1
|
Wei J, Ho G, Masliah E, Hashimoto M. Differential involvement of amyloidogenic evolvability in oligodendropathies; Multiple Sclerosis and Multiple System Atrophy. Prion 2023; 17:29-34. [PMID: 36785484 PMCID: PMC9928476 DOI: 10.1080/19336896.2023.2172912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
Although multiple sclerosis (MS) and multiple system atrophy (MSA) are both characterized by impaired oligodendrocytes (OLs), the aetiological relevance remains obscure. Given inherent stressors affecting OLs, the objective of the present study was to discuss the possible role of amyloidogenic evolvability (aEVO) in these conditions. Hypothetically, in aEVO, protofibrils of amyloidogenic proteins (APs), including β-synuclein and β-amyloid, might form in response to diverse stressors in parental brain. Subsequently, the AP protofibrils might be transmitted to offspring via germ cells in a prion-like fashion. By virtue of the stress information conferred by protofibrillar APs, the OLs in offspring's brain might be more resilient to forthcoming stressors, perhaps reducing MS risk. aEVO could be comparable to a gene for the inheritance of acquired characteristics. On the contrary, during ageing, MSA risk is increased through antagonistic pleiotropy. Consistently, the expression levels of APs are reduced in MS, but are increased in MSA compared to controls. Furthermore, β-synuclein, the non-amyloidogenic homologue of β-synuclein, might exert a buffering effect on aEVO, and abnormal β-synuclein could also increase MS and MSA disease activity. Collectively, a better understanding of the role of aEVO in the OL diseases might lead to novel interventions for such chronic degenerative conditions.
Collapse
Affiliation(s)
- Jianshe Wei
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, Henan, China,CONTACT Jianshe Wei Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Gilbert Ho
- Pacific Center for Neurological Disease (PCND) Neuroscience Research Institute, Poway, CA, USA
| | - Eliezer Masliah
- Division of Neurosciences, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Makoto Hashimoto
- Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, Japan,Makoto Hashimoto Tokyo Metropolitan Institute of Medical Sciences, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo156-0057
| |
Collapse
|
2
|
Galkin AP, Sysoev EI, Valina AA. Amyloids and prions in the light of evolution. Curr Genet 2023; 69:189-202. [PMID: 37165144 DOI: 10.1007/s00294-023-01270-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/12/2023]
Abstract
Functional amyloids have been identified in a wide variety of organisms including bacteria, fungi, plants, and vertebrates. Intracellular and extracellular amyloid fibrils of different proteins perform storage, protective, structural, and regulatory functions. The structural organization of amyloid fibrils determines their unique physical and biochemical properties. The formation of these fibrillar structures can provide adaptive advantages that are picked up by natural selection. Despite the great interest in functional and pathological amyloids, questions about the conservatism of the amyloid properties of proteins and the regularities in the appearance of these fibrillar structures in evolution remain almost unexplored. Using bioinformatics approaches and summarizing the data published previously, we have shown that amyloid fibrils performing similar functions in different organisms have been arising repeatedly and independently in the course of evolution. On the other hand, we show that the amyloid properties of a number of bacterial and eukaryotic proteins are evolutionarily conserved. We also discuss the role of protein-based inheritance in the evolution of microorganisms. Considering that missense mutations and the emergence of prions cause the same consequences, we propose the concept that the formation of prions, similarly to mutations, generally causes a negative effect, although it can also lead to adaptations in rare cases. In general, our analysis revealed certain patterns in the emergence and spread of amyloid fibrillar structures in the course of evolution.
Collapse
Affiliation(s)
- Alexey P Galkin
- Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, St. Petersburg, Russian Federation, 199034.
- Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg, Russian Federation, 199034.
| | - Evgeniy I Sysoev
- Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, St. Petersburg, Russian Federation, 199034
- Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg, Russian Federation, 199034
| | - Anna A Valina
- Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg, Russian Federation, 199034
| |
Collapse
|
3
|
Chernoff YO, Nizhnikov AA. Overview of the Special Issue "Protein-Based Infection, Inheritance, and Memory". Int J Mol Sci 2023; 24:11280. [PMID: 37511040 PMCID: PMC10379973 DOI: 10.3390/ijms241411280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
The Special Issue "Protein-Based Infection, Inheritance, and Memory" includes a set of experimental and review papers covering different aspects of protein memory, infection, and inheritance [...].
Collapse
Affiliation(s)
- Yury O Chernoff
- School of Biological Sciences, Georgia Institute of Technology, Krone EBB, 950 Atlantic Drive NW, Atlanta, GA 30332-2000, USA
| | - Anton A Nizhnikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russian Research Institute for Agricultural Microbiology, 3 Podbelskogo Sh., Pushkin, 196608 St. Petersburg, Russia
- Faculty of Biology, St. Petersburg State University, 7/9 Universitetskaya Emb., 199034 St. Petersburg, Russia
| |
Collapse
|
4
|
The Way forward for the Origin of Life: Prions and Prion-Like Molecules First Hypothesis. Life (Basel) 2021; 11:life11090872. [PMID: 34575021 PMCID: PMC8467930 DOI: 10.3390/life11090872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/11/2021] [Accepted: 08/22/2021] [Indexed: 11/18/2022] Open
Abstract
In this paper the hypothesis that prions and prion-like molecules could have initiated the chemical evolutionary process which led to the eventual emergence of life is reappraised. The prions first hypothesis is a specific application of the protein-first hypothesis which asserts that protein-based chemical evolution preceded the evolution of genetic encoding processes. This genetics-first hypothesis asserts that an “RNA-world era” came before protein-based chemical evolution and rests on a singular premise that molecules such as RNA, acetyl-CoA, and NAD are relics of a long line of chemical evolutionary processes preceding the Last Universal Common Ancestor (LUCA). Nevertheless, we assert that prions and prion-like molecules may also be relics of chemical evolutionary processes preceding LUCA. To support this assertion is the observation that prions and prion-like molecules are involved in a plethora of activities in contemporary biology in both complex (eukaryotes) and primitive life forms. Furthermore, a literature survey reveals that small RNA virus genomes harbor information about prions (and amyloids). If, as has been presumed by proponents of the genetics-first hypotheses, small viruses were present during an RNA world era and were involved in some of the earliest evolutionary processes, this places prions and prion-like molecules potentially at the heart of the chemical evolutionary process whose eventual outcome was life. We deliberate on the case for prions and prion-like molecules as the frontier molecules at the dawn of evolution of living systems.
Collapse
|
5
|
Zink RM. Considering the use of the terms strain and adaptation in prion research. Heliyon 2021; 7:e06801. [PMID: 33898853 PMCID: PMC8060586 DOI: 10.1016/j.heliyon.2021.e06801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/08/2021] [Accepted: 04/11/2021] [Indexed: 12/20/2022] Open
Abstract
Evolutionary biologists and disease biologists use the terms strain and adaptation in Chronic Wasting Disease (CWD) research in different ways. In evolutionary biology, a strain is a nascent genetic lineage that can be described by a genealogy, and a phylogenetic nomenclature constructed to reflect that genealogy. Prion strains are described as showing distinct host range, clinical presentation, disease progression, and neuropathological and PrP biochemical profiles, and lack information that would permit phylogenetic reconstruction of their history. Prion strains are alternative protein conformations, sometimes derived from the same genotype. I suggest referring to prion strains as ecotypes, because the variant phenotypic conformations ("strains") are a function of the interaction between PRNP amino acid genotype and the host environment. In the case of CWD, a prion ecotype in white-tailed deer would be described by its genotype and the host in which it occurs, such as the H95 + ecotype. However, an evolutionary nomenclature is difficult because not all individuals with the same PRNP genotype show signs of CWD, therefore creating a nomenclature reflecting and one-to-one relationship between PRNP genealogy and CWD presence is difficult. Furthermore, very little information exists on the phylogenetic distribution of CWD ecotypes in wild deer populations. Adaptation has a clear meaning in evolutionary biology, the differential survival and reproduction of individual genotypes. If a new prion ecotype arises in a particular host and kills more hosts or kills at an earlier age, it is the antithesis of the evolutionary definition of adaptation. However, prion strains might be transmitted across generations epigenetically, but whether this represents adaptation depends on the fitness consequences of the strain. Protein phenotypes of PRNP that cause transmissible spongiform encephalopathies (TSEs), and CWD, are maladaptive and would not be propagated genetically or epigenetically via a process consistent with an evolutionary view of adaptation. I suggest terming the process of prion strain origination "phenotypic transformation", and only adaptation if evidence shows they are not maladaptive and persist over evolutionary time periods (e.g., thousands of generations) and across distinct species boundaries (via inheritance). Thus, prion biologists use strain and adaptation, historically evolutionary terms, in quite different ways.
