1
|
Bannister SA, Kidd SP, Kirby E, Shah S, Thomas A, Vipond R, Elmore MJ, Telfer Brunton A, Marsh P, Green S, Silman NJ, Kempsell KE. Development and Assessment of a Diagnostic DNA Oligonucleotide Microarray for Detection and Typing of Meningitis-Associated Bacterial Species. High Throughput 2018; 7:ht7040032. [PMID: 30332776 PMCID: PMC6306750 DOI: 10.3390/ht7040032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/11/2018] [Accepted: 09/21/2018] [Indexed: 02/03/2023] Open
Abstract
Meningitis is commonly caused by infection with a variety of bacterial or viral pathogens. Acute bacterial meningitis (ABM) can cause severe disease, which can progress rapidly to a critical life-threatening condition. Rapid diagnosis of ABM is critical, as this is most commonly associated with severe sequelae with associated high mortality and morbidity rates compared to viral meningitis, which is less severe and self-limiting. We have designed a microarray for detection and diagnosis of ABM. This has been validated using randomly amplified DNA targets (RADT), comparing buffers with or without formamide, in glass slide format or on the Alere ArrayTubeTM (Alere Technologies GmbH) microarray platform. Pathogen-specific signals were observed using purified bacterial nucleic acids and to a lesser extent using patient cerebral spinal fluid (CSF) samples, with some technical issues observed using RADT and glass slides. Repurposing the array onto the Alere ArrayTubeTM platform and using a targeted amplification system increased specific and reduced nonspecific hybridization signals using both pathogen nucleic and patient CSF DNA targets, better revealing pathogen-specific signals although sensitivity was still reduced in the latter. This diagnostic microarray is useful as a laboratory diagnostic tool for species and strain designation for ABM, rather than for primary diagnosis.
Collapse
Affiliation(s)
| | - Stephen P Kidd
- Public Health England, Porton Down, Salisbury SP4 0JG, UK.
| | | | - Sonal Shah
- Public Health England, Porton Down, Salisbury SP4 0JG, UK.
| | - Anvy Thomas
- Public Health England, Porton Down, Salisbury SP4 0JG, UK.
| | - Richard Vipond
- Public Health England, Porton Down, Salisbury SP4 0JG, UK.
| | | | - Andrew Telfer Brunton
- Department of Clinical Microbiology, Royal Cornwall Hospitals NHS Trust, Penventinnie Lane, Treliske, Truro, Cornwall TR1 3LQ, UK.
| | - Peter Marsh
- Public Health England Laboratory Southampton, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK.
| | - Steve Green
- Public Health England Laboratory Southampton, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK.
| | - Nigel J Silman
- Public Health England, Porton Down, Salisbury SP4 0JG, UK.
| | | |
Collapse
|
2
|
Siena E, Bodini M, Medini D. Interplay Between Virulence and Variability Factors as a Potential Driver of Invasive Meningococcal Disease. Comput Struct Biotechnol J 2018; 16:61-69. [PMID: 29686800 PMCID: PMC5910500 DOI: 10.1016/j.csbj.2018.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 01/29/2018] [Accepted: 02/11/2018] [Indexed: 01/09/2023] Open
Abstract
Neisseria meningitidis (Nm) is frequently found in the upper respiratory tract of the human population. Despite its prevalence as a commensal organism, Nm can occasionally invade the pharyngeal mucosal epithelium causing septicemia and life-threatening disease. A number of studies have tried to identify factors that are responsible for the onset of a virulent phenotype. Despite this however, we still miss clear causative elements. Several factors have been identified to be associated to an increased susceptibility to meningococcal disease in humans. None of them, however, could unambiguously discriminate healthy carrier from infected individuals. Similarly, comparative studies of virulent and apathogenic strains failed to identify virulence factors that could explain the emergence of the pathogenic phenotype. In line with this, a recent study of within host evolution found that Nm accumulates genomic changes during the asymptomatic carriage phase and that these are likely to contribute to the shift to a pathogenic phenotype. These results suggest that the presence of virulence factors in the meningococcal genome is not a sufficient condition for developing virulent traits, but is rather the ability to promote phenotypic variation, through the stochastic assortment of the repertoire of such factors, which could explain the occasional and unpredictable onset of IMD. Here, we present a series of argumentations supporting the hypothesis that invasive meningococcal disease comes as a result of the coexistence of bacterial virulence and variability factors in a plot that can be further complicated by additional latent factors, like host pre-existing immune status and genetic predisposition.
