1
|
Huang L. Unveiling the beauty of Archaea. SCIENCE CHINA. LIFE SCIENCES 2012; 55:375-6. [PMID: 22645081 DOI: 10.1007/s11427-012-4323-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Indexed: 11/30/2022]
|
2
|
Chattopadhyay S, Sahoo S, Kanner WA, Chakrabarti J. Pressures in archaeal protein coding genes: a comparative study. Comp Funct Genomics 2010; 4:56-65. [PMID: 18629113 PMCID: PMC2447400 DOI: 10.1002/cfg.246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2002] [Accepted: 11/25/2002] [Indexed: 11/06/2022] Open
Abstract
Our studies on the bases of codons from 11 completely sequenced archaeal genomes show that, as we move from GC-rich to AT-rich protein-coding gene-containing species, the differences between G and C and between A and T, the purine load (AG content), and also the overall persistence (i.e. the tendency of a base to be followed by the same base) within codons, all increase almost simultaneously, although the extent of increase is different over the three positions within codons. These findings suggest that the deviations from the second parity rule (through the increasing differences between complementary base contents) and the increasing purine load hinder the chance of formation of the intra-strand Watson-Crick base-paired secondary structures in mRNAs (synonymous with the protein-coding genes we dealt with), thereby increasing the translational efficiency. We hypothesize that the ATrich protein-coding gene-containing archaeal species might have better translational efficiency than their GC-rich counterparts.
Collapse
Affiliation(s)
- Sujay Chattopadhyay
- Department of Theoretical Physics, Indian Association for the Cultivation of Science, Jadavpur, Calcutta 700 032, India.
| | | | | | | |
Collapse
|
3
|
Microbial characterization of a subzero, hypersaline methane seep in the Canadian High Arctic. ISME JOURNAL 2010; 4:1326-39. [PMID: 20445635 DOI: 10.1038/ismej.2010.57] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We report the first microbiological characterization of a terrestrial methane seep in a cryo-environment in the form of an Arctic hypersaline (∼24% salinity), subzero (-5 °C), perennial spring, arising through thick permafrost in an area with an average annual air temperature of -15 °C. Bacterial and archaeal 16S rRNA gene clone libraries indicated a relatively low diversity of phylotypes within the spring sediment (Shannon index values of 1.65 and 1.39, respectively). Bacterial phylotypes were related to microorganisms such as Loktanella, Gillisia, Halomonas and Marinobacter spp. previously recovered from cold, saline habitats. A proportion of the bacterial phylotypes were cultured, including Marinobacter and Halomonas, with all isolates capable of growth at the in situ temperature (-5 °C). Archaeal phylotypes were related to signatures from hypersaline deep-sea methane-seep sediments and were dominated by the anaerobic methane group 1a (ANME-1a) clade of anaerobic methane oxidizing archaea. CARD-FISH analyses indicated that cells within the spring sediment consisted of ∼84.0% bacterial and 3.8% archaeal cells with ANME-1 cells accounting for most of the archaeal cells. The major gas discharging from the spring was methane (∼50%) with the low CH(4)/C(2+) ratio and hydrogen and carbon isotope signatures consistent with a thermogenic origin of the methane. Overall, this hypersaline, subzero environment supports a viable microbial community capable of activity at in situ temperature and where methane may behave as an energy and carbon source for sustaining anaerobic oxidation of methane-based microbial metabolism. This site also provides a model of how a methane seep can form in a cryo-environment as well as a mechanism for the hypothesized Martian methane plumes.
Collapse
|
4
|
Overton IM, Barton GJ. A normalised scale for structural genomics target ranking: The OB-Score. FEBS Lett 2006; 580:4005-9. [PMID: 16808918 DOI: 10.1016/j.febslet.2006.06.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Revised: 05/29/2006] [Accepted: 06/02/2006] [Indexed: 10/24/2022]
Abstract
Target selection and ranking is fundamental to structural genomics. We present a Z-score scale, the "OB-Score", to rank potential targets by their predicted propensity to produce diffraction-quality crystals. The OB-Score is derived from a matrix of predicted isoelectric point and hydrophobicity values for nonredundant PDB entries solved to <or=3.0 A against a background of UniRef50. A highly significant difference was found between the OB-Scores for TargetDB test datasets. A wide range of OB-Scores was observed across 241 proteomes and within 7868 PfamA families; 73.4% of PfamA families contain >or=1 member with a high OB-Score, presenting favourable candidates for structural studies.
