1
|
Nicklas JA, Albertini RJ, Vacek PM, Ardell SK, Carter EW, McDiarmid MA, Engelhardt SM, Gucer PW, Squibb KS. Mutagenicity monitoring following battlefield exposures: Molecular analysis of HPRT mutations in Gulf War I veterans exposed to depleted uranium. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2015; 56:594-608. [PMID: 25914382 DOI: 10.1002/em.21956] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 04/06/2015] [Accepted: 04/08/2015] [Indexed: 06/04/2023]
Abstract
Molecular studies that involved cDNA and genomic DNA sequencing as well as multiplex PCR of the HPRT gene were performed to determine the molecular mutational spectrum for 1,377 HPRT mutant isolates obtained from 61 Veterans of the 1991 Gulf War, most of whom were exposed to depleted uranium (DU). Mutant colonies were isolated from one to four times from each Veteran (in 2003, 2005, 2007, and/or 2009). The relative frequencies of the various types of mutations (point mutations, deletions, insertions, etc.) were compared between high versus low DU exposed groups, (based on their urine U concentration levels), with HPRT mutant frequency (as determined in the companion paper) and with a database of historic controls. The mutational spectrum includes all classes of gene mutations with no significant differences observed in Veterans related to their DU exposures.
Collapse
Affiliation(s)
- Janice A Nicklas
- Department of Pediatrics, University of Vermont College of Medicine, Burlington, Vermont
| | - Richard J Albertini
- Department of Pathology, University of Vermont College of Medicine, Burlington, Vermont
- Biostatistics Unit, University of Vermont College of Medicine, Burlington, Vermont
| | - Pamela M Vacek
- Center for Clinical and Translational Science - Biomedical Informatics Unit, University of Vermont, Burlington, Vermont
| | - Stephanie K Ardell
- Division of Newborn Medicine, Department of Pediatrics, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Elizabeth W Carter
- Center for Clinical and Translational Science - Biomedical Informatics Unit, University of Vermont, Burlington, Vermont
| | - Melissa A McDiarmid
- Occupational Health Program, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | | | - Patricia W Gucer
- Occupational Health Program, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Katherine S Squibb
- Occupational Health Program, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
2
|
Van Neste L, Van Criekinge W. We are all individuals... bioinformatics in the personalized medicine era. Cell Oncol (Dordr) 2014; 38:29-37. [PMID: 25204962 DOI: 10.1007/s13402-014-0195-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2014] [Indexed: 12/16/2022] Open
Abstract
The medical landscape is evolving at a rapid pace, creating the opportunity for more personalized patient treatment and shifting the way healthcare is approached and thought about. With the availability of (epi)genome-wide, transcriptomic and proteogenomic profiling techniques detailed characterization of a disease at the level of the individual is now possible, offering the opportunity for truly tailored approaches for treatment and patient care. While improvements are still expected, the techniques and the basic analytical tools have reached a state that these can be efficiently deployed in both routine research and clinical practice. Still, some major challenges remain. Notably, holistic approaches, integrating data from several sources, e.g. genomic and epigenomic, will increase the understanding of the underlying biological concepts and provide insight into the causes, effects and effective solutions. However, creating and validating such a knowledge base, potentially for different levels of expertise, and integrating several data points into meaningful information is not trivial.