Collapse
|
3
|
Fagnocchi L, Bottini S, Golfieri G, Fantappiè L, Ferlicca F, Antunes A, Guadagnuolo S, Del Tordello E, Siena E, Serruto D, Scarlato V, Muzzi A, Delany I. Global transcriptome analysis reveals small RNAs affecting Neisseria meningitidis bacteremia. PLoS One 2015; 10:e0126325. [PMID: 25951061 PMCID: PMC4423775 DOI: 10.1371/journal.pone.0126325] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 03/31/2015] [Indexed: 12/11/2022] Open
Abstract
Most bacterial small RNAs (sRNAs) are post-transcriptional regulators involved in adaptive responses, controlling gene expression by modulating translation or stability of their target mRNAs often in concert with the RNA chaperone Hfq. Neisseria meningitides, the leading cause of bacterial meningitis, is able to adapt to different host niches during human infection. However, only a few sRNAs and their functions have been fully described to date. Recently, transcriptional expression profiling of N. meningitides in human blood ex vivo revealed 91 differentially expressed putative sRNAs. Here we expanded this analysis by performing a global transcriptome study after exposure of N. meningitides to physiologically relevant stress signals (e.g. heat shock, oxidative stress, iron and carbon source limitation). and we identified putative sRNAs that were differentially expressed in vitro. A set of 98 putative sRNAs was obtained by analyzing transcriptome data and 8 new sRNAs were validated, both by Northern blot and by primer extension techniques. Deletion of selected sRNAs caused attenuation of N. meningitides infection in the in vivo infant rat model, leading to the identification of the first sRNAs influencing meningococcal bacteremia. Further analysis indicated that one of the sRNAs affecting bacteremia responded to carbon source availability through repression by a GntR-like transcriptional regulator. Both the sRNA and the GntR-like regulator are implicated in the control of gene expression from a common network involved in energy metabolism.
Collapse
Affiliation(s)
| | | | | | | | | | - Ana Antunes
- Novartis Vaccines and Diagnotics, Siena, Italy
| | | | | | | | | | - Vincenzo Scarlato
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | | | - Isabel Delany
- Novartis Vaccines and Diagnotics, Siena, Italy
- * E-mail:
| |
Collapse
|
4
|
Transcriptional regulation of the nadA gene in Neisseria meningitidis impacts the prediction of coverage of a multicomponent meningococcal serogroup B vaccine. Infect Immun 2012; 81:560-9. [PMID: 23230289 DOI: 10.1128/iai.01085-12] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The NadA adhesin is a major component of 4CMenB, a novel vaccine to prevent meningococcus serogroup B (MenB) infection. Under in vitro growth conditions, nadA is repressed by the regulator NadR and poorly expressed, resulting in inefficient killing of MenB strains by anti-NadA antibodies. Interestingly, sera from children infected with strains that express low levels of NadA in laboratory growth nevertheless recognize the NadA antigen, suggesting that NadA expression during infection may be different from that observed in vitro. In a strain panel covering a range of NadA levels, repression was relieved through deleting nadR. All nadR knockout strains expressed high levels of NadA and were efficiently killed by sera from subjects immunized with 4CMenB. A selected MenB strain, NGP165, mismatched for other vaccine antigens, is not killed by sera from immunized infants when the strain is grown in vitro. However, in an in vivo passive protection model, the same sera effectively protected infant rats from bacteremia with NGP165. Furthermore, we identify a novel hydroxyphenylacetic acid (HPA) derivative, reported by others to be produced during inflammation, which induces expression of NadA in vitro, leading to efficient antibody-mediated killing. Finally, using bioluminescent reporters, nadA expression in the infant rat model was induced in vivo at 3 h postinfection. Our results suggest that during infectious disease, NadR repression is alleviated due to niche-specific signals, resulting in high levels of NadA expression from any nadA-positive (nadA(+)) strain and therefore efficient killing by anti-NadA antibodies elicited by the 4CMenB vaccine.