Collapse
Affiliation(s)
- Robert M. Zink
- School of Natural Resources, School of Biological Sciences, Nebraska State Museum, University of Nebraska-Lincoln, Lincoln, NE 68503, USA
| |
Collapse
|
6
|
Dixson JD, Azad RK. Prions: Roles in Development and Adaptive Evolution. J Mol Evol 2020; 88:427-434. [PMID: 32388713 DOI: 10.1007/s00239-020-09944-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 04/28/2020] [Indexed: 12/14/2022]
Abstract
Prions are often considered as anomalous proteins associated primarily with disease rather than as a fundamental source of diversity within biological proteomes. Whereas this longstanding viewpoint has its genesis in the discovery of the original namesake prions as causative agents of several complex diseases, the underlying assumption of a strict disease basis for prions could not be further from the truth. Prions and the spectrum of functions they comprise, likely represent one of the largest paradigm shifts concerning molecular-encoded phenotypic diversity since identification of DNA as the principle molecule of heredity. The ability of prions to recruit similar proteins to alternate conformations may engender a reservoir of diversity supplementing the genetic diversity resulting from stochastic mutations of DNA and subsequent natural selection. Here we present several currently known prions and how many of their functions as well as modes of transmission are intricately linked to adaptation from an evolutionary perspective. Further, the stability of some prion conformations across generations indicates that heritable prion-based adaptation is a reality.
Collapse
Affiliation(s)
- Jamie D Dixson
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX, 76203, USA
| | - Rajeev K Azad
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX, 76203, USA.
- Department of Mathematics, University of North Texas, Denton, TX, 76203, USA.
| |
Collapse
|
7
|
Chernoff YO, Grizel AV, Rubel AA, Zelinsky AA, Chandramowlishwaran P, Chernova TA. Application of yeast to studying amyloid and prion diseases. ADVANCES IN GENETICS 2020; 105:293-380. [PMID: 32560789 PMCID: PMC7527210 DOI: 10.1016/bs.adgen.2020.01.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyloids are fibrous cross-β protein aggregates that are capable of proliferation via nucleated polymerization. Amyloid conformation likely represents an ancient protein fold and is linked to various biological or pathological manifestations. Self-perpetuating amyloid-based protein conformers provide a molecular basis for transmissible (infectious or heritable) protein isoforms, termed prions. Amyloids and prions, as well as other types of misfolded aggregated proteins are associated with a variety of devastating mammalian and human diseases, such as Alzheimer's, Parkinson's and Huntington's diseases, transmissible spongiform encephalopathies (TSEs), amyotrophic lateral sclerosis (ALS) and transthyretinopathies. In yeast and fungi, amyloid-based prions control phenotypically detectable heritable traits. Simplicity of cultivation requirements and availability of powerful genetic approaches makes yeast Saccharomyces cerevisiae an excellent model system for studying molecular and cellular mechanisms governing amyloid formation and propagation. Genetic techniques allowing for the expression of mammalian or human amyloidogenic and prionogenic proteins in yeast enable researchers to capitalize on yeast advantages for characterization of the properties of disease-related proteins. Chimeric constructs employing mammalian and human aggregation-prone proteins or domains, fused to fluorophores or to endogenous yeast proteins allow for cytological or phenotypic detection of disease-related protein aggregation in yeast cells. Yeast systems are amenable to high-throughput screening for antagonists of amyloid formation, propagation and/or toxicity. This review summarizes up to date achievements of yeast assays in application to studying mammalian and human disease-related aggregating proteins, and discusses both limitations and further perspectives of yeast-based strategies.
Collapse
Affiliation(s)
- Yury O Chernoff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States; Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg, Russia.
| | - Anastasia V Grizel
- Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg, Russia
| | - Aleksandr A Rubel
- Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg, Russia; Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg, Russia; Sirius University of Science and Technology, Sochi, Russia
| | - Andrew A Zelinsky
- Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg, Russia
| | | | - Tatiana A Chernova
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
8
|
Tikhodeyev ON. Heredity determined by the environment: Lamarckian ideas in modern molecular biology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 710:135521. [PMID: 31784162 DOI: 10.1016/j.scitotenv.2019.135521] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/12/2019] [Accepted: 11/12/2019] [Indexed: 06/10/2023]
Abstract
Inheritance of acquired characteristics (IAC) is a well-documented phenomenon occurring both in eukaryotes and prokaryotes. However, it is not included in current biological theories, and the risks of IAC induction are not assessed by genetic toxicology. Furthermore, different kinds of IAC (transgenerational and intergenerational inheritance, genotrophic changes, dauermodifications, vernalization, and some others) are traditionally considered in isolation, thus impeding the development of a comprehensive view on IAC as a whole. Herein, we discuss all currently known kinds of IAC as well as their mechanisms, if unraveled. We demonstrate that IAC is a special case of genotype × environment interactions requiring certain genotypes and, as a rule, prolonged exposure to the inducing influence. Most mechanisms of IAC are epigenetic; these include but not limited to DNA methylation, histone modifications, competition of transcription factors, induction of non-coding RNAs, inhibition of plastid translation, and curing of amyloid and non-amyloid prions. In some cases, changes in DNA sequences or host-microbe interactions are involved as well. The only principal difference between IAC and other environmentally inducible hereditary changes such as the effects of radiation is the origin of the changes: in case of IAC they are definite (determined by the environment), while the others are indefinite (arise from environmentally provoked molecular stochasticity). At least some kinds of IAC are adaptive and could be regarded as the elements of natural selection, though non-canonical in their origin and molecular nature. This is a probable way towards synthesis of the Lamarckian and Darwinian evolutionary conceptions. Applied issues of IAC are also discussed.
Collapse
Affiliation(s)
- Oleg N Tikhodeyev
- Department of Genetics & Biotechnology, Saint-Petersburg State University, University emb. 7/9, Saint-Petersburg 199034, Russia.
| |
Collapse
|
9
|
Wilson CJ, Bommarius AS, Champion JA, Chernoff YO, Lynn DG, Paravastu AK, Liang C, Hsieh MC, Heemstra JM. Biomolecular Assemblies: Moving from Observation to Predictive Design. Chem Rev 2018; 118:11519-11574. [PMID: 30281290 PMCID: PMC6650774 DOI: 10.1021/acs.chemrev.8b00038] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Biomolecular assembly is a key driving force in nearly all life processes, providing structure, information storage, and communication within cells and at the whole organism level. These assembly processes rely on precise interactions between functional groups on nucleic acids, proteins, carbohydrates, and small molecules, and can be fine-tuned to span a range of time, length, and complexity scales. Recognizing the power of these motifs, researchers have sought to emulate and engineer biomolecular assemblies in the laboratory, with goals ranging from modulating cellular function to the creation of new polymeric materials. In most cases, engineering efforts are inspired or informed by understanding the structure and properties of naturally occurring assemblies, which has in turn fueled the development of predictive models that enable computational design of novel assemblies. This Review will focus on selected examples of protein assemblies, highlighting the story arc from initial discovery of an assembly, through initial engineering attempts, toward the ultimate goal of predictive design. The aim of this Review is to highlight areas where significant progress has been made, as well as to outline remaining challenges, as solving these challenges will be the key that unlocks the full power of biomolecules for advances in technology and medicine.
Collapse
Affiliation(s)
- Corey J. Wilson
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Andreas S. Bommarius
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Julie A. Champion
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Yury O. Chernoff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Laboratory of Amyloid Biology & Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - David G. Lynn
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Anant K. Paravastu
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Chen Liang
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Ming-Chien Hsieh
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Jennifer M. Heemstra
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
10
|
Abstract
Darwin's gemmules were supposed to be "thrown off" by cells and were "inconceivably minute and numerous as the stars in heaven." They were capable of self-propagation and diffusion from cell to cell, and circulation through the system. The word "gene" coined by Wilhelm Johannsen, was derived from de Vries's term "pangen," itself a substitute for "gemmule" in Darwin's Pangenesis. Johannsen resisted the "morphological" conception of genes as particles with a certain structure. Morgan's genes were considered to be stable entities arranged in an orderly linear pattern on chromosomes, like beads on a string. In the late 1940s, McClintock challenged the concept of the stability of the gene when she discovered that some genes could move within a chromosome and between chromosomes. In 1948, Mandel and Metais reported the presence of cell-free nucleic acids in human blood for the first time. Over the past several decades, it has been universally accepted that almost all types of cells not only shed molecules such as cell-free DNA (including genomic DNA, tumor DNA and fetal DNA), RNAs (including mRNA and small RNAs) and prions, but also release into the extracellular environment diverse types of membrane vesicles (known as extracellular vesicles) containing DNA, RNA and proteins. Thus Darwin's speculative gemmules of the 19th century have become the experimentally demonstrated circulating cell-free DNA, mobile RNAs, prions and extracellular vesicles.