Collapse
Affiliation(s)
- Leander Van Neste
- Department of Pathology, School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands,
| | | |
Collapse
|
3
|
Novel hypoxanthine guanine phosphoribosyltransferase gene mutations in Saudi Arabian hyperuricemia patients. BIOMED RESEARCH INTERNATIONAL 2014; 2014:290325. [PMID: 25136576 PMCID: PMC4119946 DOI: 10.1155/2014/290325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 03/11/2014] [Accepted: 04/26/2014] [Indexed: 12/12/2022]
Abstract
Over the past decade, a steady increase in the incidence of HPRT-related hyperuricemia (HRH) has been observed in Saudi Arabia. We examined all the nine exons of HPRT gene for mutations in ten biochemically confirmed hyperuricemia patients, including one female and three normal controls. In all, we identified 13 novel mutations in Saudi Arabian HPRT-related hyperuricemia patients manifesting different levels of uric acid. The Lys103Met alteration was highly recurrent and was observed in 50% of the cases, while Ala160Thr and Lys158Asn substitutions were found in two patients. Moreover, in 70% of the patients ≥2 mutations were detected concurrently in the HPRT gene. Interestingly, one of the patients that harbored Lys103Met substitution along with two frameshift mutations at codons 85 and 160 resulting in shortened protein demonstrated unusually high serum uric acid level of 738 μmol/L. Two of the seven point mutations that resulted in amino acid change (Lys103Met and Val160Gly) were predicted to be damaging by SIFT and Polyphen and were further analyzed for their protein stability and function by molecular dynamics simulation. The identified novel mutations in the HPRT gene may prove useful in the prenatal diagnosis and genetic counseling.
Collapse
|
4
|
Christmann M, Kaina B. O(6)-methylguanine-DNA methyltransferase (MGMT): impact on cancer risk in response to tobacco smoke. Mutat Res 2012; 736:64-74. [PMID: 21708177 DOI: 10.1016/j.mrfmmm.2011.06.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 05/23/2011] [Accepted: 06/08/2011] [Indexed: 05/31/2023]
Abstract
Tobacco, smoked, snuffed and chewed, contains powerful mutagens and carcinogens. At least three of them, N-dimethylnitrosamine, N'-nitrosonornicotine and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, attack DNA at the O(6)-position of guanine. The resulting O(6)-alkylguanine adducts are repaired by the suicide enzyme O(6)-methylguanine-DNA methyltransferase (MGMT), which is known to protect against the mutagenic, genotoxic and carcinogenic effects of monofunctional alkylating agents. While in rat liver MGMT was shown to be subject to regulation by genotoxic stress leading to adaptive changes in its activity, in humans evidence of adaptive modulation of MGMT levels is still lacking. Several polymorphisms are known, which are suspected to impact on the risk of developing cancer. In this review we focus on three questions: (a) Has tobacco consumption by smoking or chewing an impact on MGMT expression and MGMT promoter methylation in normal and tumor tissue? (b) Is there an association between MGMT polymorphisms and cancer risk and is this risk related to smoking? (c) Does MGMT protect against tobacco-associated cancer? There are several lines of evidence for an increase of MGMT activity in the normal tissue of smokers compared to non-smokers. Furthermore, in tumors developed in smokers a tendency towards an increase of MGMT expression was found. The data points to the possibility that agents in tobacco smoke are able to trigger upregulation of MGMT in normal and tumor tissue. For MGMT promoter methylation data is conflicting. There is some evidence for an association between MGMT polymorphisms and smoking-induced cancer risk. The key question whether or not MGMT protects against tobacco smoke-induced cancer is difficult to answer since prospective studies on smokers versus non-smokers are lacking and appropriate animal studies with MGMT transgenic mice exposed to the complex mixture of tobacco smoke have not been performed, which indicates the need for further explorations.
Collapse
Affiliation(s)
- Markus Christmann
- Institute of Toxicology, University Medical Center Mainz, Mainz, Germany.