Collapse
|
5
|
Fantappiè L, Oriente F, Muzzi A, Serruto D, Scarlato V, Delany I. A novel Hfq-dependent sRNA that is under FNR control and is synthesized in oxygen limitation in Neisseria meningitidis. Mol Microbiol 2011; 80:507-23. [DOI: 10.1111/j.1365-2958.2011.07592.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Chaulk S, Lu J, Tan K, Arthur DC, Edwards RA, Frost LS, Joachimiak A, Glover JNM. N. meningitidis 1681 is a member of the FinO family of RNA chaperones. RNA Biol 2010; 7:812-9. [PMID: 21045552 DOI: 10.4161/rna.7.6.13688] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The conjugative transfer of F-like plasmids between bacteria is regulated by the plasmid-encoded RNA chaperone, FinO, which facilitates sense - antisense RNA interactions to regulate plasmid gene expression. FinO was thought to adopt a unique structure, however many putative homologs have been identified in microbial genomes and are considered members of the FinO_conjugation_repressor superfamily. We were interested in determining whether other members were also able to bind RNA and promote duplex formation, suggesting that this motif does indeed identify a putative RNA chaperone. We determined the crystal structure of the N. meningitidis MC58 protein NMB1681. It revealed striking similarity to FinO, with a conserved fold and a large, positively charged surface that could function in RNA interactions. Using assays developed to study FinO-FinP sRNA interactions, NMB1681, like FinO, bound tightly to FinP RNA stem-loops with short 5' and 3' single-stranded tails but not to ssRNA. It also was able to catalyze strand exchange between an RNA duplex and a complementary single-strand, and facilitated duplexing between complementary RNA hairpins. Finally, NMB1681 was able to rescue a finO deficiency and repress F plasmid conjugation. This study strongly suggests that NMB1681 is a FinO-like RNA chaperone that likely regulates gene expression through RNA-based mechanisms in N. meningitidis.
Collapse
Affiliation(s)
- Steven Chaulk
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Metruccio MME, Pigozzi E, Roncarati D, Berlanda Scorza F, Norais N, Hill SA, Scarlato V, Delany I. A novel phase variation mechanism in the meningococcus driven by a ligand-responsive repressor and differential spacing of distal promoter elements. PLoS Pathog 2009; 5:e1000710. [PMID: 20041170 PMCID: PMC2791445 DOI: 10.1371/journal.ppat.1000710] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Accepted: 11/25/2009] [Indexed: 01/14/2023] Open
Abstract
Phase variable expression, mediated by high frequency reversible changes in the length of simple sequence repeats, facilitates adaptation of bacterial populations to changing environments and is frequently important in bacterial virulence. Here we elucidate a novel phase variable mechanism for NadA, an adhesin and invasin of Neisseria meningitidis. The NadR repressor protein binds to operators flanking the phase variable tract and contributes to the differential expression levels of phase variant promoters with different numbers of repeats likely due to different spacing between operators. We show that IHF binds between these operators, and may permit looping of the promoter, allowing interaction of NadR at operators located distally or overlapping the promoter. The 4-hydroxyphenylacetic acid, a metabolite of aromatic amino acid catabolism that is secreted in saliva, induces NadA expression by inhibiting the DNA binding activity of the repressor. When induced, only minor differences are evident between NadR-independent transcription levels of promoter phase variants and are likely due to differential RNA polymerase contacts leading to altered promoter activity. Our results suggest that NadA expression is under both stochastic and tight environmental-sensing regulatory control, both mediated by the NadR repressor, and may be induced during colonization of the oropharynx where it plays a major role in the successful adhesion and invasion of the mucosa. Hence, simple sequence repeats in promoter regions may be a strategy used by host-adapted bacterial pathogens to randomly switch between expression states that may nonetheless still be induced by appropriate niche-specific signals. Diversification strategies, through genetic switches that randomly turn genes on and off, occur in many pathogenic bacterial populations and confer adaptive advantages to new environments and evasion of host immune responses. This is often mediated by spontaneous changes in the length of short DNA sequence repeats located in protein-coding regions or upstream regulatory regions, leading to deactivation or alteration of the associated genes. In this study we describe how a repeat sequence, distally upstream of the promoter region, alters the expression of an important adhesin of N. meningitidis. We identify the major mediator of this control, a negative regulator NadR, which binds to sequences flanking the variable repeat. Changes in the spacing between these sequences affect the ability of NadR to shut down expression from the promoter. We also identify a relevant metabolite that can block NadR activity and therefore act as a signal to induce adhesin expression. This finding sheds new light on the role of DNA-repeats identified in intergenic regions for which no role could be hypothesised, and may be a model mechanism used by bacterial pathogens for fine-tuning diversity within the host. Elucidating these mechanisms can aid in our understanding and prevention of disease.