Collapse
Affiliation(s)
- Ian M Overton
- School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | | |
Collapse
|
5
|
Umetsu M, Tsumoto K, Nitta S, Adschiri T, Ejima D, Arakawa T, Kumagai I. Nondenaturing solubilization of β2 microglobulin from inclusion bodies by l-arginine. Biochem Biophys Res Commun 2005; 328:189-97. [PMID: 15670769 DOI: 10.1016/j.bbrc.2004.12.156] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2004] [Indexed: 11/25/2022]
Abstract
Expression of beta2 microglobulin (beta2m) in Escherichia coli resulted in formation of inclusion bodies. Attenuated total reflectance Fourier transform infrared analysis suggested a native-like secondary structure of beta2m in the inclusion bodies. Nondenaturing solubilization of the native-like beta2m from inclusion bodies was achieved using L-arginine solution, which enables an efficient recovery of beta2m with little aggregation. Greater beta2m solubilization from inclusion bodies was obtained at higher temperatures. Low-temperature solubilization yielded beta2m with fluorescence properties identical to those of native beta2m, but its secondary structure was slightly nonnative. Solubilization at moderate temperature gave beta2m with an apparently native structure. We propose an efficient nondenaturing solubilization method combining L-arginine and moderate temperature.
Collapse
Affiliation(s)
- Mitsuo Umetsu
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-07, Aoba-yama, Aoba-ku, Sendai 980-8579, Japan
| | | | | | | | | | | | | |
Collapse
|
6
|
Umetsu M, Tsumoto K, Ashish K, Nitta S, Tanaka Y, Adschiri T, Kumagai I. Structural characteristics and refolding of in vivo aggregated hyperthermophilic archaeon proteins. FEBS Lett 2004; 557:49-56. [PMID: 14741340 DOI: 10.1016/s0014-5793(03)01441-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Several recombinant proteins in inclusion bodies expressed in Escherichia coli have been measured by Fourier transform infrared and solid-state nuclear magnetic resonance spectra to provide the secondary structural characteristics of the proteins from hyperthermophilic archaeon Pyrococcus horikoshii OT3 (hyperthermophilic proteins) in inclusion bodies. The beta-strand-rich single chain Fv fragment (scFv) and alpha-helix-rich interleukin (IL)-4 lost part of the native-like secondary structure in inclusion bodies, while the inclusion bodies composed of the hyperthermophilic proteins of which the native form is alpha-helix rich, are predominated by alpha-helix structure. Further, the secondary structure of the recombinant proteins solubilized from inclusion bodies by detergent or denaturant was observed by circular dichroism (CD) spectra. The solubilization induced the denaturation of the secondary structure for scFv and IL-4, whereas the solubilized hyperthermophilic proteins have retained the alpha-helix structure with the CD properties resembling those of their native forms. This indicates that the hyperthermophilic proteins form native-like secondary structure in inclusion bodies. Refolding of several hyperthermophilic proteins from in vivo aggregated form without complete denaturation could be accomplished by solubilization with lower concentration (e.g. 2 M) of guanidine hydrochloride and removal of the denaturant via stepwise dialysis. This supports the existence of proteins with native-like structure in inclusion bodies and suggests that non-native association between the secondary structure elements leads to in vivo aggregation. We propose a refolding procedure on the basis of the structural properties of the aggregated archaeon proteins.