| | | |
Collapse
|
5
|
Nguyen T, Vacek PM, O'Neill P, Colletti RB, Finette BA. Mutagenicity and potential carcinogenicity of thiopurine treatment in patients with inflammatory bowel disease. Cancer Res 2009; 69:7004-12. [PMID: 19706768 DOI: 10.1158/0008-5472.can-09-0451] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The thiopurines azathioprine and 6-mercaptopurine (6-MP) are effective immune modulators and cytotoxic agents extensively used in the treatment of autoimmune diseases, graft rejection, and cancer. There is compelling epidemiologic evidence that thiopurine treatment increases the risk for a variety of tumors by mechanisms that are unclear. We investigated the in vivo mutagenicity of long-term thiopurine treatment by determining the frequency and spectra of somatic mutation events at the hypoxanthine phosphoribosyltransferase (HPRT) locus in peripheral T lymphocytes as well as the prevalence of mutant clonal proliferation in a cross-sectional analysis of data from 119 children and adults with inflammatory bowel disease (IBD). ANOVA and regression were performed to assess relationships among the frequency and spectra of HPRT mutations with disease, duration of illness, duration of treatment, and total therapeutic dose of azathioprine and 6-MP. We observed a significant increase in the frequency of somatic mutations in 56 subjects treated with thiopurines for IBD compared with 63 subjects not treated with thiopurines. This increase was related to both total dose (P < 0.001) and duration of treatment (P < 0.001). Comparative mutation spectra analysis of 1,020 mutant isolates revealed a significant increase in the proportion of all transitions (P < 0.001), particularly G:C to A:T transitions (P < 0.001). Combined analyses of two signatures for mutant clonality, HPRT mutation, and T-cell receptor beta CDR3 region unique gene sequence also showed a significant thiopurine-dependent increase in mutant cell clonal proliferation (P < 0.001). These findings provide in vivo evidence for mutation induction as a potential carcinogenic mechanism associated with chronic thiopurine intervention.
Collapse
Affiliation(s)
- Truc Nguyen
- Department of Pediatrics, University of Vermont, Burlington, Vermont 05445-0068, USA
| | | | | | | | | |
Collapse
|
6
|
Hill CE, Wickliffe JK, Guerin AT, Kinslow CJ, Wolfe KJ, Ammenheuser MM, Abdel-Rahman SZ. The L84F polymorphism in the O6-Methylguanine-DNA-Methyltransferase (MGMT) gene is associated with increased hypoxanthine phosphoribosyltransferase (HPRT) mutant frequency in lymphocytes of tobacco smokers. Pharmacogenet Genomics 2007; 17:743-53. [PMID: 17700363 DOI: 10.1097/fpc.0b013e3281111eb1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
OBJECTIVES O-methylguanine-DNA-methyltransferase (MGMT) is a crucial DNA repair protein that removes DNA adducts formed by alkylating mutagens. Several coding single nucleotide polymorphisms (cSNPs) in the MGMT gene have been reported. Their biological significance, however, is not known. METHODS We used a newly modified cloning HPRT mutant lymphocyte assay to test the hypothesis that inheritance of the L84F and I143V coding single nucleotide polymorphism in the MGMT gene is associated with increases in HPRT mutant frequency in lymphocytes of individuals exposed to alkylating agents. In addition, we expanded and sequenced 109 mutant clones to test the hypothesis that the mutation spectrum would shift to a larger percentage of base substitutions and G-->A transition mutations in cells with L84F and I143 V coding single nucleotide polymorphisms. RESULTS We observed no significant effect for the I143 V coding single nucleotide polymorphism on mutant frequency. In contrast, we observed a significant increase in mutant frequency (P<0.01) in lymphocytes from smokers with the 84F coding single nucleotide polymorphism compared with smokers homozygous for the referent L84 wild-type allele. A multiple regression analysis indicated that the mutant frequency increased significantly as a function of the 84F coding single nucleotide polymorphism and smoking, according to the model; mutant frequency (x10)=0.90+0.618 (84F polymorphism)+0.46 (smoking) with R=0.22. Mutation spectra analysis revealed an apparent increase, which was short of statistical significance (P=0.08), in base substitutions in cells with the 84F polymorphism. CONCLUSIONS These new data suggest that the 84F coding single nucleotide polymorphism may alter the phenotype of the MGMT protein, resulting in suboptimal repair of O-methylguanine lesions after exposure to alkylating agents.