Collapse
Affiliation(s)
| | - Eva Pigozzi
- Novartis Vaccines and Diagnostics, Siena, Italy
| | | | | | | | - Stuart A. Hill
- Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois, United States of America
| | - Vincenzo Scarlato
- Novartis Vaccines and Diagnostics, Siena, Italy
- Department of Biology, University of Bologna, Bologna, Italy
| | - Isabel Delany
- Novartis Vaccines and Diagnostics, Siena, Italy
- * E-mail:
| |
Collapse
|
8
|
Caugant DA, Maiden MCJ. Meningococcal carriage and disease--population biology and evolution. Vaccine 2009; 27 Suppl 2:B64-70. [PMID: 19464092 PMCID: PMC2719693 DOI: 10.1016/j.vaccine.2009.04.061] [Citation(s) in RCA: 267] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Meningococcal disease occurs worldwide with incidence rates varying from 1 to 1000 cases per 100,000. The causative organism, Neisseria meningitidis, is an obligate commensal of humans, which normally colonizes the mucosa of the upper respiratory tract without causing invasive disease, a phenomenon known as carriage. Studies using molecular methods have demonstrated the extensive genetic diversity of meningocococci isolated from carriers, in contrast to a limited number of genetic types, known as the hyperinvasive lineages, associated with invasive disease. Population and evolutionary models that invoke positive selection can be used to resolve the apparent paradox of virulent lineages persisting during the global spread of a non-clonal and normally commensal bacterium. The application of insights gained from studies of meningococcal population biology and evolution is important in understanding the spread of disease, as well as in vaccine development and implementation, especially with regard to the challenge of producing comprehensive vaccines based on sub-capsular antigens and measuring their effectiveness.
Collapse
Affiliation(s)
- Dominique A Caugant
- WHO Collaborating Centre for Reference and Research on Meningococci, Norwegian Institute of Public Health, Oslo, Norway.
| | | |
Collapse
|
9
|
The RNA chaperone Hfq is involved in stress response and virulence in Neisseria meningitidis and is a pleiotropic regulator of protein expression. Infect Immun 2009; 77:1842-53. [PMID: 19223479 DOI: 10.1128/iai.01216-08] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The well-conserved protein Hfq has emerged as the key modulator of riboregulation in bacteria. This protein is thought to function as an RNA chaperone and to facilitate base pairing between small regulatory RNA (sRNA) and mRNA targets, and many sRNAs are dependent on the Hfq protein for their regulatory functions. To address the possible role of Hfq in riboregulated circuits in Neisseria meningitidis, we generated an Hfq mutant of the MC58 strain, and the knockout mutant has pleiotropic phenotypes; it has a general growth phenotype in vitro in culture media, and it is sensitive to a wide range of stresses, including those that it may encounter in the host. Furthermore, the expression profile of a vast number of proteins is clearly altered in the mutant, and we have identified 27 proteins by proteomics. All of the phenotypes tested to date are also restored by complementation of Hfq expression in the mutant strain. Importantly, in ex vivo and in vivo models of infection the Hfq mutant is attenuated. These data indicate that Hfq plays a key role in stress response and virulence, and we propose a major role for Hfq in regulation of gene expression. Moreover, this study suggests that in meningococcus there is a large Hfq-mediated sRNA network which so far is largely unexplored.
