, Rozowsky J, Zhang Z, Urban AE, Euskirchen G, Weissman S, Gerstein M, Snyder M. Systematic analysis of transcribed loci in ENCODE regions using RACE sequencing reveals extensive transcription in the human genome. Genome Biol 2008; 9:R3. [PMID: 18173853 PMCID: PMC2395237 DOI: 10.1186/gb-2008-9-1-r3] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Revised: 12/06/2007] [Accepted: 01/03/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recent studies of the mammalian transcriptome have revealed a large number of additional transcribed regions and extraordinary complexity in transcript diversity. However, there is still much uncertainty regarding precisely what portion of the genome is transcribed, the exact structures of these novel transcripts, and the levels of the transcripts produced. RESULTS We have interrogated the transcribed loci in 420 selected ENCyclopedia Of DNA Elements (ENCODE) regions using rapid amplification of cDNA ends (RACE) sequencing. We analyzed annotated known gene regions, but primarily we focused on novel transcriptionally active regions (TARs), which were previously identified by high-density oligonucleotide tiling arrays and on random regions that were not believed to be transcribed. We found RACE sequencing to be very sensitive and were able to detect low levels of transcripts in specific cell types that were not detectable by microarrays. We also observed many instances of sense-antisense transcripts; further analysis suggests that many of the antisense transcripts (but not all) may be artifacts generated from the reverse transcription reaction. Our results show that the majority of the novel TARs analyzed (60%) are connected to other novel TARs or known exons. Of previously unannotated random regions, 17% were shown to produce overlapping transcripts. Furthermore, it is estimated that 9% of the novel transcripts encode proteins. CONCLUSION We conclude that RACE sequencing is an efficient, sensitive, and highly accurate method for characterization of the transcriptome of specific cell/tissue types. Using this method, it appears that much of the genome is represented in polyA+ RNA. Moreover, a fraction of the novel RNAs can encode protein and are likely to be functional.
Collapse
Affiliation(s)
- Jia Qian Wu
- Molecular, Cellular and Developmental Biology Department, KBT918, Yale University, New Haven, Connecticut 06511, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Kumar A. Teaching systems biology: an active-learning approach. CELL BIOLOGY EDUCATION 2007; 4:323-9. [PMID: 16341259 PMCID: PMC1305894 DOI: 10.1187/cbe.04-12-0057] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2004] [Revised: 07/12/2005] [Accepted: 07/19/2005] [Indexed: 11/20/2022]
Abstract
With genomics well established in modern molecular biology, recent studies have sought to further the discipline by integrating complementary methodologies into a holistic depiction of the molecular mechanisms underpinning cell function. This genomic subdiscipline, loosely termed "systems biology," presents the biology educator with both opportunities and obstacles: The benefit of exposing students to this cutting-edge scientific methodology is manifest, yet how does one convey the breadth and advantage of systems biology while still engaging the student? Here, I describe an active-learning approach to the presentation of systems biology. In graduate classes at the University of Michigan, Ann Arbor, I divided students into small groups and asked each group to interpret a sample data set (e.g., microarray data, two-hybrid data, homology-search results) describing a hypothetical signaling pathway. Mimicking realistic experimental results, each data set revealed a portion of this pathway; however, students were only able to reconstruct the full pathway by integrating all data sets, thereby exemplifying the utility in a systems biology approach. Student response to this cooperative exercise was extremely positive. In total, this approach provides an effective introduction to systems biology appropriate for students at both the undergraduate and graduate levels.
Collapse
Affiliation(s)
- Anuj Kumar
- Department of Molecular, Cellular, and Developmental Biology, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109-2216, USA.
| |
Collapse
|
10
|
Strange K. The end of "naive reductionism": rise of systems biology or renaissance of physiology? Am J Physiol Cell Physiol 2005; 288:C968-74. [PMID: 15840560 DOI: 10.1152/ajpcell.00598.2004] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Systems biology is an emerging discipline focused on tackling the enormous intellectual and technical challenges associated with translating genome sequence into a comprehensive understanding of how organisms are built and run. Physiology and systems biology share the goal of understanding the integrated function of complex, multicomponent biological systems ranging from interacting proteins that carry out specific tasks to whole organisms. Despite this common ground, physiology as an academic discipline runs the real risk of fading into the background and being superseded organizationally and administratively by systems biology. My goal in this article is to discuss briefly the cornerstones of modern systems biology, specifically functional genomics, nonmammalian model organisms and computational biology, and to emphasize the need to embrace them as essential components of 21st-century physiology departments and research and teaching programs.