Collapse
Affiliation(s)
- Courtney E Hill
- Department of Preventive Medicine and Community Health, The University of Texas Medical Branch, Galveston, Texas, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Grant SG. Qualitatively and quantitatively similar effects of active and passive maternal tobacco smoke exposure on in utero mutagenesis at the HPRT locus. BMC Pediatr 2005; 5:20. [PMID: 15987524 PMCID: PMC1185547 DOI: 10.1186/1471-2431-5-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2005] [Accepted: 06/29/2005] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Induced mutagenesis in utero is likely to have life-long repercussions for the exposed fetus, affecting survival, birth weight and susceptibility to both childhood and adult-onset diseases, such as cancer. In the general population, such exposures are likely to be a consequence of the lifestyle choices of the parents, with exposure to tobacco smoke one of the most pervasive and easily documented. Previous studies attempting to establish a direct link between active smoking and levels of somatic mutation have largely discounted the effects of passive or secondary exposure, and have produced contradictory results. METHODS Data from three studies of possible smoking effects on in utero mutagenesis at the HPRT locus were compiled and reanalyzed, alone and in combination. Where possible, passive exposure to environmental tobacco smoke was considered as a separate category of exposure, rather than being included in the non-smoking controls. Molecular spectra from these studies were reanalyzed after adjustment for reported mutation frequencies from the individual studies and the entire data set. RESULTS A series of related studies on mutation at the X-linked HPRT locus in human newborn cord blood samples has led to the novel conclusion that only passive maternal exposure to tobacco mutagens has a significant effect on the developing baby. We performed a pooled analysis of the complete data from these studies, at the levels of both induced mutation frequency and the resulting mutational spectrum. CONCLUSION Our analysis reveals a more commonsensical, yet no less cautionary result: both active maternal smoking and secondary maternal exposure produce quantitatively and qualitatively indistinguishable increases in fetal HPRT mutation. Further, it appears that this effect is not perceptibly ameliorated if the mother adjusts her behavior (i.e. stops smoking) when pregnancy is confirmed, although this conclusion may also be affected by continued passive exposure.
Collapse
Affiliation(s)
- Stephen G Grant
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.
| |
Collapse
|
8
|
Noori P, Hou S, Jones IM, Thomas CB, Lambert B. A comparison of somatic mutational spectra in healthy study populations from Russia, Sweden and USA. Carcinogenesis 2005; 26:1138-51. [PMID: 15731167 DOI: 10.1093/carcin/bgi046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A comparison of mutation spectra at the hypoxanthine-guanine phosphoribosyl transferase (HPRT) gene of peripheral blood T-lymphocytes may provide an insight into the aetiology of somatic mutation contributing to carcinogenesis and other diseases. To increase the knowledge of mutation spectra in healthy people, we have analysed HPRT mutant T-cells of 50 healthy Russians originally recruited as controls in a study involving Chernobyl clean-up workers [I.M. Jones, H.Galick, P.Kato et al. (2002) Radiat. Res., 158, 424-442]. Reverse transcriptase-polymerase chain reactions and DNA sequencing identified 161 independent mutations among 176 thioguanine-resistant mutants. Forty mutations affected splicing mechanisms and 27 deletions or insertions of 1-60 nt were identified. Ninety-four single base substitutions were identified, including 62 different mutations at 55 different nucleotide positions, of which 19 had not been reported previously in human T-cells. Comparison of this base substitution spectrum with mutation spectra in a USA [K.J.Burkhart-Schultz, C.L. Thompson and I.M. Jones (1996) Carcinogenesis, 17, 1871-1883] and two Swedish populations [A.Podlutsky, A.-M.Osterholm, S.-M.Hou, A. Hofmaier and B. Lambert (1998) Carcinogenesis, 19, 557-566; A.Podlutsky, S.M.Hou, F.Nyberg, G. Pershagen and B. Lambert (1999) Mutat. Res., 431, 325-39] revealed similarity in the type, frequency and distribution of mutations in the four spectra, consistent with aetiologies inherent in human metabolism. There were 15-19 identical mutations in the three pairwise comparisons of Russian with USA and Swedish spectra. Intriguingly, there were 21 mutations unique to the Russian spectrum, and comparison by the Monte Carlo method of W.T. Adams and T.R. Skopek [(1987) J. Mol. Biol., 194, 391-396] indicated that the Russian spectrum was different from both Swedish spectra (P = 0.007, 0.002), but not different from the USA spectrum (P = 0.07) when Bonferroni correction for multiple comparisons was made (P < 0.008 required for significance). Age and smoking did not account for these differences. Other factors causing mutational differences need to be explored.