Collapse
|
10
|
Compartmentalization of the inflammatory response in meningococcal peritonitis. Shock 2008; 30:336; author reply 336-7. [DOI: 10.1097/shk.0b013e3181647101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Talà A, Progida C, De Stefano M, Cogli L, Spinosa MR, Bucci C, Alifano P. The HrpB-HrpA two-partner secretion system is essential for intracellular survival of Neisseria meningitidis. Cell Microbiol 2008; 10:2461-82. [PMID: 18680551 DOI: 10.1111/j.1462-5822.2008.01222.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In this study we used HeLa cells to investigate the role of the HrpB-HrpA two-partner secretion (TPS) system in the meningococcal infection cycle. Although there is evidence that several pathogenic microorganisms may use TPS systems to colonize epithelial surfaces, the meningococcal HrpB-HrpA TPS system was not primarily involved in adhesion to or invasion of HeLa cells. Instead, this system was essential for intracellular survival and escape from infected cells. Gentamicin protection assays, immunofluorescence and transmission electron microscopy analyses demonstrated that, in contrast to the wild-type strain, HrpB-HrpA-deficient mutants were primarily confined to late endocytic vacuoles and trapped in HeLa cells. Haemolytic tests using human erythrocytes suggested that the secreted HrpA proteins could act as manganese-dependent lysins directly involved in mediating vacuole escape. In addition, we demonstrated that escape of wild-type meningococci from infected cells required the use of an intact tubulin cytoskeleton and that the hrpB-hrpA genes, which are absent in other Neisseria spp., were upregulated during infection.
Collapse
Affiliation(s)
- Adelfia Talà
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (DiSTeBA), Università del Salento, Via Provinciale Monteroni, 73100 Lecce, Italy
| | | | | | | | | | | | | |
Collapse
|
12
|
Talà A, De Stefano M, Bucci C, Alifano P. Reverse transcriptase-PCR differential display analysis of meningococcal transcripts during infection of human cells: up-regulation of priA and its role in intracellular replication. BMC Microbiol 2008; 8:131. [PMID: 18664272 PMCID: PMC2527323 DOI: 10.1186/1471-2180-8-131] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2008] [Accepted: 07/29/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In vitro studies with cell line infection models are beginning to disclose the strategies that Neisseria meningitidis uses to survive and multiply inside the environment of the infected host cell. The goal of this study was to identify novel virulence determinants that are involved in this process using an in vitro infection system. RESULTS By using reverse transcriptase-PCR differential display we have identified a set of meningococcal genes significantly up-regulated during residence of the bacteria in infected HeLa cells including genes involved in L-glutamate transport (gltT operon), citrate metabolism (gltA), disulfide bond formation (dsbC), two-partner secretion (hrpA-hrpB), capsulation (lipA), and DNA replication/repair (priA). The role of PriA, a protein that in Escherichia coli plays a central role in replication restart of collapsed or arrested DNA replication forks, has been investigated. priA inactivation resulted in a number of growth phenotypes that were fully complemented by supplying a functional copy of priA. The priA-defective mutant exhibited reduced viability during late logarithmic growth phase. This defect was more severe when it was incubated under oxygen-limiting conditions using nitrite as terminal electron acceptors in anaerobic respiration. When compared to wild type it was more sensitive to hydrogen peroxide and the nitric oxide generator sodium nitroprusside. The priA-defective strain was not affected in its ability to invade HeLa cells, but, noticeably, exhibited severely impaired intracellular replication and, at variance with wild type and complemented strains, it co-localized with lysosomal associated membrane protein 1. CONCLUSION In conclusion, our study i.) demonstrates the efficacy of the experimental strategy that we describe for discovering novel virulence determinants of N. meningitidis and ii.) provides evidence for a role of priA in preventing both oxidative and nitrosative injury, and in intracellular meningococcal replication.