Collapse
Affiliation(s)
- Yongsheng Liu
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, China; Department of Biochemistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
11
|
Jacob RS, Das S, Singh N, Patel K, Datta D, Sen S, Maji SK. Amyloids Are Novel Cell-Adhesive Matrices. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1112:79-97. [PMID: 30637692 DOI: 10.1007/978-981-13-3065-0_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Amyloids are highly ordered peptide/protein aggregates traditionally associated with multiple human diseases including neurodegenerative disorders. However, recent studies suggest that amyloids can also perform several biological functions in organisms varying from bacteria to mammals. In many lower organisms, amyloid fibrils function as adhesives due to their unique surface topography. Recently, amyloid fibrils have been shown to support attachment and spreading of mammalian cells by interacting with the cell membrane and by cell adhesion machinery activation. Moreover, similar to cellular responses on natural extracellular matrices (ECMs), mammalian cells on amyloid surfaces also use integrin machinery for spreading, migration, and differentiation. This has led to the development of biocompatible and implantable amyloid-based hydrogels that could induce lineage-specific differentiation of stem cells. In this chapter, based on adhesion of both lower organisms and mammalian cells on amyloid nanofibrils, we posit that amyloids could have functioned as a primitive extracellular matrix in primordial earth.
Collapse
Affiliation(s)
- Reeba S Jacob
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Subhadeep Das
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Namrata Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Komal Patel
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Debalina Datta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Shamik Sen
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Samir K Maji
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India.
| |
Collapse
|
12
|
Ryzhova TA, Sopova JV, Zadorsky SP, Siniukova VA, Sergeeva AV, Galkina SA, Nizhnikov AA, Shenfeld AA, Volkov KV, Galkin AP. Screening for amyloid proteins in the yeast proteome. Curr Genet 2017; 64:469-478. [PMID: 29027580 DOI: 10.1007/s00294-017-0759-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 09/18/2017] [Accepted: 09/25/2017] [Indexed: 01/28/2023]
Abstract
The search for novel pathological and functional amyloids represents one of the most important tasks of contemporary biomedicine. Formation of pathological amyloid fibrils in the aging brain causes incurable neurodegenerative disorders such as Alzheimer's, Parkinson's Huntington's diseases. At the same time, a set of amyloids regulates vital processes in archaea, prokaryotes and eukaryotes. Our knowledge of the prevalence and biological significance of amyloids is limited due to the lack of universal methods for their identification. Here, using our original method of proteomic screening PSIA-LC-MALDI, we identified a number of proteins that form amyloid-like detergent-resistant aggregates in Saccharomyces cerevisiae. We revealed in yeast strains of different origin known yeast prions, prion-associated proteins, and a set of proteins whose amyloid properties were not shown before. A substantial number of the identified proteins are cell wall components, suggesting that amyloids may play important roles in the formation of this extracellular protective sheath. Two proteins identified in our screen, Gas1 and Ygp1, involved in biogenesis of the yeast cell wall, were selected for detailed analysis of amyloid properties. We show that Gas1 and Ygp1 demonstrate amyloid properties both in vivo in yeast cells and using the bacteria-based system C-DAG. Taken together, our data show that this proteomic approach is very useful for identification of novel amyloids.
Collapse
Affiliation(s)
- Tatyana A Ryzhova
- Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, 199034, St. Petersburg, Russian Federation.,Department of Genetics and Biotechnology, St. Petersburg State University, 199034, St. Petersburg, Russian Federation
| | - Julia V Sopova
- Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, 199034, St. Petersburg, Russian Federation.,Department of Genetics and Biotechnology, St. Petersburg State University, 199034, St. Petersburg, Russian Federation
| | - Sergey P Zadorsky
- Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, 199034, St. Petersburg, Russian Federation.,Department of Genetics and Biotechnology, St. Petersburg State University, 199034, St. Petersburg, Russian Federation
| | - Vera A Siniukova
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034, St. Petersburg, Russian Federation
| | - Aleksandra V Sergeeva
- Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, 199034, St. Petersburg, Russian Federation
| | - Svetlana A Galkina
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034, St. Petersburg, Russian Federation
| | - Anton A Nizhnikov
- Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, 199034, St. Petersburg, Russian Federation.,Department of Genetics and Biotechnology, St. Petersburg State University, 199034, St. Petersburg, Russian Federation.,All-Russia Research Institute for Agricultural Microbiology, Podbelskogo sh., 3, Pushkin, St. Petersburg, 196608, Russian Federation
| | - Aleksandr A Shenfeld
- Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, 199034, St. Petersburg, Russian Federation.,Department of Genetics and Biotechnology, St. Petersburg State University, 199034, St. Petersburg, Russian Federation
| | - Kirill V Volkov
- Research Park, Research Resource Center "Molecular and Cell Technologies", St. Petersburg State University, St. Petersburg, Russian Federation
| | - Alexey P Galkin
- Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, 199034, St. Petersburg, Russian Federation. .,Department of Genetics and Biotechnology, St. Petersburg State University, 199034, St. Petersburg, Russian Federation.
| |
Collapse
|
13
|
Tikhodeyev ON, Tarasov OV, Bondarev SA. Allelic variants of hereditary prions: The bimodularity principle. Prion 2017; 11:4-24. [PMID: 28281926 PMCID: PMC5360123 DOI: 10.1080/19336896.2017.1283463] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 01/04/2017] [Accepted: 01/10/2017] [Indexed: 12/26/2022] Open
Abstract
Modern biology requires modern genetic concepts equally valid for all discovered mechanisms of inheritance, either "canonical" (mediated by DNA sequences) or epigenetic. Applying basic genetic terms such as "gene" and "allele" to protein hereditary factors is one of the necessary steps toward these concepts. The basic idea that different variants of the same prion protein can be considered as alleles has been previously proposed by Chernoff and Tuite. In this paper, the notion of prion allele is further developed. We propose the idea that any prion allele is a bimodular hereditary system that depends on a certain DNA sequence (DNA determinant) and a certain epigenetic mark (epigenetic determinant). Alteration of any of these 2 determinants may lead to establishment of a new prion allele. The bimodularity principle is valid not only for hereditary prions; it seems to be universal for any epigenetic hereditary factor.
Collapse
Affiliation(s)
- Oleg N. Tikhodeyev
- Department of Genetics & Biotechnology, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Oleg V. Tarasov
- Department of Genetics & Biotechnology, Saint-Petersburg State University, Saint-Petersburg, Russia
- Saint-Petersburg Scientific Center of RAS, Saint-Petersburg, Russia
| | - Stanislav A. Bondarev
- Department of Genetics & Biotechnology, Saint-Petersburg State University, Saint-Petersburg, Russia
- The Laboratory of Amyloid Biology, Saint-Petersburg State University, Saint-Petersburg, Russia
| |
Collapse
|
14
|
|
15
|
Abstract
Prion proteins provide a unique mode of biochemical memory through self-perpetuating changes in protein conformation and function. They have been studied in fungi and mammals, but not yet identified in plants. Using a computational model, we identified candidate prion domains (PrDs) in nearly 500 plant proteins. Plant flowering is of particular interest with respect to biological memory, because its regulation involves remembering and integrating previously experienced environmental conditions. We investigated the prion-forming capacity of three prion candidates involved in flowering using a yeast model, where prion attributes are well defined and readily tested. In yeast, prions heritably change protein functions by templating monomers into higher-order assemblies. For most yeast prions, the capacity to convert into a prion resides in a distinct prion domain. Thus, new prion-forming domains can be identified by functional complementation of a known prion domain. The prion-like domains (PrDs) of all three of the tested proteins formed higher-order oligomers. Uniquely, the Luminidependens PrD (LDPrD) fully replaced the prion-domain functions of a well-characterized yeast prion, Sup35. Our results suggest that prion-like conformational switches are evolutionarily conserved and might function in a wide variety of normal biological processes.