Collapse
Affiliation(s)
- Kevin Strange
- Vanderbilt Univ. Medical Center, T-4208 Medical Center North, Nashville, TN 37232-2520, USA.
| |
Collapse
|
11
|
Zheng XS, Chan TF, Zhou HH. Genetic and Genomic Approaches to Identify and Study the Targets of Bioactive Small Molecules. ACTA ACUST UNITED AC 2004; 11:609-18. [PMID: 15157872 DOI: 10.1016/j.chembiol.2003.08.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Natural and synthetic bioactive small molecules form the backbone of modern therapeutics. These drugs primarily exert their effect by targeting cellular host or foreign proteins that are critical for the progression of disease. Therefore, a crucial step in the process of recognizing valuable new drug leads is identification of their protein targets; this is often a time consuming and difficult task. This report is intended to provide a comprehensive review of recent developments in genetic and genomic approaches to overcome the hurdle of discovering the protein targets of bioactive small molecules.
Collapse
Affiliation(s)
- Xiaofeng S Zheng
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110 USA.
| | | | | |
Collapse
|
12
|
Settles AM, Latshaw S, McCarty DR. Molecular analysis of high-copy insertion sites in maize. Nucleic Acids Res 2004; 32:e54. [PMID: 15060129 PMCID: PMC390377 DOI: 10.1093/nar/gnh052] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
High-copy transposon mutagenesis is an effective tool for creating gene disruptions in maize. In order to molecularly define transposon-induced disruptions on a genome-wide scale, we optimized TAIL-PCR to amplify genomic DNA flanking maize Robertson's Mutator insertions. Sample sequencing from 43 Mutator stocks and the W22 inbred line identified 676 non-redundant insertions, and only a small fraction of the flanking sequences showed significant similarity to maize repetitive sequences. We further designed and tested 79 arbitrary primers to identify 12 primers that amplify all Mutator insertions within a DNA sample at 3.1-fold redundancy. Importantly, the products are of sufficient size to use as substrates or probes for hybridization-based identification of gene disruptions. Our adaptation simplifies previously published TAIL-PCR protocols and should be transferable to other high-copy insertional mutagens.
Collapse
Affiliation(s)
- A Mark Settles
- University of Florida, PO Box 110690, Gainesville, FL 32611-0690, USA.
| | | | | |
Collapse
|
13
|
Sardini A, Amey JS, Weylandt KH, Nobles M, Valverde MA, Higgins CF. Cell volume regulation and swelling-activated chloride channels. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2004; 1618:153-62. [PMID: 14729152 DOI: 10.1016/j.bbamem.2003.10.008] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Maintenance of a constant volume is essential for normal cell function. Following cell swelling, as a consequence of reduction of extracellular osmolarity or increase of intracellular content of osmolytes, animal cells are able to restore their original volume by activation of potassium and chloride conductances. The loss of these ions, followed passively by water, is responsible for the homeostatic response called regulatory volume decrease (RVD). Activation of a chloride conductance upon cell swelling is a key step in RVD. Several proteins have been proposed as candidates for this chloride conductance. The status of the field is reviewed, with particular emphasis on ClC-3, a member of the ClC family which has been recently proposed as the chloride channel involved in cell volume regulation.
Collapse
Affiliation(s)
- Alessandro Sardini
- MRC Clinical Sciences Centre, Imperial College School of Medicine, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK.
| | | | | | | | | | | |
Collapse
|
14
|
Affiliation(s)
- Michael Snyder
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | | |
Collapse
|
15
|
Theiss S, Köhler GA, Kretschmar M, Nichterlein T, Hacker J. New molecular methods to study gene functions in Candida infections. Mycoses 2002; 45:345-50. [PMID: 12421279 DOI: 10.1046/j.1439-0507.2002.00792.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Candida albicans has become a model system for human pathogenic fungi in clinical research, mainly due to the increasing number of Candida infections. Molecular techniques to study C. albicans virulence properties have been improved over the last few years, despite difficulties in genetic manipulation of this fungus. Some of the recent achievements from our own laboratory or from other groups are described in this article. The molecular analysis of the recently identified ATP-dependent transporter Mlt1 using the green fluorescent protein (GFP) as reporter for protein localization and the dominant MPAR gene as a selection marker for gene inactivation provides an example for the study of gene functions in C. albicans.