Collapse
Affiliation(s)
- Adelfia Talà
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università degli Studi del Salento, Via Monteroni, 73100 Lecce, Italy.
| | | | | | | |
Collapse
|
13
|
Oldfield NJ, Bland SJ, Taraktsoglou M, Dos Ramos FJ, Robinson K, Wooldridge KG, Ala'Aldeen DAA. T-cell stimulating protein A (TspA) of Neisseria meningitidis is required for optimal adhesion to human cells. Cell Microbiol 2007; 9:463-78. [PMID: 16965515 DOI: 10.1111/j.1462-5822.2006.00803.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
T-cell stimulating protein A (TspA) is an immunogenic, T-cell and B-cell stimulating protein of Neisseria meningitidis. Sequence similarity between TspA and FimV, a Pseudomonas aeruginosa protein involved in twitching motility, suggested a link between TspA and type IV pili (Tfp). To determine the role of TspA an isogenic deletion mutant was created. Loss of TspA did not affect twitching motility or piliation indicating that there are functional differences between TspA and FimV. Mutation of tspA led to a significant reduction in adhesion of meningococci to meningothelial and HEp-2 cells, which was not due to a lack of transcription of adjacent genes or pilC1. Other Tfp-mediated phenotypes (i.e. auto-aggregation and transformation competence) were not altered. Our results indicate that the role of TspA in adhesion is unlikely to be directly linked to the function of Tfp. TspA was expressed by all N. meningitidis and Neisseria polysaccharea strains examined but not by Neisseria gonorrhoeae or Neisseria lactamica, although sequences with homology to tspA were present in their genomes. In summary, TspA is a highly conserved antigen that is required for optimal adhesion of meningococci to human cells.
Collapse
Affiliation(s)
- Neil J Oldfield
- Molecular Bacteriology and Immunology Group, Institute of Infection, Immunity and Inflammation, School of Molecular Medical Sciences, Queen's Medical Centre, University of Nottingham, UK
| | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
The genomic era brought with it the capacity to unlock complex interactions in organisms and biological systems. Currently, by exploiting genomic and associated protein information through in silico analyses, postgenomic research is developing rapidly. This field, which encompasses functional genomics, structural genomics, transcriptomics, pharmacogenomics, proteomics and metabolomics, allows for a systems-wide approach to biological studies. To date, bacterial postgenomic research has focused mainly on a few representative pathogenic species, leaving the vast majority of the microbial community relatively overlooked. Amongst the under-represented microorganisms are the cyanobacteria, which are important for their beneficial natural product production, bioremediation and energy applications. Here, we highlight the current status of cyanobacterial postgenomic research and assess the potential for future metabolic engineering and "cell factory" or "microbial cell" development.
Collapse
Affiliation(s)
- Adam M Burja
- Biological and Environmental Systems Group, Department of Chemical and Process Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, UK
| | | | | |
Collapse
|
15
|
Suker J, Feavers IM. Prospects offered by genome studies for combating meningococcal disease by vaccination. Pharmacogenomics 2001; 2:273-83. [PMID: 11535115 DOI: 10.1517/14622416.2.3.273] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Meningococcal disease was first recognised and Neisseria meningitidis isolated as the causative agent over 100 years ago, but despite more than a century of research, attempts to eliminate this distressing illness have so far been thwarted. The main problem lies in the fact that N. meningitidis usually exists as a harmless commensal inhabitant of the human nasopharynx, the pathogenic state being the exception rather than the norm. As man is its only host, the meningococcus is uniquely adapted to this ecological niche and has evolved an array of mechanisms for evading clearance by the human immune response. Progress has been made in combating the disease by developing vaccines that target specific pathogenic serogroups of meningococci. However, a fully comprehensive vaccine that protects against all pathogenic strains is still just beyond reach. The publication of the genome sequences of two meningococcal strains, one each from serogroups A and B and the imminent completion of a third illustrates the extent of the problems to be overcome, namely the vast array of genetic mechanisms for the generation of meningococcal diversity. Fortunately, genome studies also provide new hope for solutions to these problems in the potential for a greater understanding of meningococcal pathogenesis and possibilities for the identification of new vaccine candidates. This review describes some of the approaches that are currently being used to exploit the information from meningococcal genome sequences and seeks to identify future prospects for combating meningococcal disease.
Collapse
Affiliation(s)
- J Suker
- Division of Bacteriology, National Institute of Biological Standards & Control, Blanche Lane, South Mimms, Potters Bar, Herts., EN6 3QG, UK.
| | | |
Collapse
|
16
|
Current Awareness on Comparative and Functional Genomics. Comp Funct Genomics 2001. [PMCID: PMC2448396 DOI: 10.1002/cfg.59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|