Collapse
|
16
|
Abstract
Holistic emerging approaches allow us to understand that every organism is the result of integration mechanisms observed at every level of nature: integration of DNA from virus and bacteria in metazoans, endosymbiotic relationships and holobionts. Horizontal gene transfer events in Bacteria, Archaea and Eukaryotes have resulted in the chimeric nature of genomes. As a continuity of this genomic landscape, the human body contains more bacterial than human cells. Human microbiome has co-evolved with the human being as a unity called holobiont. The loss of part of our microbiome along evolution can explain the continuous increasing incidence of immune and inflammatory-related diseases. Life is a continuous process in which the organism experiences its environment and this interaction impacts in the epigenetic system and the genomic structure. The emerging perspectives restitute the great importance of Lamarck's theoretical contributions (the milieu) and Darwin's pangenesis theory.
Collapse
|
17
|
Chernova TA, Wilkinson KD, Chernoff YO. Physiological and environmental control of yeast prions. FEMS Microbiol Rev 2013; 38:326-44. [PMID: 24236638 DOI: 10.1111/1574-6976.12053] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 11/08/2013] [Accepted: 11/10/2013] [Indexed: 11/30/2022] Open
Abstract
Prions are self-perpetuating protein isoforms that cause fatal and incurable neurodegenerative disease in mammals. Recent evidence indicates that a majority of human proteins involved in amyloid and neural inclusion disorders possess at least some prion properties. In lower eukaryotes, such as yeast, prions act as epigenetic elements, which increase phenotypic diversity by altering a range of cellular processes. While some yeast prions are clearly pathogenic, it is also postulated that prion formation could be beneficial in variable environmental conditions. Yeast and mammalian prions have similar molecular properties. Crucial cellular factors and conditions influencing prion formation and propagation were uncovered in the yeast models. Stress-related chaperones, protein quality control deposits, degradation pathways, and cytoskeletal networks control prion formation and propagation in yeast. Environmental stresses trigger prion formation and loss, supposedly acting via influencing intracellular concentrations of the prion-inducing proteins, and/or by localizing prionogenic proteins to the prion induction sites via heterologous ancillary helpers. Physiological and environmental modulation of yeast prions points to new opportunities for pharmacological intervention and/or prophylactic measures targeting general cellular systems rather than the properties of individual amyloids and prions.
Collapse
Affiliation(s)
- Tatiana A Chernova
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | | | | |
Collapse
|
18
|
Newby GA, Lindquist S. Blessings in disguise: biological benefits of prion-like mechanisms. Trends Cell Biol 2013; 23:251-9. [PMID: 23485338 DOI: 10.1016/j.tcb.2013.01.007] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 01/17/2013] [Accepted: 01/25/2013] [Indexed: 02/07/2023]
Abstract
Prions and amyloids are often associated with disease, but related mechanisms provide beneficial functions in nature. Prion-like mechanisms (PriLiMs) are found from bacteria to humans, where they alter the biological and physical properties of prion-like proteins. We have proposed that prions can serve as heritable bet-hedging devices for diversifying microbial phenotypes. Other, more dynamic proteinaceous complexes may be governed by similar self-templating conformational switches. Additional PriLiMs continue to be identified and many share features of self-templating protein structure (including amyloids) and dependence on chaperone proteins. Here, we discuss several PriLiMs and their functions, intending to spur discussion and collaboration on the subject of beneficial prion-like behaviors.
Collapse
Affiliation(s)
- Gregory A Newby
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | |
Collapse
|
19
|
Dupré J, O’Malley MA. Varieties of Living Things: Life at the Intersection of Lineage and Metabolism. VITALISM AND THE SCIENTIFIC IMAGE IN POST-ENLIGHTENMENT LIFE SCIENCE, 1800-2010 2013. [DOI: 10.1007/978-94-007-2445-7_13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
20
|
Abstract
Prions are agents of analog, protein conformation-based inheritance that can confer beneficial phenotypes to cells, especially under stress. Combined with genetic variation, prion-mediated inheritance can be channeled into prion-independent genomic inheritance. Latest screening shows that prions are common, at least in fungi. Thus, there is non-negligible flow of information from proteins to the genome in modern cells, in a direct violation of the Central Dogma of molecular biology. The prion-mediated heredity that violates the Central Dogma appears to be a specific, most radical manifestation of the widespread assimilation of protein (epigenetic) variation into genetic variation. The epigenetic variation precedes and facilitates genetic adaptation through a general 'look-ahead effect' of phenotypic mutations. This direction of the information flow is likely to be one of the important routes of environment-genome interaction and could substantially contribute to the evolution of complex adaptive traits.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
21
|
Abstract
The concept of a prion as an infectious self-propagating protein isoform was initially proposed to explain certain mammalian diseases. It is now clear that yeast also has heritable elements transmitted via protein. Indeed, the "protein only" model of prion transmission was first proven using a yeast prion. Typically, known prions are ordered cross-β aggregates (amyloids). Recently, there has been an explosion in the number of recognized prions in yeast. Yeast continues to lead the way in understanding cellular control of prion propagation, prion structure, mechanisms of de novo prion formation, specificity of prion transmission, and the biological roles of prions. This review summarizes what has been learned from yeast prions.
Collapse
Affiliation(s)
- Susan W Liebman
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557, USA.
| | | |
Collapse
|
22
|
Sabaté R, Villar-Piqué A, Espargaró A, Ventura S. Temperature Dependence of the Aggregation Kinetics of Sup35 and Ure2p Yeast Prions. Biomacromolecules 2011; 13:474-83. [DOI: 10.1021/bm201527m] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Raimon Sabaté
- Institut de Biotecnologia
i de Biomedicina and Departament
de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona),
Spain
| | - Anna Villar-Piqué
- Institut de Biotecnologia
i de Biomedicina and Departament
de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona),
Spain
| | - Alba Espargaró
- Institut de Biotecnologia
i de Biomedicina and Departament
de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona),
Spain
| | - Salvador Ventura
- Institut de Biotecnologia
i de Biomedicina and Departament
de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona),
Spain
| |
Collapse
|
23
|
A small, glutamine-free domain propagates the [SWI(+)] prion in budding yeast. Mol Cell Biol 2011; 31:3436-44. [PMID: 21670156 DOI: 10.1128/mcb.05338-11] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Yeast prions are self-propagating protein conformations that transmit heritable phenotypes in an epigenetic manner. The recently identified yeast prion [SWI(+)] is an alternative conformation of Swi1, a component of the evolutionarily conserved SWI/SNF chromatin-remodeling complex. Formation of the [SWI(+)] prion results in a partial loss-of-function phenotype for Swi1. The amino-terminal region of Swi1 is dispensable for its normal function but is required for [SWI(+)] formation and propagation; however, the precise prion domain (PrD) of Swi1 has not been elucidated. Here, we define the minimal Swi1 PrD as the first 37 amino acids of the protein. This region is extremely asparagine rich but, unexpectedly, contains no glutamine residues. This unusually small prion domain is sufficient for aggregation, propagation, and transmission of the [SWI(+)] prion. Because of its unusual size and composition, the Swi1 prion domain defined here has important implications for describing and identifying novel prions.
Collapse
|
24
|
Bruce KL, Chernoff YO. Sequence specificity and fidelity of prion transmission in yeast. Semin Cell Dev Biol 2011; 22:444-51. [PMID: 21439395 DOI: 10.1016/j.semcdb.2011.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 03/15/2011] [Accepted: 03/15/2011] [Indexed: 11/27/2022]
Abstract
Amyloid formation is a widespread feature of various proteins. It is associated with both important diseases (including infectious mammalian prions) and biologically positive functions, and provides a basis for structural "templating" and protein-based epigenetic inheritance (for example, in the case of yeast prions). Amyloid templating is characterized by a high level of sequence specificity and conformational fidelity. Even slight variations in sequence may produce a strong barrier for prion transmission. Yeast models provide useful insight into a mechanism of amyloid specificity and fidelity. Accumulating evidence indicates that cross-species prion transmission is controlled by the identity of short sequences (specificity stretches) rather than by the overall level of sequence identity. Location of the specificity stretches determines the location and/or size of the cross-β amyloid region that controls patterns of prion variants. In some cases of cross-species prion transmission, fidelity of variant reproduction is impaired, leading to the formation of new structural variants. We propose that such a variant switch may occur due to choice of the alternatively located secondary specificity stretches, when interaction between the primary stretches is impaired due to sequence divergence.