Collapse
Affiliation(s)
- Peri Noori
- Department of Biosciences, The Karolinska Institute, Novum, SE-14157 Huddinge, Sweden
| | | | | | | | | |
Collapse
|
9
|
Hill KA, Wang J, Farwell KD, Scaringe WA, Sommer SS. Spontaneous multiple mutations show both proximal spacing consistent with chronocoordinate events and alterations with p53-deficiency. Mutat Res 2004; 554:223-40. [PMID: 15450421 DOI: 10.1016/j.mrfmmm.2004.05.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2003] [Revised: 05/05/2004] [Accepted: 05/07/2004] [Indexed: 11/25/2022]
Abstract
Analysis of spontaneous multiple mutations in normal and tumor cells may constrain hypotheses about the mechanisms responsible for multiple mutations and provide insight into the mutator phenotype. In a previous study, spontaneous doublets in Big Blue mice were dramatically more frequent than expected by chance and exhibited a mutation pattern similar to that observed for single mutations [Mutat. Res. 452 (2000) 219]. The spacing between mutations in doublets was generally closer than expected by chance and the distribution of mutation spacing fit an exponential, albeit with substantial scatter. We now analyze 2658 additional mutants and confirm that doublets are enhanced dramatically relative to chance expectation. The spacing, frequency and pattern of spontaneous doublets and multiplets (domuplets) are examined as a function of age, tissue type, p53-deficiency and neoplasia in the new and combined data. The new and combined data confirm that the distribution of the spacing between mutations in doublets is non-random with the mutations more closely spaced than expected by chance (P < 0.0005; combined data), consistent with temporally coordinate (chronocoordinate) events. An exponential provides an excellent fit to the distribution (R2 = 0.98) and estimates that half of doublets have mutations separated by 120 nucleotides or less (the "half-life of mutation spacing"). We make several novel observations: (i) singlets and doublets show similar overall increases in frequency with age (ii) doublet frequency may be lower in the male germline, consistent with the generally reduced mutation frequency in the male germline (iii) doublet frequencies are elevated in somatic tissues of p53-deficient mice (Li-Fraumini cancer syndrome model; P = 0.005) and (iv) doublets and singlets in tumors from p53-deficient mice have a different mutation pattern (P = 0.007). The observations are consistent with chronocoordinate occurrence of spontaneous doublets and multiplets due to a transient error-prone condition and do not suggest a major role for the recently discovered Y family of error-prone polymerases. The enhancement of doublets in p53-deficient mice may contribute to cancer risk.