Collapse
Affiliation(s)
- Mitsuo Umetsu
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 07, Aoba-ku, Sendai 980-8579, Japan
| | | | | | | | | | | | | |
Collapse
|
7
|
Berquist BR, DasSarma S. An archaeal chromosomal autonomously replicating sequence element from an extreme halophile, Halobacterium sp. strain NRC-1. J Bacteriol 2003; 185:5959-66. [PMID: 14526006 PMCID: PMC225043 DOI: 10.1128/jb.185.20.5959-5966.2003] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report on the identification and first cloning of an autonomously replicating sequence element from the chromosome of an archaeon, the extreme halophile Halobacterium strain NRC-1. The putative replication origin was identified by association with the orc7 gene and replication ability in the host strain, demonstrated by cloning into a nonreplicating plasmid. Deletion analysis showed that sequences located up to 750 bp upstream of the orc7 gene translational start, plus the orc7 gene and 50 bp downstream, are sufficient to endow the plasmid with replication ability, as judged by expression of a plasmid-encoded mevinolin resistance selectable marker and plasmid recovery after transformation. Sequences located proximal to the two other chromosomally carried haloarchaeal orc genes (orc6 and orc8) are not able to promote efficient autonomous replication. Located within the 750-bp region upstream of orc7 is a nearly perfect inverted repeat of 31 bp, which flanks an extremely AT-rich (44%) stretch of 189 bp. The replication ability of the plasmid was lost when one copy of the inverted repeat was deleted. Additionally, the inverted repeat structure near orc7 homologs in the genomic sequences of two other halophiles, Haloarcula marismortui and Haloferax volcanii, is highly conserved. Our results indicate that, in halophilic archaea, a chromosomal origin of replication is physically linked to orc7 homologs and that this element is sufficient to promote autonomous replication. We discuss the finding of a functional haloarchaeal origin in relation to the large number of orc1-cdc6 homologs identified in the genomes of all haloarchaea to date.
Collapse
Affiliation(s)
- Brian R Berquist
- Molecular and Cell Biology Program, University of Maryland, Baltimore, and Center of Marine Biotechnology, University of Maryland Biotechnology Institute, Baltimore, Maryland 21202, USA
| | | |
Collapse
|
8
|
Potters MB, Solow BT, Bischoff KM, Graham DE, Lower BH, Helm R, Kennelly PJ. Phosphoprotein with phosphoglycerate mutase activity from the archaeon Sulfolobus solfataricus. J Bacteriol 2003; 185:2112-21. [PMID: 12644480 PMCID: PMC151489 DOI: 10.1128/jb.185.7.2112-2121.2003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2002] [Accepted: 12/30/2002] [Indexed: 11/20/2022] Open
Abstract
When soluble extracts of the extreme acidothermophilic archaeon Sulfolobus solfataricus were incubated with [gamma-(32)P]ATP, several proteins were radiolabeled. One of the more prominent of these, which migrated with a mass of approximately 46 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), was purified by column chromatography and SDS-PAGE and subjected to amino acid sequence analysis via both the Edman technique and mass spectroscopy. The best match to the partial sequence obtained was the potential polypeptide product of open reading frame sso0417, whose DNA-derived amino acid sequence displayed many features reminiscent of the 2,3-diphosphoglycerate-independent phosphoglycerate (PGA) mutases [iPGMs]. Open reading frame sso0417 was therefore cloned, and its protein product was expressed in Escherichia coli. Assays of its catalytic capabilities revealed that the protein was a moderately effective PGA mutase that also exhibited low levels of phosphohydrolase activity. PGA mutase activity was dependent upon the presence of divalent metal ions such as Co(2+) or Mn(2+). The recombinant protein underwent autophosphorylation when incubated with either [gamma-(32)P]ATP or [gamma-(32)P]GTP. The site of phosphorylation was identified as Ser(59), which corresponds to the catalytically essential serine residue in bacterial and eucaryal iPGMs. The phosphoenzyme intermediate behaved in a chemically and kinetically competent manner. Incubation of the (32)P-labeled phosphoenzyme with 3-PGA resulted in the disappearance of radioactive phosphate and the concomitant appearance of (32)P-labeled PGA at rates comparable to those measured in steady-state assays of PGA mutase activity.