Collapse
Affiliation(s)
- Kathryn L Bruce
- School of Biology and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA 30332-0230, USA
| | | |
Collapse
|
25
|
Greenwald J, Riek R. Biology of amyloid: structure, function, and regulation. Structure 2011; 18:1244-60. [PMID: 20947013 DOI: 10.1016/j.str.2010.08.009] [Citation(s) in RCA: 437] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Revised: 08/18/2010] [Accepted: 08/30/2010] [Indexed: 01/23/2023]
Abstract
Amyloids are highly ordered cross-β sheet protein aggregates associated with many diseases including Alzheimer's disease, but also with biological functions such as hormone storage. The cross-β sheet entity comprising an indefinitely repeating intermolecular β sheet motif is unique among protein folds. It grows by recruitment of the corresponding amyloid protein, while its repetitiveness can translate what would be a nonspecific activity as monomer into a potent one through cooperativity. Furthermore, the one-dimensional crystal-like repeat in the amyloid provides a structural framework for polymorphisms. This review summarizes the recent high-resolution structural studies of amyloid fibrils in light of their biological activities. We discuss how the unique properties of amyloids gives rise to many activities and further speculate about currently undocumented biological roles for the amyloid entity. In particular, we propose that amyloids could have existed in a prebiotic world, and may have been the first functional protein fold in living cells.
Collapse
Affiliation(s)
- Jason Greenwald
- ETH Zurich, Physical Chemistry, ETH Honggerberg, 8093 Zurich, Switzerland
| | | |
Collapse
|
26
|
Abstract
High-ordered aggregates (amyloids) may disrupt cell functions, cause toxicity at certain conditions and provide a basis for self-perpetuated, protein-based infectious heritable agents (prions). Heat shock proteins acting as molecular chaperones counteract protein aggregation and influence amyloid propagation. The yeast Hsp104/Hsp70/Hsp40 chaperone complex plays a crucial role in interactions with both ordered and unordered aggregates. The main focus of this review will be on the Hsp104 chaperone, a molecular "disaggregase".
Collapse
Affiliation(s)
- Nina V Romanova
- School of Biology and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | | |
Collapse
|
27
|
The paradox of viable sup45 STOP mutations: a necessary equilibrium between translational readthrough, activity and stability of the protein. Mol Genet Genomics 2009; 282:83-96. [PMID: 19370360 DOI: 10.1007/s00438-009-0447-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Accepted: 03/26/2009] [Indexed: 10/20/2022]
Abstract
The mechanisms leading to non-lethality of nonsense mutations in essential genes are poorly understood. Here, we focus on the factors influencing viability of yeast cells bearing premature termination codons (PTCs) in the essential gene SUP45 encoding translation termination factor eRF1. Using a dual reporter system we compared readthrough efficiency of the natural termination codon of SUP45 gene, spontaneous sup45-n (nonsense) mutations, nonsense mutations obtained by site-directed mutagenesis (76Q --> TAA, 242R --> TGA, 317L --> TAG). The nonsense mutations in SUP45 gene were shown to be situated in moderate contexts for readthrough efficiency. We showed that readthrough efficiency of some of the mutations present in the sup45 mutants is not correlated with full-length Sup45 protein amount. This resulted from modification of both sup45 mRNA stability which varies 3-fold among sup45-n mutants and degradation rate of mutant Sup45 proteins. Our results demonstrate that some substitutions in the place of PTCs decrease Sup45 stability. The viability of sup45 nonsense mutants is therefore supported by diverse mechanisms that control the final amount of functional Sup45 in cells.
Collapse
|
28
|
Abstract
The self-perpetuating amyloid isoform, or prion, of the yeast translation termination factor eRF3 modulates programmed translational frameshifting that controls a regulatory circuit determining the polyamine levels in a yeast cell. But it is still unclear whether this effect is adaptive or pathological.
Collapse
|
29
|
Abstract
When challenged with unfavorable conditions, microorganisms can develop a stress response that allows them to adapt to or survive in the new environment. A common feature of the numerous specific stress response pathways that have been described in a wide range of bacteria is that they are energy demanding and therefore often transient. In addition, stress responses may come too late or be insufficient to protect the cell or the population against very sudden or severe stresses. However, it seems that microorganisms can also enhance their chances of survival under stress by increasing the generation of diversity at the population level. This can be achieved either by creating genetic diversity by a variety of mechanisms involving for example constitutive or transient mutators and contingency loci, or by revealing phenotypic diversity that remained dormant due to a mechanism called genetic buffering. This review gives an overview of these emerging diversity-generating mechanisms, which seem to play an important role in the ability of microbial populations to overcome stress challenges.
Collapse
Affiliation(s)
- Abram Aertsen
- Laboratory of Food Microbiology, Katholieke Universiteit Leuven, Leuven, Belgium.
| | | |
Collapse
|
30
|
Abstract
The robust surface adherence property of the aquatic bacterium Caulobacter crescentus permits visualization of single cells in a linear microfluidic culture chamber over an extended number of generations. The division rate of Caulobacter in this continuous-flow culture environment is substantially faster than in other culture apparati and is independent of flow velocity. Analysis of the growth and division of single isogenic cells reveals that the cell cycle control network of this bacterium generates an oscillatory output with a coefficient of variation lower than that of all other bacterial species measured to date. DivJ, a regulator of polar cell development, is necessary for maintaining low variance in interdivision timing, as transposon disruption of divJ significantly increases the coefficient of variation of both interdivision time and the rate of cell elongation. Moreover, interdivision time and cell division arrest are significantly correlated between mother and daughter cells, providing evidence for epigenetic inheritance of cell division behavior in Caulobacter. The single-cell growth/division results reported here suggest that future predictive models of Caulobacter cell cycle regulation should include parameters describing the variance and inheritance properties of this system.
Collapse
|
31
|
Sadlish H, Rampelt H, Shorter J, Wegrzyn RD, Andréasson C, Lindquist S, Bukau B. Hsp110 chaperones regulate prion formation and propagation in S. cerevisiae by two discrete activities. PLoS One 2008; 3:e1763. [PMID: 18335038 PMCID: PMC2258148 DOI: 10.1371/journal.pone.0001763] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Accepted: 02/07/2008] [Indexed: 11/18/2022] Open
Abstract
The cytosolic chaperone network of Saccharomyces cerevisiae is intimately associated with the emergence and maintenance of prion traits. Recently, the Hsp110 protein, Sse1, has been identified as a nucleotide exchange factor (NEF) for both cytosolic Hsp70 chaperone family members, Ssa1 and Ssb1. We have investigated the role of Sse1 in the de novo formation and propagation of [PSI(+)], the prion form of the translation termination factor, Sup35. As observed by others, we find that Sse1 is essential for efficient prion propagation. Our results suggest that the NEF activity is required for maintaining sufficient levels of substrate-free Ssa1. However, Sse1 exhibits an additional NEF-independent activity; it stimulates in vitro nucleation of Sup35NM, the prion domain of Sup35. We also observe that high levels of Sse1, but not of an unrelated NEF, very potently inhibit Hsp104-mediated curing of [PSI(+)]. Taken together, these results suggest a chaperone-like activity of Sse1 that assists in stabilization of early folding intermediates of the Sup35 prion conformation. This activity is not essential for prion formation under conditions of Sup35 overproduction, however, it may be relevant for spontaneous [PSI(+)] formation as well as for protection of the prion trait upon physiological Hsp104 induction.
Collapse
Affiliation(s)
- Heather Sadlish
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Universität Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
32
|
Fabret C, Cosnier B, Lekomtsev S, Gillet S, Hatin I, Le Maréchal P, Rousset JP. A novel mutant of the Sup35 protein of Saccharomyces cerevisiae defective in translation termination and in GTPase activity still supports cell viability. BMC Mol Biol 2008; 9:22. [PMID: 18267004 PMCID: PMC2259375 DOI: 10.1186/1471-2199-9-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Accepted: 02/11/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND When a stop codon is located in the ribosomal A-site, the termination complex promotes release of the polypeptide and dissociation of the 80S ribosome. In eukaryotes two proteins eRF1 and eRF3 play a crucial function in the termination process. The essential GTPase Sup35p, the eRF3 release factor of Saccharomyces cerevisiae is highly conserved. In particular, we observed that all eRF3 homologs share a potential phosphorylation site at threonine 341, suggesting a functional role for this residue. The goal of this study was to determine whether this residue is actually phosphorylated in yeast and if it is involved in the termination activity of the protein. RESULTS We detected no phosphorylation of the Sup35 protein in vivo. However, we show that it is phosphorylated by the cAMP-dependent protein kinase A on T341 in vitro. T341 was mutated to either alanine or to aspartic acid to assess the role of this residue in the activity of the protein. Both mutant proteins showed a large decrease of GTPase activity and a reduced interaction with eRF1/Sup45p. This was correlated with an increase of translational readthrough in cells carrying the mutant alleles. We also show that this residue is involved in functional interaction between the N- and C-domains of the protein. CONCLUSION Our results point to a new critical residue involved in the translation termination activity of Sup35 and in functional interaction between the N- and C-domains of the protein. They also raise interesting questions about the relation between GTPase activity of Sup35 and its essential function in yeast.