Collapse
Affiliation(s)
- S Theiss
- Zentrum für Infektionsforschung, Universität Würzburg, Germany
| | | | | | | | | |
Collapse
|
16
|
Jorgensen P, Nelson B, Robinson MD, Chen Y, Andrews B, Tyers M, Boone C. High-resolution genetic mapping with ordered arrays of Saccharomyces cerevisiae deletion mutants. Genetics 2002; 162:1091-9. [PMID: 12454058 PMCID: PMC1462329 DOI: 10.1093/genetics/162.3.1091] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a method for high-resolution genetic mapping that takes advantage of the ordered set of viable gene deletion mutants, which form a set of colinear markers covering almost every centimorgan of the Saccharomyces cerevisiae genome, and of the synthetic genetic array (SGA) system, which automates the construction of double mutants formed by mating and meiotic recombination. The Cbk1 kinase signaling pathway, which consists minimally of CBK1, MOB2, KIC1, HYM1, and TAO3 (PAG1), controls polarized morphogenesis and activation of the Ace2 transcription factor. Deletion mutations in the Cbk1 pathway genes are tolerated differently by common laboratory strains of S. cerevisiae, being viable in the W303 background but dead in the S288C background. Genetic analysis indicated that the lethality of Cbk1 pathway deletions in the S288C background was suppressed by a single allele specific to the W303 background. SGA mapping (SGAM) was used to locate this W303-specific suppressor to the SSD1 locus, which contains a known polymorphism that appears to compromise SSD1 function. This procedure should map any mutation, dominant or recessive, whose phenotype is epistatic to wild type, that is, a phenotype that can be scored from a mixed population of cells obtained by germination of both mutant and wild-type spores. In principle, SGAM should be applicable to the analysis of multigenic traits. Large-scale construction of ordered mutations in other model organisms would broaden the application of this approach.
Collapse
Affiliation(s)
- Paul Jorgensen
- Department of Medical Genetics and Microbiology, University of Toronto, Ontario M5S 1A8, Canada
| | | | | | | | | | | | | |
Collapse
|
17
|
Szabados L, Kovács I, Oberschall A, Abrahám E, Kerekes I, Zsigmond L, Nagy R, Alvarado M, Krasovskaja I, Gál M, Berente A, Rédei GP, Haim AB, Koncz C. Distribution of 1000 sequenced T-DNA tags in the Arabidopsis genome. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2002; 32:233-42. [PMID: 12383088 DOI: 10.1046/j.1365-313x.2002.01417.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Induction of knockout mutations by T-DNA insertion mutagenesis is widely used in studies of plant gene functions. To assess the efficiency of this genetic approach, we have sequenced PCR amplified junctions of 1000 T-DNA insertions and analysed their distribution in the Arabidopsis genome. Map positions of 973 tags could be determined unequivocally, indicating that the majority of T-DNA insertions landed in chromosomal domains of high gene density. Only 4.7% of insertions were found in interspersed, centromeric, telomeric and rDNA repeats, whereas 0.6% of sequenced tags identified chromosomally integrated segments of organellar DNAs. 35.4% of T-DNAs were localized in intervals flanked by ATG and stop codons of predicted genes, showing a distribution of 62.2% in exons and 37.8% in introns. The frequency of T-DNA tags in coding and intergenic regions showed a good correlation with the predicted size distribution of these sequences in the genome. However, the frequency of T-DNA insertions in 3'- and 5'-regulatory regions of genes, corresponding to 300 bp intervals 3' downstream of stop and 5' upstream of ATG codons, was 1.7-2.3-fold higher than in any similar interval elsewhere in the genome. The additive frequency of insertions in 5'-regulatory regions and coding domains provided an estimate for the mutation rate, suggesting that 47.8% of mapped T-DNA tags induced knockout mutations in Arabidopsis.