Collapse
Affiliation(s)
- M Ben Potters
- Department of Biochemistry and Virginia Institute for Genomics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Pédelacq JD, Piltch E, Liong EC, Berendzen J, Kim CY, Rho BS, Park MS, Terwilliger TC, Waldo GS. Engineering soluble proteins for structural genomics. Nat Biotechnol 2002; 20:927-32. [PMID: 12205510 DOI: 10.1038/nbt732] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Structural genomics has the ambitious goal of delivering three-dimensional structural information on a genome-wide scale. Yet only a small fraction of natural proteins are suitable for structure determination because of bottlenecks such as poor expression, aggregation, and misfolding of proteins, and difficulties in solubilization and crystallization. We propose to overcome these bottlenecks by producing soluble, highly expressed proteins that are derived from and closely related to their natural homologs. Here we demonstrate the utility of this approach by using a green fluorescent protein (GFP) folding reporter assay to evolve an enzymatically active, soluble variant of a hyperthermophilic protein that is normally insoluble when expressed in Escherichia coli, and determining its structure by X-ray crystallography. Analysis of the structure provides insight into the substrate specificity of the enzyme and the improved solubility of the variant.
Collapse
Affiliation(s)
- Jean-Denis Pédelacq
- Bioscience Division, MS-M888, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Greenbaum D, Luscombe NM, Jansen R, Qian J, Gerstein M. Interrelating different types of genomic data, from proteome to secretome: 'oming in on function. Genome Res 2001; 11:1463-8. [PMID: 11544189 DOI: 10.1101/gr.207401] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
With the completion of genome sequences, the current challenge for biology is to determine the functions of all gene products and to understand how they contribute in making an organism viable. For the first time, biological systems can be viewed as being finite, with a limited set of molecular parts. However, the full range of biological processes controlled by these parts is extremely complex. Thus, a key approach in genomic research is to divide the cellular contents into distinct sub-populations, which are often given an "-omic" term. For example, the proteome is the full complement of proteins encoded by the genome, and the secretome is the part of it secreted from the cell. Carrying this further, we suggest the term "translatome" to describe the members of the proteome weighted by their abundance, and the "functome" to describe all the functions carried out by these. Once the individual sub-populations are defined and analyzed, we can then try to reconstruct the full organism by interrelating them, eventually allowing for a full and dynamic view of the cell. All this is, of course, made possible because of the increasing amount of large-scale data resulting from functional genomics experiments. However, there are still many difficulties resulting from the noisiness and complexity of the information. To some degree, these can be overcome through averaging with broad proteomic categories such as those implicit in functional and structural classifications. For illustration, we discuss one example in detail, interrelating transcript and cellular protein populations (transcriptome and translatome). Further information is available at http://bioinfo.mbb.yale.edu/what-is-it.
Collapse
Affiliation(s)
- D Greenbaum
- Department of Genetics, Yale University, New Haven, Connecticut 06520-8114, USA
| | | | | | | | | |
Collapse
|
11
|
|
12
|
Raychaudhuri S, Karmakar P, Thakur AR. γ -Ray-Induced DNA Damage and Repair in Methanosarcina barkeri. Anaerobe 2000. [DOI: 10.1006/anae.2000.0359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Yee A, Booth V, Dharamsi A, Engel A, Edwards AM, Arrowsmith CH. Solution structure of the RNA polymerase subunit RPB5 from Methanobacterium thermoautotrophicum. Proc Natl Acad Sci U S A 2000; 97:6311-5. [PMID: 10841538 PMCID: PMC18599 DOI: 10.1073/pnas.97.12.6311] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
RPB5 is an essential subunit of eukaryotic and archaeal RNA polymerases. It is a proposed target for transcription activator proteins in eukaryotes, but the mechanism of interaction is not known. We have determined the solution structure of the RPB5 subunit from the thermophilic archeon, Methanobacterium thermoautotrophicum. MtRBP5 contains a four-stranded beta-sheet platform supporting two alpha-helices, one on each side of the beta-sheet, resulting in an overall mushroom shape that does not appear to have any structural homologues in the structural database. The position and conservation of charged surface residues suggests possible modes of interaction with other proteins, as well as a rationale for the thermal stability of this protein.