Collapse
Affiliation(s)
- Céline Fabret
- IGM, Univ Paris-Sud, UMR 8621, Orsay, F 91405, France.
| | | | | | | | | | | | | |
Collapse
|
33
|
Hatin I, Fabret C, Namy O, Decatur WA, Rousset JP. Fine-tuning of translation termination efficiency in Saccharomyces cerevisiae involves two factors in close proximity to the exit tunnel of the ribosome. Genetics 2007; 177:1527-37. [PMID: 17483428 PMCID: PMC2147991 DOI: 10.1534/genetics.107.070771] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Accepted: 04/27/2007] [Indexed: 12/31/2022] Open
Abstract
In eukaryotes, release factors 1 and 3 (eRF1 and eRF3) are recruited to promote translation termination when a stop codon on the mRNA enters at the ribosomal A-site. However, their overexpression increases termination efficiency only moderately, suggesting that other factors might be involved in the termination process. To determine such unknown components, we performed a genetic screen in Saccharomyces cerevisiae that identified genes increasing termination efficiency when overexpressed. For this purpose, we constructed a dedicated reporter strain in which a leaky stop codon is inserted into the chromosomal copy of the ade2 gene. Twenty-five antisuppressor candidates were identified and characterized for their impact on readthrough. Among them, SSB1 and snR18, two factors close to the exit tunnel of the ribosome, directed the strongest antisuppression effects when overexpressed, showing that they may be involved in fine-tuning of the translation termination level.
Collapse
MESH Headings
- Base Sequence
- Carboxy-Lyases/genetics
- Codon, Terminator
- DNA, Fungal/genetics
- Gene Expression
- Genes, Fungal
- Genes, Reporter
- HSP70 Heat-Shock Proteins/genetics
- HSP70 Heat-Shock Proteins/metabolism
- Macromolecular Substances
- Models, Molecular
- Mutagenesis
- Peptide Chain Termination, Translational
- Peptide Elongation Factor 1/genetics
- Peptide Elongation Factor 1/metabolism
- RNA, Fungal/chemistry
- RNA, Fungal/genetics
- RNA, Small Nucleolar/chemistry
- RNA, Small Nucleolar/genetics
- Ribosomes/chemistry
- Ribosomes/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins/biosynthesis
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/metabolism
Collapse
Affiliation(s)
- Isabelle Hatin
- IGM, Université Paris-Sud, UMR 8621, F91405 Orsay, France.
| | | | | | | | | |
Collapse
|
34
|
Rikhvanov EG, Romanova NV, Chernoff YO. Chaperone effects on prion and nonprion aggregates. Prion 2007; 1:217-22. [PMID: 19164915 PMCID: PMC2634534 DOI: 10.4161/pri.1.4.5058] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Accepted: 08/06/2007] [Indexed: 11/19/2022] Open
Abstract
Exposure to high temperature or other stresses induces a synthesis of heat shock proteins. Many of these proteins are molecular chaperones, and some of them help cells to cope with heat-induced denaturation and aggregation of other proteins. In the last decade, chaperones have received increased attention in connection with their role in maintenance and propagation of the Saccharomyces cerevisiae prions, infectious or heritable agents transmitted at the protein level. Recent data suggest that functioning of the chaperones in reactivation of heat-damaged proteins and in propagation of prions is based on the same molecular mechanisms but may lead to different consequences depending on the type of aggregate. In both cases the concerted and balanced action of "chaperones' team," including Hsp104, Hsp70, Hsp40 and possibly other proteins, determines whether a misfolded protein is to be incorporated into an aggregate, rescued to the native state or targeted for degradation.
Collapse
Affiliation(s)
- Eugene G Rikhvanov
- Siberian Institute of Plant Physiology and Biochemistry, Russian Academy of Sciences, Irkutsk, Russia
| | | | | |
Collapse
|
35
|
Inge-Vechtomov SG, Zhouravleva GA, Chernoff YO. Biological roles of prion domains. Prion 2007; 1:228-35. [PMID: 19172114 PMCID: PMC2634536 DOI: 10.4161/pri.1.4.5059] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Accepted: 08/06/2007] [Indexed: 11/19/2022] Open
Abstract
In vivo amyloid formation is a widespread phenomenon in eukaryotes. Self-perpetuating amyloids provide a basis for the infectious or heritable protein isoforms (prions). At least for some proteins, amyloid-forming potential is conserved in evolution despite divergence of the amino acid (aa) sequences. In some cases, prion formation certainly represents a pathological process leading to a disease. However, there are several scenarios in which prions and other amyloids or amyloid-like aggregates are either shown or suspected to perform positive biological functions. Proven examples include self/nonself recognition, stress defense and scaffolding of other (functional) polymers. The role of prion-like phenomena in memory has been hypothesized. As an additional mechanism of heritable change, prion formation may in principle contribute to heritable variability at the population level. Moreover, it is possible that amyloid-based prions represent by-products of the transient feedback regulatory circuits, as normal cellular function of at least some prion proteins is decreased in the prion state.
Collapse
|
36
|
Affiliation(s)
- Yongsheng Liu
- Henan Institute of Science and Technology in Xinxiang, China and the Pangenesis Institute in Edmonton, Canada.
| |
Collapse
|
37
|
Chernoff YO. Stress and prions: lessons from the yeast model. FEBS Lett 2007; 581:3695-701. [PMID: 17509571 PMCID: PMC2695654 DOI: 10.1016/j.febslet.2007.04.075] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Revised: 04/20/2007] [Accepted: 04/21/2007] [Indexed: 10/23/2022]
Abstract
Yeast self-perpetuating amyloids (prions) provide a convenient model for studying the cellular control of highly ordered aggregates involved in mammalian protein assembly disorders. The very ability of an amyloid to propagate a prion state in yeast is determined by its interactions with the stress-inducible chaperone Hsp104. Prion formation and propagation are also influenced by other stress-related chaperones (Hsp70 and Hsp40), and by alterations of the protein trafficking and degradation networks. Some stress conditions induce prion formation or loss. It is proposed that prions arise as byproducts of the reversible assembly of highly ordered complexes, protecting certain proteins during unfavorable conditions.
Collapse
Affiliation(s)
- Yury O Chernoff
- School of Biology and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332-0230, USA.
| |
Collapse
|
38
|
Vitrenko YA, Pavon ME, Stone SI, Liebman SW. Propagation of the [PIN+] prion by fragments of Rnq1 fused to GFP. Curr Genet 2007; 51:309-19. [PMID: 17415568 PMCID: PMC2597802 DOI: 10.1007/s00294-007-0127-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Revised: 03/08/2007] [Accepted: 03/09/2007] [Indexed: 11/30/2022]
Abstract
Prions are viewed as enigmatic infectious entities whose genetic properties are enciphered solely in an array of self-propagating protein aggregate conformations. Rnq1, a yeast protein with yet unknown function, forms a prion named [PIN+] for its ability to facilitate the de novo induction of another prion, [PSI+]. Here we investigate a set of RNQ1 truncations that were designed to cover major Rnq1 sequence elements similar to those important for the propagation of other yeast prions: a region rich in asparagines and glutamines and several types of oligopeptide repeats. Proteins encoded by these RNQ1 truncations were tested for their ability to (a) join (decorate) pre-existing [PIN+] aggregates made of wild-type Rnq1 and (b) maintain the heritable aggregated state in the absence of wild-type RNQ1. While the possible involvement of particular sequence elements in the propagation of [PIN+] is discussed, the major result is that the efficiency of transmission of [PIN+] from wild-type Rnq1 to a fragment decreased with the fragment's length.