Collapse
Affiliation(s)
- Kathleen A Hill
- Department of Molecular Genetics and Molecular Diagnosis, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | | | | | | | | |
Collapse
|
10
|
DeMarini DM. Genotoxicity of tobacco smoke and tobacco smoke condensate: a review. Mutat Res 2004; 567:447-74. [PMID: 15572290 DOI: 10.1016/j.mrrev.2004.02.001] [Citation(s) in RCA: 358] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2004] [Revised: 02/11/2004] [Accepted: 02/17/2004] [Indexed: 12/29/2022]
Abstract
This report reviews the literature on the genotoxicity of mainstream tobacco smoke and cigarette smoke condensate (CSC) published since 1985. CSC is genotoxic in nearly all systems in which it has been tested, with the base/neutral fractions being the most mutagenic. In rodents, cigarette smoke induces sister chromatid exchanges (SCEs) and micronuclei in bone marrow and lung cells. In humans, newborns of smoking mothers have elevated frequencies of HPRT mutants, translocations, and DNA strand breaks. Sperm of smokers have elevated frequencies of aneuploidy, DNA adducts, strand breaks, and oxidative damage. Smoking also produces mutagenic cervical mucus, micronuclei in cervical epithelial cells, and genotoxic amniotic fluid. These data suggest that tobacco smoke may be a human germ-cell mutagen. Tobacco smoke produces mutagenic urine, and it is a human somatic-cell mutagen, producing HPRT mutations, SCEs, microsatellite instability, and DNA damage in a variety of tissues. Of the 11 organ sites at which smoking causes cancer in humans, smoking-associated genotoxic effects have been found in all eight that have been examined thus far: oral/nasal, esophagus, pharynx/larynx, lung, pancreas, myeoloid organs, bladder/ureter, uterine cervix. Lung tumors of smokers contain a high frequency and unique spectrum of TP53 and KRAS mutations, reflective of the PAH (and possibly other) compounds in the smoke. Further studies are needed to clarify the modulation of the genotoxicity of tobacco smoke by various genetic polymorphisms. These data support a model of tobacco smoke carcinogenesis in which the components of tobacco smoke induce mutations that accumulate in a field of tissue that, through selection, drive the carcinogenic process. Most of the data reviewed here are from studies of human smokers. Thus, their relevance to humans cannot be denied, and their explanatory powers not easily dismissed. Tobacco smoke is now the most extreme example of a systemic human mutagen.
Collapse
Affiliation(s)
- David M DeMarini
- Environmental Carcinogenesis Division, National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA.
| |
Collapse
|
11
|
Kumar PRV, Hamza VZ, Mohankumar MN, Jeevanram RK. Studies on the HPRT mutant frequency in T lymphocytes from healthy Indian male population as a function of age and smoking. Mutat Res 2004; 556:107-16. [PMID: 15491638 DOI: 10.1016/j.mrfmmm.2004.07.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2004] [Revised: 07/06/2004] [Accepted: 07/14/2004] [Indexed: 11/23/2022]
Abstract
Mutant frequency at the hypoxanthine-guanine phosphoribosyltransferase (HPRT) gene in the peripheral blood lymphocytes obtained from 44 healthy individuals (23 non-smokers and 21 smokers) of an Indian male population was studied using T-lymphocyte cloning assay. It was found that lnMF increased with age at a rate of 2.5% per year (P <0.001). Blood samples from smokers showed a significant (P <0.037) increase in HPRT mutant frequency (MF) (10.43 +/- 4.74 x 10(-6)) as compared to that obtained from non-smokers (7.69 +/- 3.69 x 10(-6)). This study also showed a significant (P <0.027) inverse correlation between lnMF and non-selected cloning efficiency (CE). However, with respect to age no variation was observed in cloning efficiency. The results obtained in this study showed a good comparison with those reported in different populations of the world.
Collapse
Affiliation(s)
- P R Vivek Kumar
- Radiological Safety Division, Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam-603102, India
| | | | | | | |
Collapse
|
12
|
Duan J, Nilsson L, Lambert B. Structural and functional analysis of mutations at the human hypoxanthine phosphoribosyl transferase (HPRT1) locus. Hum Mutat 2004; 23:599-611. [PMID: 15146465 DOI: 10.1002/humu.20047] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Hypoxanthine phosphoribosyl transferase (HPRT, also known as HGPRT) is an often-used genetic marker in eukaryotic cells. The gene is conserved from bacteria to human, with retained catalytic activity, although substrate specificity may have changed, and the enzyme is essential in malaria-causing protozoans. Inherited mutations in the human HPRT1 gene result in three different phenotypes: Lesch-Nyhan syndrome (LNS or LND), LND variants, and HPRT-related hyperuricemia (HRH). In cultured cells, loss of HPRT activity gives rise to 6-thioguanine (6-TG) resistance. In general, cells from LND patients are also 6-TG resistant, whereas cells from HRH patients are not, with some interesting exceptions. Using modeling methods, we have studied the correlation between the mutable and nonmutated amino acid residues on one hand, and sequence conservation and predicted phenotypic effects on the other hand. Our results demonstrate that most of the mutations are explainable by the predicted effect on protein structure and function. They are also consistent with sequence conservation. Moreover, the mutational profiles of TG-resistant cells and LND overlap to a great extent, while most of the mutations in HRH are unique to that condition. We have also noticed a strong correlation between mutations in the tetramer interfaces and observed phenotypes, suggesting a functional role for a tetramer transition during catalysis.