Collapse
Affiliation(s)
- László Szabados
- Institute of Plant Biology, Biological Research Center of Hungarian Academy of Sciences, H-6701 Szeged, PO Box 521, Temesvári krt 62, Hungary
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Genomics is the study of the structure and function of the genome: the set of genetic information encoded in the DNA of the nucleus and organelles of an organism. It is a dynamic field that combines traditional paths of inquiry with new approaches that would have been impossible without recent technological developments. Much of the recent focus has been on obtaining the sequence of entire genomes, determining the order and organization of the genes, and developing libraries that provide immediate physical access to any desired DNA fragment. This has enabled functional studies on a genome-wide level, including analysis of the genetic basis of complex traits, quantification of global patterns of gene expression, and systematic gene disruption projects. The successful contribution of genomics to problems in applied entomology requires the cooperation of the private and public sectors to build upon the knowledge derived from the Drosophila genome and effectively develop models for other insect Orders.
Collapse
Affiliation(s)
- David G Heckel
- Centre for Environmental Stress and Adaptation Research, Department of Genetics, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
19
|
Abstract
Small, cell-permeable and target-specific chemical ligands offer great therapeutic value. They can also be used to dissect diverse biological processes, such as cellular metabolism, signal transduction and intracellular protein trafficking. With cutting-edge technologies in synthetic chemistry and ligand screening and identification, chemical ligands have become more readily available for research. Chemical ligands are used increasingly in genomics approaches to understand the global functions of proteins, an emerging frontier called 'chemical genomics'. Chemical genomics should greatly accelerate discovery in biology and medicine in the near future.
Collapse
Affiliation(s)
- X F Steven Zheng
- Department of Pathology, and Immunology, Campus Box 8069, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
| | | |
Collapse
|
20
|
Abstract
The completion of the DNA sequence of the budding yeast Saccharomyces cerevisiae resulted in the identification of a large number of genes. However, the function of most of these genes is not known. One of the best ways to determine gene function is to carry out mutational and phenotypic analysis. In recent years, several approaches have been developed for the mutational analysis of yeast genes on a large scale. These include transposon-based insertional mutagenesis, and systematic deletions using PCR-based approaches. These projects have produced collections of yeast strains and plasmid alleles that can be screened using novel approaches. Analysis of these collections by the scientific community promises to reveal a great deal of biological information about this organism.
Collapse
Affiliation(s)
- S Vidan
- Department of Molecular, Cellular and Developmental Biology, Yale University, PO Box 208103, New Haven, CT 06520-8103, USA
| | | |
Collapse
|
21
|
Current Awareness on Comparative and Functional Genomics. Comp Funct Genomics 2001. [PMCID: PMC2447185 DOI: 10.1002/cfg.55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
22
|
Piano F, Schetter AJ, Mangone M, Stein L, Kemphues KJ. RNAi analysis of genes expressed in the ovary of Caenorhabditis elegans. Curr Biol 2000; 10:1619-22. [PMID: 11137018 DOI: 10.1016/s0960-9822(00)00869-1] [Citation(s) in RCA: 166] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
As a step towards comprehensive functional analysis of genomes, systematic gene knockout projects have been initiated in several organisms [1]. In metazoans like C. elegans, however, maternal contribution can mask the effects of gene knockouts on embryogenesis. RNA interference (RNAi) provides an alternative rapid approach to obtain loss-of-function information that can also reveal embryonic roles for the genes targeted [2,3]. We have used RNAi to analyze a random set of ovarian transcripts and have identified 81 genes with essential roles in embryogenesis. Surprisingly, none of them maps on the X chromosome. Of these 81 genes, 68 showed defects before the eight-cell stage and could be grouped into ten phenotypic classes. To archive and distribute these data we have developed a database system directly linked to the C. elegans database (Wormbase). We conclude that screening cDNA libraries by RNAi is an efficient way of obtaining in vivo function for a large group of genes. Furthermore, this approach is directly applicable to other organisms sensitive to RNAi and whose genomes have not yet been sequenced.
Collapse
Affiliation(s)
- F Piano
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA.
| | | | | | | | | |
Collapse
|