Collapse
Affiliation(s)
- Yakov A Vitrenko
- Department of Biological Sciences, University of Illinois at Chicago, 900 S. Ashland M/C 567, Chicago, IL 60607, USA
| | | | | | | |
Collapse
|
39
|
Kiktev D, Vechtomov SI, Zhouravleva G. Prion-dependent lethality of sup45 mutants in Saccharomyces cerevisiae. Prion 2007; 1:136-43. [PMID: 19164896 DOI: 10.4161/pri.1.2.4533] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In yeast Saccharomyces cerevisiae translation termination factors eRF1 (Sup45) and eRF3 (Sup35) are encoded by the essential genes SUP45 and SUP35 respectively. Heritable aggregation of Sup35 results in formation of the yeast prion [PSI(+)]. It is known that combination of [PSI(+)] with some mutant alleles of the SUP35 or SUP45 genes in one and the same haploid yeast cell causes synthetic lethality. In this study, we perform detailed analysis of synthetic lethality between various sup45 nonsense and missense mutations on one hand, and different variants of [PSI(+)] on the other hand. Synthetic lethality with sup45 mutations was detected for [PSI(+)] variants of different stringencies. Moreover, we demonstrate for the first time that in some combinations, synthetic lethality is dominant and occurs at the postzygotic stage after only a few cell divisions. The tRNA suppressor SUQ5 counteracts the prion-dependent lethality of the nonsense alleles but not of the missense alleles of SUP45, indicating that the lethal effect is due to the depletion of Sup45. Synthetic lethality is also suppressed in the presence of the C-proximal fragment of Sup35 (Sup35C) that lacks the prion domain and cannot be included into the prion aggregates. Remarkably, the production of Sup35C in a sup45 mutant strain is also accompanied by an increase in the Sup45 levels, suggesting that translationally active Sup35 up-regulates Sup45 or protects it from degradation.
Collapse
Affiliation(s)
- Denis Kiktev
- Department of Genetics and Breeding, St Petersburg State University, St. Petersburg, Russia
| | | | | |
Collapse
|
40
|
Takemura K, Kahdre M, Joseph D, Yousef A, Sreevatsan S. An overview of transmissible spongiform encephalopathies. Anim Health Res Rev 2007; 5:103-24. [PMID: 15984319 DOI: 10.1079/ahr200494] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
AbstractTransmissible spongiform encephalopathies (TSEs) are fatal neurodegenerative disorders of humans and animals associated with an accumulation of abnormal isoforms of prion protein (PrP) in nerve cells. The pathogenesis of TSEs involves conformational conversions of normal cellular PrP (PrPc) to abnormal isoforms of PrP (PrPSc). While the protein-only hypothesis has been widely accepted as a causal mechanism of prion diseases, evidence from more recent research suggests a possible involvement of other cellular component(s) or as yet undefined infectious agent(s) in PrP pathogenesis. Although the underlying mechanisms of PrP strain variation and the determinants of interspecies transmissibility have not been fully elucidated, biochemical and molecular findings indicate that bovine spongiform encephalopathy in cattle and new-variant Creutzfeldt–Jakob disease in humans are caused by indistinguishable etiological agent(s). Cumulative evidence suggests that there may be risks of humans acquiring TSEs via a variety of exposures to infected material. The development of highly precise ligands is warranted to detect and differentiate strains, allelic variants and infectious isoforms of these PrPs. This article describes the general features of TSEs and PrP, the current understanding of their pathogenesis, recent advances in prion disease diagnostics, and PrP inactivation.
Collapse
Affiliation(s)
- K Takemura
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, Ohio Agricultural Research and Development Center, Ohio State University, Wooster, OH 44691, USA
| | | | | | | | | |
Collapse
|
41
|
Allen KD, Chernova TA, Tennant EP, Wilkinson KD, Chernoff YO. Effects of Ubiquitin System Alterations on the Formation and Loss of a Yeast Prion. J Biol Chem 2007; 282:3004-13. [PMID: 17142456 DOI: 10.1074/jbc.m609597200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The yeast prion [PSI+] is a self-propagating amyloidogenic isoform of the translation termination factor Sup35. Overproduction of the chaperone protein Hsp104 results in loss of [PSI+]. Here we demonstrate that this effect is decreased by deletion of either the gene coding for one of the major yeast ubiquitin-conjugating enzymes, Ubc4, or the gene coding for the ubiquitin-recycling enzyme, Ubp6. The effect of ubc4Delta on [PSI+] loss was increased by depletion of the Hsp70 chaperone Ssb but was not influenced by depletion of Ubp6. This indicates that Ubc4 affects [PSI+] loss via a pathway that is the same as the one affected by Ubp6 but not by Ssb. In the presence of Rnq1 protein, ubc4Delta also facilitates spontaneous de novo formation of [PSI+]. This stimulation is independent of [PIN+], the prion isoform of Rnq1. Numerous attempts failed to detect ubiquitinated Sup35 in the yeast extracts. While ubc4Delta and other alterations of ubiquitin system used in this work cause slight induction of some Hsps, these changes are insufficient to explain their effect on [PSI+]. However, ubc4Delta increases the proportion of the Hsp70 chaperone Ssa bound to Sup35, suggesting that misfolded Sup35 is either more abundant or more accessible to the chaperones in the absence of Ubc4. The proportion of [PSI+] cells containing large aggregated Sup35 structures is also increased by ubc4Delta. We propose that UPS alterations induce an adaptive response, resulting in accumulation of the large "aggresome"-like aggregates that promote de novo prion generation and prion recovery from the chaperone treatment.
Collapse
Affiliation(s)
- Kim D Allen
- School of Biology and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332-0230, USA
| | | | | | | | | |
Collapse
|
42
|
Doronina VA, Brown JD. When nonsense makes sense and vice versa: Noncanonical decoding events at stop codons in eukaryotes. Mol Biol 2006. [DOI: 10.1134/s0026893306040182] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
43
|
Ono BI, Yoshida R, Kamiya K, Sugimoto T. Suppression of termination mutations caused by defects of the NMD machinery in Saccharomyces cerevisiae. Genes Genet Syst 2006; 80:311-6. [PMID: 16394582 DOI: 10.1266/ggs.80.311] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Among a large collection of nonsense (termination) suppressors of Saccharomyces cerevisiae, a few remained obscure for their molecular nature. Of those, a group of weak and recessive suppressors, sup111, sup112 and sup113, is of particular interest because of their dependency on [PSI+], a yeast prion. From the facts that these suppressors map at positions quite similar to the UPF2, UPF3 and UPF1 genes, respectively, and that some mutations in the UPF genes confer termination suppressor activity, we suspected that sup111, sup112 and sup113 would very well be mutant alleles of the UPF genes. We tested our speculation and found that sup113, sup111 and sup112 were in fact complemented with the wild-type alleles of UPF1, UPF2 and UPF3, respectively. We further obtained evidence that the UPF1, UPF2 and UPF3 loci of the strains carrying sup113, sup111 and sup112, respectively, had point mutations. From these results, we conclude that sup111, sup112 and sup113 are mutant alleles of UPF2, UPF3 and UPF1, respectively, and thus attribute suppressor activity of these mutations to defects in the NMD (nonsense-mediated mRNA decay) machinery.
Collapse
Affiliation(s)
- Bun-Ichiro Ono
- Department of Biotechnology, Faculty of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga, Japan.
| | | | | | | |
Collapse
|
44
|
Ganusova EE, Ozolins LN, Bhagat S, Newnam GP, Wegrzyn RD, Sherman MY, Chernoff YO. Modulation of prion formation, aggregation, and toxicity by the actin cytoskeleton in yeast. Mol Cell Biol 2006; 26:617-29. [PMID: 16382152 PMCID: PMC1346895 DOI: 10.1128/mcb.26.2.617-629.2006] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Self-perpetuating protein aggregates transmit prion diseases in mammals and heritable traits in yeast. De novo prion formation can be induced by transient overproduction of the corresponding prion-forming protein or its prion domain. Here, we demonstrate that the yeast prion protein Sup35 interacts with various proteins of the actin cortical cytoskeleton that are involved in endocytosis. Sup35-derived aggregates, generated in the process of prion induction, are associated with the components of the endocytic/vacuolar pathway. Mutational alterations of the cortical actin cytoskeleton decrease aggregation of overproduced Sup35 and de novo prion induction and increase prion-related toxicity in yeast. Deletion of the gene coding for the actin assembly protein Sla2 is lethal in cells containing the prion isoforms of both Sup35 and Rnq1 proteins simultaneously. Our data are consistent with a model in which cytoskeletal structures provide a scaffold for generation of large aggregates, resembling mammalian aggresomes. These aggregates promote prion formation. Moreover, it appears that the actin cytoskeleton also plays a certain role in counteracting the toxicity of the overproduced potentially aggregating proteins.