Collapse
Affiliation(s)
- Jianxin Duan
- Department of Biosciences at Novum, Center for Structural Biochemistry, Karolinska Institutet, Huddinge, Sweden.
| | | | | |
Collapse
|
13
|
Yu Y, Inamdar KV, Turner K, Jackson-Cook CK, Povirk LF. Base substitutions, targeted single-base deletions, and chromosomal translocations induced by bleomycin in plateau-phase mammary epithelial cells. Radiat Res 2002; 158:327-38. [PMID: 12175310 DOI: 10.1667/0033-7587(2002)158[0327:bstsbd]2.0.co;2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Previous work showed that treatment of plateau-phase Chinese hamster ovary cells with the radiomimetic double-strand cleaving agent bleomycin induced very small deletions as well as interchromosomal reciprocal translocations, both of which could be ascribed to errors in end joining of DNA double-strand breaks. In an attempt to assess the possible role of TP53 in suppressing such repair errors, bleomycin-induced mutagenesis at the HPRT locus was examined in immortalized 184B5 human mammary epithelial cells (TP53(+)), and in a TP53-defective derivative, 184B5-E6tfxc6. For both cell lines, the most frequent bleomycin-induced mutations were base substitutions, with no apparent targeting to major bleomycin lesions. However, both lines also sustained single-base deletions that were targeted to expected sites of double-strand breaks, suggesting that they arose by end-joining repair of the breaks. Surprisingly, only a few large deletions or rearrangements, and no interchromosomal events involving the HPRT locus were detected among the mutants. The results suggest that in both cell lines, errors in double-strand break repair resulting in heritable large deletions and rearrangements are rare. Spectral karyotyping of bleomycin-treated 184B5 cells showed that a significant number of translocations were present shortly after bleomycin exposure, but their frequency decreased upon continued culture of the cells. Thus, for these cells, the lack of induced interchromosomal rearrangements can be explained in part by selection against such events as the cells proliferate.
Collapse
Affiliation(s)
- Yin Yu
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | | | | | | | | |
Collapse
|
14
|
Colgin LM, Hackmann AFM, Emond MJ, Monnat RJ. The unexpected landscape of in vivo somatic mutation in a human epithelial cell lineage. Proc Natl Acad Sci U S A 2002; 99:1437-42. [PMID: 11818556 PMCID: PMC122209 DOI: 10.1073/pnas.032655699] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2001] [Accepted: 12/07/2001] [Indexed: 11/18/2022] Open
Abstract
Few data exist on somatic mutation in the epithelial cell lineages that play a central role in human biology and disease. To delineate the "landscape" of somatic mutation in a human epithelial cell lineage, we determined the frequency and molecular nature of somatic mutations occurring in vivo in the X-linked HPRT gene of kidney tubular epithelial cells. Kidney epithelial mutants were frequent (range 0.5 to 4.2 x 10(-4)) and contained a high proportion of unreported HPRT base substitutions, -1-bp deletions and multiple mutations. This spectrum of somatic mutation differed from HPRT mutations identified in human peripheral blood T lymphocytes and from germ-line HPRT mutations identified in Lesch-Nyhan syndrome or hyperuricemia patients. Our results indicate that DNA damage and mutagenesis may have unusual or mechanistically interesting features in kidney tubular epithelium, and that somatic mutation may play a more important role in human kidney disease than has been previously appreciated.
Collapse
Affiliation(s)
- Lorel M Colgin
- Department of Pathology, University of Washington, Box 357705, Seattle, WA 98195-7705, USA
| | | | | | | |
Collapse
|