Zitzmann J, Schreiber C, Eichmann J, Bilz RO, Salzig D, Weidner T, Czermak P. Single-cell cloning enables the selection of more productive
Drosophila melanogaster S2 cells for recombinant protein expression.
BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2018;
19:e00272. [PMID:
29998071 PMCID:
PMC6037645 DOI:
10.1016/j.btre.2018.e00272]
[Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/18/2018] [Accepted: 06/22/2018] [Indexed: 11/16/2022]
Abstract
The generation of monoclonal cell lines is an important early process development step for recombinant protein production. Although single-cell cloning is an established method in mammalian cell lines, straightforward protocols are not yet available for insect cells. We describe a new method for the generation of monoclonal insect cells without using fetal bovine serum and/or feeder cells pretreated by irradiation or exposure to mitomycin. Highly productive clones of Drosophila melanogaster S2 cells were prepared in a two-step procedure, comprising the establishment of a polyclonal population and subsequent single cell isolation by limiting dilution. Necessary growth factors were provided by co-cultivation of single transformants with untransfected feeder cells, which were later removed by antibiotic selection. Enhanced expression of EGFP and two target peptides was confirmed by flow cytometry and dot/western blotting. Highly productive clones were stable, showed a uniform expression profile and typically a sixfold to tenfold increase in cell-specific productivity.
Collapse