Collapse
Affiliation(s)
- Elena E Ganusova
- School of Biology, Georgia Institute of Technology, M/C 0230, 310 Ferst Drive, Atlanta, Georgia 30332-0230, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Bussard AE. A scientific revolution? The prion anomaly may challenge the central dogma of molecular biology. EMBO Rep 2006; 6:691-4. [PMID: 16065057 PMCID: PMC1369155 DOI: 10.1038/sj.embor.7400497] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
46
|
Bagriantsev SN, Kushnirov VV, Liebman SW. Analysis of amyloid aggregates using agarose gel electrophoresis. Methods Enzymol 2006; 412:33-48. [PMID: 17046650 DOI: 10.1016/s0076-6879(06)12003-0] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Amyloid aggregates are associated with a number of mammalian neurodegenerative diseases. Infectious aggregates of the mammalian prion protein PrP(sc) are hallmarks of transmissible spongiform encephalopathies in humans and cattle (Griffith, 1967; Legname et al., 2004; Prusiner, 1982; Silveira et al., 2004). Likewise, SDS-stable aggregates and low-n oligomers of the Abeta peptide (Selkoe et al., 1982; Walsh et al., 2002) cause toxic effects associated with Alzheimer's disease (Selkoe, 2004). The discovery of prions in lower eukaryotes, for example, yeast prions [PSI(+)], [PIN(+)], and [URE3] suggested that prion phenomena may represent a fundamental process that is widespread among living organisms (Chernoff, 2004; Uptain and Lindquist, 2002; Wickner, 1994; Wickner et al., 2004). These protein structures are more stable than other cellular protein complexes, which generally dissolve in SDS at room temperature. In contrast, the prion polymers withstand these conditions, while losing their association with their non-prion partners. These bulky protein particles cannot be analyzed in polyacrylamide gels, because their pores are too small to allow the passage and acceptable resolution of the large complexes. This problem was first circumvented by Kryndushkin et al. (2003), who used Western blots of protein complexes separated on agarose gels to analyze the sizes of SDS-resistant protein complexes associated with the yeast prion [PSI(+)]. Further studies have used this approach to characterize [PSI(+)] (Allen et al., 2005; Bagriantsev and Liebman, 2004; Salnikova et al., 2005), and another yeast prion [PIN(+)] (Bagriantsev and Liebman, 2004). In this chapter, we use this method to assay amyloid aggregates of recombinant proteins Sup35NM and Abeta42 and present protocols for Western blot analysis of high molecular weight (>5 MDa) amyloid aggregates resolved in agarose gels. The technique is suitable for the analysis of any large proteins or SDS-stable high molecular weight complexes.
Collapse
|
47
|
Lupi O, Dadalti P, Cruz E, Sanberg PR. Are prions related to the emergence of early life? Med Hypotheses 2006; 67:1027-33. [PMID: 16814482 DOI: 10.1016/j.mehy.2006.04.056] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Accepted: 04/28/2006] [Indexed: 11/17/2022]
Abstract
DNA and RNA are the modern cellular molecules related to the storage and processing of the genetic information. However, in the Earth primeval environment conditions, these two molecules are far from being the best option for this function due to their great complexity and sensibility to heat. Experiments have been showing that proteins are very stable and reliable molecules even in very extreme conditions and, under certain circumstances, could be related to the transmission of certain phenotypes that are inherited in a non-Mendelian manner. Prions, infective proteins that are associated to several neurological diseases among mammals by replacing their dominant native state of prion protein by a misfolded one, are remarkably resistant to even the most extreme environments. Furthermore, prions are also associated to the transmission of certain fungal traits in an epigenetical model. These two characteristics support the hypothesis that prions are a possible relic of early stage peptide evolution and may represent the reminiscence of a very ancient analogical code of biological transmission of information rather than the digital one represented by modern nucleic acids.
Collapse
Affiliation(s)
- Omar Lupi
- Post-Graduation Course of Dermatology (UFRJ, UNI-RIO and Instituto de Dermatologia Prof. Rubem Azulay/Santa Casa do Rio de Janeiro), Rua Frei Leandro, 16/501, 22.470-210 Rio de Janeiro, RJ, Brazil
| | | | | | | |
Collapse
|
48
|
Ono BI, Futase T, Honda W, Yoshida R, Nakano K, Yamamoto T, Nakajima E, Noskov VN, Negishi K, Chen B, Chernoff YO. The Saccharomyces cerevisiae ESU1 gene, which is responsible for enhancement of termination suppression, corresponds to the 3'-terminal half of GAL11. Yeast 2005; 22:895-906. [PMID: 16134092 DOI: 10.1002/yea.1281] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
A DNA fragment enhancing efficiency of [PSI+]-dependent termination suppressor, sup111, was isolated from a genomic library of Saccharomyces cerevisiae and its function was attributed to an ORF of 1272 bp. This ORF, designated ESU1 (enhancer of termination suppression), corresponded to the 3'-terminal portion of GAL11. Contrasting to ESU1, GAL11 lowered the suppression efficiency of [PSI+] sup111. ESU1 possesses a TATA-like sequence of its own and three ATG codons following it within a distance of about 70 bp and all in the same reading frame as GAL11. A 52.7 kDa protein corresponding in size to the predicted Esu1 protein is detected by western blot analysis using anti-Gal11 antiserum. We therefore conclude that ESU1 is the gene that encodes a polypeptide corresponding to the C-terminal 424 amino acids of Gal11. It was further found that ESU1 increases the level of GAL11 mRNA and probably also of its own mRNA. Moreover, ESU1 increased the cellular level of mRNA transcribed from the leu2-1(UAA) mutant gene, while GAL11 did not. Based on these findings, we propose the following scheme for the events taking place in the [PSI+] sup111 cell that is transformed with an ESU1-bearing plasmid: (a) ESU1 stimulates transcription of leu2-1; (b) leu2-1 mRNA is not effectively degraded because of the possession of sup111, which belongs to the upf group; (c) [PSI+] causes increased mis-termination due to depletion of eRF3; (d) functional Leu2 product is made using leu2-1 mRNA; and (d) suppression of leu2-1 is eventually accomplished.
Collapse
Affiliation(s)
- Bun-ichiro Ono
- Department of Biotechnology, Faculty of Science and Engineering, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu 525-8577, Shiga, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Wilson MA, Meaux S, Parker R, van Hoof A. Genetic interactions between [PSI+] and nonstop mRNA decay affect phenotypic variation. Proc Natl Acad Sci U S A 2005; 102:10244-9. [PMID: 16002465 PMCID: PMC1173365 DOI: 10.1073/pnas.0504557102] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Yeast strains can reversibly interconvert between [PSI+] and [psi-] states. The [PSI+] state is caused by a prion form of the translation termination factor eRF3. The [PSI+] state causes read-through at stop codons and can lead to phenotypic variation, although the molecular mechanisms causing those phenotypic changes remain unknown. We identify an interaction between [PSI+]-induced phenotypic variation and defects in nonstop mRNA decay. Nonstop mRNA decay is triggered when a ribosome reaches the 3' end of the transcript. In contrast, we observed little interaction between [PSI+]-induced phenotypic variation and defects in nonsense-mediated decay, which lead to suppression of premature stop codons. These results suggest that at least some of the phenotypic effects of [PSI+] may be due to read-through of "normal" stop codons, thereby producing extended proteins. Moreover, these observations suggest that nonstop mRNA decay may limit [PSI+]-induced phenotypic variation. Such a process would allow periodic sampling of the 3' UTR, which can diverge rapidly, for novel and beneficial protein extensions.
Collapse
Affiliation(s)
- Marenda A Wilson
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, 6431 Fannin Street, MSB 1.212, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
50
|
Abstract
Evolutionary capacitors phenotypically reveal a stock of cryptic genetic variation in a reversible fashion. The sudden and reversible revelation of a range of variation is fundamentally different from the gradual introduction of variation by mutation. Here I study the invasion dynamics of modifiers of revelation. A modifier with the optimal rate of revelation mopt has a higher probability of invading any other population than of being counterinvaded. mopt varies with the population size N and the rate theta at which environmental change makes revelation adaptive. For small populations less than a minimum cutoff Nmin, all revelation is selected against. Nmin is typically quite small and increases only weakly, with theta-1/2. For large populations with N>1/theta, mopt is approximately 1/N. Selection for the optimum is highly effective and increases in effectiveness with larger N>>1/theta. For intermediate values of N, mopt is typically a little less than theta and is only weakly favored over less frequent revelation. The model is analogous to a two-locus model for the evolution of a mutator allele. It is a fully stochastic model and so is able to show that selection for revelation can be strong enough to overcome random drift.
Collapse
Affiliation(s)
- Joanna Masel
- Department of Biological Sciences, Stanford University, Stanford, California 94305, USA.
| |
Collapse
|