Collapse
Affiliation(s)
- A Yee
- Division of Molecular and Structural Biology, Ontario Cancer Institute,Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 2M9, Canada
| | | | | | | | | | | |
Collapse
|
14
|
Mackereth CD, Arrowsmith CH, Edwards AM, McIntosh LP. Zinc-bundle structure of the essential RNA polymerase subunit RPB10 from Methanobacterium thermoautotrophicum. Proc Natl Acad Sci U S A 2000; 97:6316-21. [PMID: 10841539 PMCID: PMC18600 DOI: 10.1073/pnas.97.12.6316] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The RNA polymerase subunit RPB10 displays a high level of conservation across archaea and eukarya and is required for cell viability in yeast. Structure determination of this RNA polymerase subunit from Methanobacterium thermoautotrophicum reveals a topology, which we term a zinc-bundle, consisting of three alpha-helices stabilized by a zinc ion. The metal ion is bound within an atypical CX(2)CX(n)CC sequence motif and serves to bridge an N-terminal loop with helix 3. This represents an example of two adjacent zinc-binding Cys residues within an alpha-helix conformation. Conserved surface features of RPB10 include discrete regions of neutral, acidic, and basic residues, the latter being located around the zinc-binding site. One or more of these regions may contribute to the role of this subunit as a scaffold protein within the polymerase holoenzyme.
Collapse
Affiliation(s)
- C D Mackereth
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | | | | | | |
Collapse
|
15
|
Eichler J. Archaeal protein translocation crossing membranes in the third domain of life. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:3402-12. [PMID: 10848955 DOI: 10.1046/j.1432-1327.2000.01396.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Proper cell function relies on correct protein localization. As a first step in the delivery of extracytoplasmic proteins to their ultimate destinations, the hydrophobic barrier presented by lipid-based membranes must be overcome. In contrast to the well-defined bacterial and eukaryotic protein translocation systems, little is known about how proteins cross the membranes of archaea, the third and most recently described domain of life. In bacteria and eukaryotes, protein translocation occurs at proteinaceous sites comprised of evolutionarily conserved core components acting in concert with other, domain-specific elements. Examination of available archaeal genomes as well as cloning of individual genes from other archaeal strains reveals the presence of homologues to selected elements of the bacterial or eukaryotic translocation machines. Archaeal genomic searches, however, also reveal an apparent absence of other, important components of these two systems. Archaeal translocation may therefore represent a hybrid of the bacterial and eukaryotic models yet may also rely on components or themes particular to this domain of life. Indeed, considering the unique chemical composition of the archaeal membrane as well as the extreme conditions in which archaea thrive, the involvement of archaeal-specific translocation elements could be expected. Thus, understanding archaeal protein translocation could reveal the universal nature of certain features of protein translocation which, in some cases, may not be readily obvious from current comparisons of bacterial and eukaryotic systems. Alternatively, elucidation of archaeal translocation could uncover facets of the translocation process either not yet identified in bacteria or eukaryotes, or which are unique to archaea. In the following, the current status of our understanding of protein translocation in archaea is reviewed.
Collapse
Affiliation(s)
- J Eichler
- Department of Life Sciences, Ben Gurion University, Beersheva, Israel.
| |
Collapse
|
16
|
Ochman H, Lawrence JG, Groisman EA. Lateral gene transfer and the nature of bacterial innovation. Nature 2000; 405:299-304. [PMID: 10830951 DOI: 10.1038/35012500] [Citation(s) in RCA: 2421] [Impact Index Per Article: 96.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Unlike eukaryotes, which evolve principally through the modification of existing genetic information, bacteria have obtained a significant proportion of their genetic diversity through the acquisition of sequences from distantly related organisms. Horizontal gene transfer produces extremely dynamic genomes in which substantial amounts of DNA are introduced into and deleted from the chromosome. These lateral transfers have effectively changed the ecological and pathogenic character of bacterial species.
Collapse
Affiliation(s)
- H Ochman
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson 85721-0088, USA
| | | | | |
Collapse
|