1
|
Taraboletti A, Walker T, Avila R, Huang H, Caporoso J, Manandhar E, Leeper TC, Modarelli DA, Medicetty S, Shriver LP. Cuprizone Intoxication Induces Cell Intrinsic Alterations in Oligodendrocyte Metabolism Independent of Copper Chelation. Biochemistry 2017; 56:1518-1528. [PMID: 28186720 PMCID: PMC6145805 DOI: 10.1021/acs.biochem.6b01072] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cuprizone intoxication is a common animal model used to test myelin regenerative therapies for the treatment of diseases such as multiple sclerosis. Mice fed this copper chelator develop reversible, region-specific oligodendrocyte loss and demyelination. While the cellular changes influencing the demyelinating process have been explored in this model, there is no consensus about the biochemical mechanisms of toxicity in oligodendrocytes and about whether this damage arises from the chelation of copper in vivo. Here we have identified an oligodendroglial cell line that displays sensitivity to cuprizone toxicity and performed global metabolomic profiling to determine biochemical pathways altered by this treatment. We link these changes with alterations in brain metabolism in mice fed cuprizone for 2 and 6 weeks. We find that cuprizone induces widespread changes in one-carbon and amino acid metabolism as well as alterations in small molecules that are important for energy generation. We used mass spectrometry to examine chemical interactions that are important for copper chelation and toxicity. Our results indicate that cuprizone induces global perturbations in cellular metabolism that may be independent of its copper chelating ability and potentially related to its interactions with pyridoxal 5'-phosphate, a coenzyme essential for amino acid metabolism.
Collapse
Affiliation(s)
| | - Tia Walker
- Department of Chemistry, Indiana University Northwest, Gary, Indiana 46408, United States
| | - Robin Avila
- Renovo Neural, Inc., Cleveland, Ohio 44106, United States
| | - He Huang
- Department of Chemistry, University of Akron, Akron, Ohio 44325, United States
| | - Joel Caporoso
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260, United States
| | - Erendra Manandhar
- Department of Chemistry, University of Akron, Akron, Ohio 44325, United States
| | - Thomas C. Leeper
- Department of Chemistry, College of Wooster, Wooster, Ohio 44691, United States
| | - David A. Modarelli
- Department of Chemistry, University of Akron, Akron, Ohio 44325, United States
| | | | - Leah P. Shriver
- Department of Chemistry, University of Akron, Akron, Ohio 44325, United States
- Department of Biology, University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
2
|
Purdie JL, Kowle RL, Langland AL, Patel CN, Ouyang A, Olson DJ. Cell culture media impact on drug product solution stability. Biotechnol Prog 2016; 32:998-1008. [DOI: 10.1002/btpr.2289] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 04/20/2016] [Indexed: 01/03/2023]
Affiliation(s)
- Jennifer L. Purdie
- Bioproduct Research and Development, Lilly Research Laboratories, Eli Lilly and Company; Indianapolis IN 46285
| | - Ronald L. Kowle
- Bioproduct Research and Development, Lilly Research Laboratories, Eli Lilly and Company; Indianapolis IN 46285
| | - Amie L. Langland
- Bioproduct Research and Development, Lilly Research Laboratories, Eli Lilly and Company; Indianapolis IN 46285
| | - Chetan N. Patel
- Biotechnology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company; Indianapolis IN 46285
| | - Anli Ouyang
- Bioproduct Research and Development, Lilly Research Laboratories, Eli Lilly and Company; Indianapolis IN 46285
| | - Donald J. Olson
- Bioproduct Research and Development, Lilly Research Laboratories, Eli Lilly and Company; Indianapolis IN 46285
| |
Collapse
|
3
|
Jeon O, Wolfson DW, Alsberg E. In-situ formation of growth-factor-loaded coacervate microparticle-embedded hydrogels for directing encapsulated stem cell fate. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:2216-23. [PMID: 25708428 PMCID: PMC4408272 DOI: 10.1002/adma.201405337] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 01/27/2015] [Indexed: 05/26/2023]
Abstract
The spontaneous formation of coacervate microdroplet-laden photo-crosslinked hydrogels derived from the simple mixing of oxidized, methacrylated alginate (OMA) and methacrylated gelatin (GelMA) enables simultaneous creation of drug-laden microdroplets and encapsulation of stem cells in photopolymerized coacervate hydrogels under physiological conditions. This can be utilized as a novel platform for in situ formation of localized, sustained bioactive molecule delivery to encapsulate stem cells for therapeutic applications.
Collapse
Affiliation(s)
- Oju Jeon
- Department of Biomedical Engineering, Case Western Reserve University Cleveland, OH 44106, USA
| | - David W. Wolfson
- Department of Biomedical Engineering, Case Western Reserve University Cleveland, OH 44106, USA
| | - Eben Alsberg
- Department of Biomedical Engineering, Case Western Reserve University Cleveland, OH 44106, USA. Department of Orthopaedic Surgery, Case Western Reserve University Cleveland, OH 44106, USA
| |
Collapse
|
4
|
Wu YC, Thangamuthu R, Chen SM. Fe(CN)$\rm{ {_{6}^{4-}}}$-Doped-Glutaraldehyde-Cross-Linked Poly-L-Lysine Film Electrode. Part 1: Electrochemical Characterization and Its Electrocatalytic Activity Towards Oxidation of Ascorbic Acid. ELECTROANAL 2009. [DOI: 10.1002/elan.200804497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
5
|
Echevarrı́a GR, Basagoitia A, Santos JG, Garcı́a Blanco F. Determination of the rates of formation and hydrolysis of the Schiff bases formed by pyridoxal 5′-phosphate and hydrazinic compounds. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s1381-1169(00)00266-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|